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The spectra of fermionic excitations, pairing correlations, and edge currents confined near the boundary of a
chiral p-wave superfluid are calculated to leading order in h̄/pf ξ . Results for the energy- and momentum-resolved
spectral functions, including the spectral current density, of a chiral p-wave superfluid near a confining boundary
are reported. The spectral functions reveal the subtle role of the chiral edge states in relation to the edge current and
the angular momentum of a chiral p-wave superfluid, including the rapid suppression of Lz(T ) for 0 � T � Tc

in the fully gapped two-dimensional chiral superfluid. The edge current and ground-state angular momentum are
shown to be sensitive to boundary conditions, and as a consequence the topology and geometry of the confining
boundaries. For perfect specular boundaries, the edge current accounts for the ground-state angular momentum,
Lz = (N/2)h̄, of a cylindrical disk of a chiral superfluid with N/2 fermion pairs. Nonspecular scattering can
dramatically suppress the edge current. In the limit of perfect retroreflection, the edge states form a flat band of
zero modes that are nonchiral and generate no edge current. For a chiral superfluid film confined in a cylindrical
toroidal geometry, the ground-state angular momentum is, in general, nonextensive, and can have a value ranging
from Lz > (N/2)h̄ to Lz < −(N/2)h̄ depending on the ratio of the inner and outer radii and the degree of
backscattering on the inner and outer surfaces. Nonextensive scaling of Lz, and the reversal of the ground-state
angular momentum for a toroidal geometry, would provide a signature of broken time-reversal symmetry of the
ground state of superfluid 3He-A, as well as direct observation of chiral edge currents.
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I. INTRODUCTION

Among the remarkable phases of liquid 3He is the A

phase. In addition to being a superfluid that supports persistent
currents, this fluid is believed to possess a spontaneous mass
current in its ground state. Ground-state currents are associated
with the chirality of Cooper pairs that condense to form
the A phase and conspire to produce a macroscopic angular
momentum. Chirality is encoded in the p-wave orbital order
parameter, �(p) = � p · (m̂ + in̂) /pf = � sin θp eiφp , where
p is the relative momentum of a Cooper pair, {m̂,n̂,l̂} is
an orthonormal triad of unit vectors that define the orbital
coordinates of the Cooper pair wave function, and � ∼
kBTc is the pairing energy.1 This order parameter is an
eigenfunction of the orbital angular momentum along l̂ =
m̂ × n̂ with eigenvalue +h̄. Such broken symmetries in bulk
condensed-matter systems have implications for the spectrum
of excitations bound to surfaces and topological defects.2 This
phase breaks time-reversal symmetry as well as parity, and
is realized at all pressures below melting in thin superfluid
3He-A films. In the two-dimensional (2D) limit, the Fermi
surface is fully gapped, and belongs to the topological class
of integer quantum Hall systems.3–5 The 2D A phase is also
representative of layered p-wave superconductors with broken
time-reversal symmetry, e.g., the proposed order parameter for
superconducting Sr2RuO4.6

The macroscopic manifestation of chiral order in 3He-A
is the ground-state angular momentum, L = ∫

V
dV r × g(r),

where g is the mass current density. For 2D chiral p-wave
superfluids in the BCS limit, where the size of the Cooper
pairs is large compared to the Fermi wavelength, ξ � h̄/pf ,
the ground-state currents are predominantly confined to
boundaries. I discuss effects of surface scattering on the
pairing correlations, the fermionic spectrum, and ground-state
currents in the vicinity of boundaries confining a chiral
p-wave superfluid. Results for the spectral current density

highlight the fermionic spectrum that is responsible for
the edge current and the ground-state angular momentum.
The theory is extended to finite temperatures, nonspecular
boundaries, and multiply connected geometries. The results
reported here are discussed in context with the results of Kita7

and Stone and Roy.8

Starting from Bogoliubov’s equations in Sec. II, I introduce
Eileberger’s quasiclassical equation for the Nambu propagator
that is the basis for investigating the pairing correlations,
spectrum of surface states, and edge currents for chiral p-wave
superfluids. The bound-state spectrum and results for the spec-
tral current density are discussed in Secs. III and IV. Analysis
of the continuum spectrum, edge current, and the spectral
analysis of the ground-state angular momentum are reported
in Sec. V, which is followed by results and a discussion of
the temperature dependence of the edge current and angular
momentum in Sec. VI. In Sec. VII, I discuss the sensitivity
of the edge current and ground-state angular momentum
to boundary scattering and geometry, and in Sec. VIII I
discuss the nonextensive behavior of the ground-state angular
momentum that develops for multiply connected geometries
in which there is an asymmetry in the specularity on different
surfaces. I start with some background on the ground-state
current and angular momentum of superfluid 3He-A.

The magnitude of the ground-state angular momentum, Lz,
has been a subject of considerable theoretical investigation.
Predictions for Lz of 3He-A in a cylindrically symmetric
vessel vary over many orders of magnitude,9–14 from Lz �
(N/2)h̄ (�/Ef )2 to Lz = (N/2)h̄, where N/2 is the total
number of fermion pairs in the volume V . This latter result
is what one intuitively expects for a Bose-Einstein condensate
(BEC) of tightly bound molecules, each carrying one unit
of angular momentum, and whose molecular size ξ is small
compared to the mean distance between molecules, a ≡

3
√

2V/N � ξ . However, this result is also obtained in the
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opposite limit, ξ � a, appropriate to BCS condensation of
Cooper pairs, each with angular momentum h̄ l̂ and radial size
ξ = h̄vf /π�, where one expects almost exact cancellation
of the internal currents from overlapping Cooper pairs.12

In particular, McClure and Takagi (MT)14 showed that an
N -particle ground state of the form

|N〉 =
[∫∫

dr dr′ϕαβ(r,r′) ψ†
α(r)ψ†

β(r′)
]N/2

|vac〉, (1)

with an equal-spin, odd-parity chiral pairing amplitude,31

F αβ ≡ 〈N − 2 |ψα(r + x/2)ψβ (r − x/2)| N 〉
= F (|r|) �d · (i �σσy)αβ [m̂(r) + in̂(r)] · x , (2)

of the AM form that preserves cylindrical symmetry, is an
eigenstate of the total angular momentum with Lz = (N/2)h̄.32

Thus, the ground-state angular momentum of a chiral conden-
sate is the same for N/2 Bose molecules or N/2 Cooper
pairs. However, the magnitude and spatial distribution of the
mass currents that give rise to the total angular momentum
differ in the BEC and BCS limits. This somewhat nonintuitive
result is intimately connected with the symmetry of the ground
state and its implications for the surface fermionic spectrum
and associated currents.8,17 Numerous authors have addressed
the question of the current distribution responsible for the
ground-state angular momentum.11,12,18,19,33 Starting from the
N -particle BCS wave function in Eq. (1), Ishikawa12 and
Mermin and Muzikar18 calculated the current density in the
long-wavelength limit, L � ξ , for the AM state at T = 0. For
spatially uniform l̂ and no center-of-mass supercurrent,

g = ∇ × (
1
4 nh̄ l̂

)
. (3)

In the BCS limit, the density, n(r), is spatially uniform except
near the boundary, r = R, where n(R) = 0. The current is then
confined at the boundary, g = 1

4h̄ (−∂n/∂r) φ̂, from which one
recovers the result for the ground-state angular momentum
L = ∫

V dV r × g = (N/2)h̄ l̂. This highlights a limitation of
the gradient expansion and hydrodynamic limit. The order
parameter is assumed to be the local equilibrium AM state,
and spatial variations are assumed to be long-wavelength on
the scale of ξ � a. However, the density varies on atomic
length scales near the surface, whereas the order parameter
is, in general, strongly deformed on length scales of order ξ

near a boundary. Thus, Eq. (3), and the gradient expansion in
particular, do not accurately describe the current density near
the boundary, nor do they account for the source of the surface
current. This requires a theory valid for spatial variations of
the condensate on length scales comparable to or smaller than
the correlation length ξ .

II. BOGOLIUBOV-ANDREEV-EILENBERGER

For a thin film of 3He-A, as shown in Fig. 1, the orbital
quantization axis is locked normal to the surface of the film,
l̂||ẑ.21 The A phase also belongs to the class of equal spin
pairing (ESP) states with spin structure of the order parameter
given by a linear combination of the symmetric Pauli matrices,

�αβ(p) = d · (i �σσy)αβ �(p), (4)

where α,β label the projections of fermion spins of the Cooper
pair and d is the direction in spin space along which Cooper
pairs have zero spin projection. Thus, for d = ẑ, the spin
state of the Cooper pairs is given by i �σσy · d = σx , which
is the triplet state with equal amplitude for the Cooper pairs to

be spin-polarized along +x̂ or −x̂: | d 〉 = 1√
2
(|→→〉 + |←←〉).

Spin textures described by spatial variations of the d vector
are possible; however, in what follows I assume the spin state
is fixed by the nuclear dipolar energy, which locks d || l̂.22

The bulk A phase of 3He in three dimensions has gapless
excitations for momenta along the nodal directions, p || ± l̂.
Here I consider 2D 3He-A with a cylindrical Fermi surface (or
a set of cylindrical Fermi surfaces generated by dimensional
quantization) and an orbital order parameter given by

�(p) = �(px + i py)/pf , (5)

which generates a bulk excitation spectrum that is fully gapped
on the Fermi surface.

Near a boundary, or domain wall, the orbital order pa-
rameter can deviate from the pure A-phase form. Thus, a
more general form of the orbital p-wave order parameter is
parametrized by two real amplitudes,

�(r,p) = [�1(r) px + i �2(r) py]/pf , (6)

with �1,2(r) → � far from a boundary. Inhomogeneous states
are described by Bogoliubov’s equations,4,17,23(

− h̄2

2m∗ ∇2 − μ

)
uα(r) + �αβ(r,p) vβ(r) = ε uα(r) , (7)

−
(

− h̄2

2m∗ ∇2 − μ

)
vα(r) + �

†
βα(r,p) uβ (r) = ε vα(r) . (8)

for the particle [uα(r)] and hole [vα(r)] wave functions. For
d = z, the Bogoliubov equations reduce to 2 × 2 equations for
Bogoliubov spinors, |ϕ〉 = (u,v)T , in Nambu (particle-hole)
space,

Ĥ B|ϕ〉 = ε|ϕ〉 , (9)

where Ĥ B is the Bogoliubov Hamiltonian expressed in terms
of Nambu matrices, τ̂1 ,̂τ2 ,̂τ3,

Ĥ B = ξ (p)̂τ3 + σx[�1(r,p)̂τ1 + �2(r,p)̂τ2], (10)

with p = h̄/i∇, and the off-diagonal pair potentials interpreted
as symmetrized operators,

�1,2(r,p) = h̄

2i
[�1,2(r) ∂x,y + ∂x,y �1,2(r)] . (11)

h p_p
α x

R
r

ϕ
x yΔ + pip

FIG. 1. (Color online) A thin film of px + ipy superfluid (“2D
3He-A”) confined in a cylindrical geometry with thickness h � ξ and
radius R � ξ bounded by specular surfaces that reflect excitations,
p → p.
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The large difference between the Fermi wavelength, h̄/pf ,
and the size of the Cooper pairs, ξ , is the basis for Andreev’s
quasiclassical approximation to the Bogoliubov equations.24

The expansion is achieved by factoring the fast and slow spatial
variations of the Bogoliubov spinor,

| ϕ 〉 = eipf ·r/h̄ | ψpf
〉 , (12)

and retaining leading-order terms in h̄/pf ξ � 1, which yields
Andreev’s equation,

Ĥ A | ψp 〉 + ih̄ vp · ∇ | ψp 〉 = 0 (13)

with operator Ĥ A defined by

Ĥ A = ετ̂3 − �̂(r,p) , (14)

and the Nambu matrix order parameter given by

�̂(r,p) = iσx [̂τ1�2(r,p) − τ̂2�1(r,p)] , (15)

where p = pf p̂ is the Fermi momentum and vp = vf p̂ is
the Fermi velocity. The latter defines classical straight-line
trajectories for the propagation of wave packets of Bogoliubov
excitations, which are coherent superpositions of particles and
holes with amplitudes given by the Andreev-Nambu spinor,

|ψp〉 =
(

up
vp

)
. (16)

Andreev’s equation expressed in terms of a row spinor is34

〈ψ̃p|Ĥ A − ih̄vp · ∇〈ψ̃p| = 0 , (17)

with the normalization of the Andreev-Nambu spinor given by
〈ψ̃p|ψp〉 = 1. There are two solutions (branches) to Andreev’s
equation for a single trajectory defined by p. For |ε| > �, the
two branches are propagating solutions; a particlelike solution,
|ψp+〉, with group velocity v(ε)||p, and a holelike solution,
|ψp−〉, with reversed group velocity, v(ε)|| − p. For energies
within the bulk gap, the solutions are exploding and decaying
amplitudes along the trajectory, and thus are relevant only in
the vicinity of boundaries, domain walls, etc.

The product of the particle and hole amplitudes in Eq. (16),

fαβ(r,p; ε) = uα(r,p; ε)vβ (r,p; ε) , (18)

is the pair propagator, which determines the spectral compo-
sition of the Cooper pair amplitude,

F αβ(r,p) =
∫

dε f (ε) fαβ(r,p; ε) , (19)

where f (ε) = 1/(eε/T + 1) is the Fermi distribution. The pair
propagator is one component of the Nambu matrix,

ĝ(r,p; ε) =
∑
μ,ν

gμν | ψpμ 〉〈 ψ̃pν | , (20)

which satisfies Eilenberger’s transport equation,25[
Ĥ A , ĝ(r,p; ε)

] + ih̄vp · ∇ ĝ(r,p; ε) = 0 . (21)

Physical solutions to Eq. (21) must also satisfy Eilenberger’s
normalization condition,25

[̂g(r,p; ε)]2 = −π 2̂1 . (22)

An advantage of Eilenberger’s formulation is that the spectral
functions for both quasiparticle and pair excitations are

obtained as components of the quasiclassical propagator.
For a fixed spin quantization axis, d = ẑ, the off-diagonal
components of the propagator describe pure equal-spin pairing
correlations. As a result, the Nambu propagator can be
expressed in the form

ĝR = gR
3 τ̂3 + iσx

(
fR
2 τ̂1 − fR

1 τ̂2
)

. (23)

The superscript refers to the causal (retarded in time) propaga-
tor, obtained from Eq. (21) with the shift, ε → ε + i0+. The
diagonal propagator in Nambu space, gR

3 τ̂3, determines the
spectral function, or local density of states, for the fermionic
excitations with momentum p = pf p̂,

N (r,p; ε) = − 1

π
Im gR

3 (r,p; ε) , (24)

while the off-diagonal propagators, fR
1 τ̂2 and fR

2 τ̂1, determine
the spectral function for the correlated pairs,

P 1,2(r,p; ε) = − 1

π
Im fR

1,2(r,p; ε) . (25)

These functions determine the mean pair potentials, �1 and
�2, through the BCS self-consistency condition,

�1,2(r,p) = 〈v(p,p′)
∫ +�c

−�c

dε tanh

(
ε

2T

)
P 1,2(r,p′; ε)〉p′ ,

(26)

where �c � EF is the bandwidth of attraction for the spin-
triplet, p-wave pairing interaction, v(p,p′), which is integrated
over the occupied states defining the pair spectrum and
averaged over the Fermi surface, 〈· · ·〉p′ ≡ ∫

d�p′/4π (· · ·).

III. CHIRAL EDGE STATE

For a boundary far from other boundaries, only single
reflections, p → p, couple the propagators for the incoming
(p) and outgoing (p) trajectories. In particular, for the pair
of specularly reflected trajectories on the boundary shown
in Fig. 1, with radius of curvature large compared to the
correlation length, R � ξ , the solutions for the components
of the propagator are (see Appendix A)

fR
1 (x,p; ε) = π�1

λ(ε)
(1 − e−2λ(ε)x/vx ) , (27)

fR
2 (x,p; ε) = π�2

λ(ε)
− π�1

λ(ε)

�2
1 − (ε̃R)2

λε̃R − �1�2
e−2λ(ε)x/vx , (28)

gR
3 (x,p; ε) = −πε̃R

λ(ε)
+ π�1

λ(ε)

ε̃R�1 + λ�2

(ε̃R)2 − �2
2

e−2λ(ε)x/vx . (29)

where vx = vf cos(α) for −π/2 < α < π/2 and x � 0 is the
coordinate normal to the boundary as shown in Fig. 1.

Note that the propagator corresponding to Cooper pairs
with relative momentum normal to the boundary vanishes at
the boundary, fR

1 (x = 0,p; ε) ≡ 0. Depairing of the normal
amplitude is partially compensated by an increase in the
pairing correlations for pairs with relative momenta parallel to
the boundary. The origin of this enhancement is the fermionic
state, bound to the surface, which appears as a pole in the
propagators of Eqs. (28) and (29) at the energies

εbs(p) = −�2(p) = −c p||. (30)
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FIG. 2. (Color online) Chiral edge state dispersion, εbs(p) =
−c p||, illustrating the asymmetry in the occupation of pairs of
time-reversed states.

The surface state disperses with momentum p|| = pf sin α

parallel to the surface, −pf � p|| � +pf , and c =
�/pf � vf .

The important feature of the spectrum of surface fermions,
shown in Fig. 2, is that there is no branch with the oppo-
site phase velocity. The spectrum describes Weyl or chiral
fermions.17,35 For each pair of time-reversed fermions, the
state with +p|| is occupied while its time-reversed partner
with momentum −p|| is empty. As a result, the pairs of
surface states generate a net mass or charge current. This
asymmetry in the occupation of the surface spectrum is a
reflection of the chirality of the ground-state order parameter
and specular reflection at the boundary, which preserves
translation symmetry locally along the boundary. The absence
of a branch of fermions with energy ε+(p||) = +�2(p) is
demonstrated by evaluating the residue of gR

3 (x,p; ε) at the
apparent pole, ε+: Res gR

3 (x,p; ε)|ε+ ≡ 0. For energies in
the vicinity of the bound-state pole, |ε − εbs| � |�|, the
quasiparticle propagator reduces to

gR
bs(x,p; ε) = π |�1(p)|

ε + iγ − εbs(p)
e−2� x/vf , (31)

where I include the linewidth, γ � �, of the surface state due
to weak disorder. For γ → 0+, the states are sharp and the
spectral function consists of δ functions at εbs(p),

N bs(x,p; ε) = π |�1(p)| e−2� x/vf δ(ε − εbs(p)) . (32)

The spectral weight is maximum for trajectories at normal
incidence and vanishes for grazing incidence. Note that every
edge state is confined to the surface on the length scale

ξ� = h̄vf /2�, (33)

independent of momentum p||, and of order the Cooper pair
size, ξ� = h̄vf /2� � 1.6 ξ .

IV. SPECTRAL CURRENT DENSITY

The spectral current density is defined as the local density
of current-carrying states in the energy interval (ε,ε + dε) for

states with momentum p,

J (x,p; ε) = 2Nf vp
[

N in(x,p; ε) − N in(x,p′; ε)
]

, (34)

where N in(x,p; ε) is the spectral function calculated for the
incident trajectory with momentum p, Nf is the normal-state
density of states at the Fermi level for one spin, and p and p′
define the pair of time-reversed incident trajectories shown in
Fig. 3(a), for which vp′ = −vp.

The resulting local current density is obtained by thermally
occupying the spectrum and integrating over all incoming
trajectories,

j(x) =
∫

in

d�p

4π

∫ +∞

−∞
dε f (ε) J (x,p; ε) , (35)

where f (ε) = 1/(eε/T + 1) is the Fermi distribution.
The spectral current density for the bound-state spectrum

obtained from Eqs. (31) and (34) is shown in Fig. 4 for the full
range of incident trajectories. Note that time-reversed states,
incident angles α and −α, add coherently to the spectral current
density. Thus, the net current density parallel to the boundary
carried by the surface bound states is given by36

j bs
y (x) = I (�/T )Nf vf � e−x/ξ�, (36)

where the integration over the spectrum reduces to

I =
∫ +1

−1
du u tanh(�u/2T ) =

{
1, T → 0,
�(T )
12Tc

, T → Tc.
(37)

Note that near the transition, the magnitude of the current de-
creases as jy ∼ �2(T )/Tc ∼ (1 − T/Tc), but also penetrates
deeper into the bulk as ξ� = h̄vf /2�(T ) ∼ (1 − T/Tc)−

1
2 .

V. EDGE CURRENTS AND ANGULAR MOMENTUM

Mass currents confined near the boundary (“edge currents”)
generate macroscopic angular momentum. For a Galilean
invariant system such as liquid 3He, the mass current density
is obtained from the spectral current density in Eq. (34) by the
replacement vp → m∗vp = p, where m∗ is the quasiparticle
effective mass and p = pf p̂ is the Fermi momentum. In
addition, vf , pf , and the normal-state density of states, Nf ,
determine the particle number density, which for a 2D Fermi
surface gives n ≡ N/V = Nf pf vf .

For a chiral p-wave superfluid confined within a thin
cylindrical vessel of radius R and height h in the 2D limit,

p’
p’ p’

_
p’_ p_

p_

(a) (b)
pp

xx

FIG. 3. (Color online) (a) Time-reversed trajectory pairs that
define the spectral current density, J (x,p; ε), for specular reflections.
(b) Retroreflections are time-reversed partners for any incident angle.
The chirality of the bulk order parameter is indicated by the direction
of the arc.
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FIG. 4. (Color online) Spectral current density J
y

for x = 0 as a function of p|| = pf sin α for linewidth γ = 0.025�. States with ±p||
are slightly offset to show the contributions to the current from time-reversed pairs.

h � ξ� � R, the angular momentum relative to the z axis is
determined by the radial moment of the azimuthal component
of the mass current density, gϕ(r),

Lz =
∫

V
d3r

[
r gϕ(r)

]
. (38)

For R � ξ�, we can neglect the curvature of the surface,
in which case the azimuthal mass current is given by the
tangential component of the boundary current calculated from
Eq. (35). Thus, the bound-state contribution to Lz at T = 0
obtained from Eqs. (38) and (36) with vf → pf becomes

Lbs
z = Nf pf � 2π h

∫ R

0
r2 dr e−(R−r)/ξ� = N h̄ , (39)

which is a factor of 2 larger than that predicted by Ishikawa12

and McClure and Takagi14 based on the real-space N -particle
wave function of Eq. (1). Finite-size corrections from Eq. (39)
are negligible—of order ξ�/R � 1. As Stone and Roy pointed
out, the discrepancy is resolved by including the contribution
to Lz from the states comprising the continuum spectrum.8

Below, I analyze the continuum contributions to the edge
current and ground-state angular momentum. In particular, I
show that there are two contributions to the continuum spectral
current density: (i) an isolated scattering resonance that exactly
cancels the bound-state contribution to the edge current for
each value of p, and (ii) a nonresonant response of the bound
continuum that accounts exactly for the McClure and Takagi
(MT) result of Lz = (N/2)h̄.

The energy range ε < −� constitutes the bound contin-
uum, while the range ε > +� represents excitations above
the gap. At finite temperatures, subgap surface excited states
0 < ε < � also play an important role. The spectral weight
associated with the continuum spectrum is modified near
the boundary. For |ε| > �, λ(ε) = i sgn(ε)

√
ε2 − �2 and the

spectral function becomes

N c(x,p; ε) = |ε|√
ε2 − �2

(40)

− |ε|√
ε2 − �2

�2
1(p)

ε2 − �2
2(p)

cos(2
√

ε2 − �2 x/vx)

−sgn(ε)

(
�1(p)�2(p)

ε2 − �2
2(p)

)
sin(2

√
ε2 − �2 x/vx).

The first term is the bulk continuum spectrum, while the
corrections to the continuum spectrum are given by the second
and third lines in Eq. (40). The third term is odd under
either ε → −ε or p → −p, and thus gives a nonvanishing
contribution to the spectral current density,

J c(x,p; ε) = −2Nf vp sgn(ε)

(
�1(p)�2(p)

ε2 − �2
2(p)

)
× sin(2

√
ε2 − �2 x/vx). (41)

Note that for fixed energy ε and momentum p, the effect of
surface scattering on the continuum spectrum is large and
propagates into the bulk. Thus, it is not a priori clear that the
current is confined to the surface. However, the wavelength
of the disturbance is given by the Tomasch wavelength for a
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ξ
2

R

1 i|Δ1|
iΔ

FIG. 5. (Color online) Integration in the complex ξ plane.
Integration along the real axis (C R) is transformed into the sum
of an integral around the isolated pole at i|�1| and the branch cut
along the imaginary ξ axis.

specific trajectory,

λT(p,ε) = πh̄vf p̂x√
ε2 − �2

. (42)

The net current parallel to the boundary is given by the sum
over all incident trajectories,

j c
y (x) = 2Nf vf

∫ +π/2

−π/2

dα

π
p̂y �1(p)�2(p) × J (p) , (43)

where J (p) is given by

J (p) =
∫ ∞

�

dε
tanh(ε/2T )

ε2 − �2
2(p)

sin(2
√

ε2 − �2 x/vx) . (44)

The integration over the spectral current density leads to phase
cancellation away from the boundary, and a net current that
is confined to the edge. Although the integration is over the
continuum spectrum, the chiral edge state nevertheless mod-
ifies the current carried by the continuum states. Trajectories
near grazing incidence give a large enhancement to the kernel
J (p) coming from the off-resonant bound state. The kernel is
weighted by the product p̂y �1(p)�2(p), which is peaked near
α ≈ ±55◦.

At zero temperature, the kernel is evaluated by transforming
to an integration over the radial momentum p, or equivalently
ξ = vf (p − pf ) with ξ 2 = ε2 − �2,

J (p) = 1

2
Im

∫
C R

dξ
ξ(

ξ 2 + �2
1

)√
ξ 2 + �2

e2iξ x/vx . (45)

The singularities shown in the upper half of the complex ξ

plane (Fig. 5) determine the continuum current response. In
particular, the integral along the real axis is transformed to an
integral around the pole at i|�1| and the branch cut from i�

to i ∞: JC R
= JC 1

+ JC 2
.

The pole at ξ = i|�1| is an isolated resonance that gives a
contribution to the continuum current that is confined to the
boundary on the length scale ξ�,

JC 1
= π

2|�2(p)| e−x/ξ� . (46)

The current generated by this resonance exactly cancels the
bound-state edge current and bound-state contribution to the

angular momentum,

LC 1
z =

∫
V

d2r
[
r gC 1

ϕ (r)
] = −Nh̄ . (47)

Thus, the ground-state current and angular momentum come
entirely from the nonresonant contribution to the continuum
spectrum defined by the branch cut C 2, which evaluates to

JC 2
= −

∫ ∞

0

dε

ε2 + |�2(p)|2 e−2
√

ε2+�2 x/vx . (48)

The current density is then given by

jC 2
y (x) = 2Nf vf

∫ +π/2

−π/2

dα

π
p̂y |�1(p)|�2(p)

×
∫ ∞

0

dε

ε2 + |�2(p)|2 e−2
√

ε2+�2 x/vx , (49)

which is confined to the edge, but in contrast to the bound-state
and resonance terms, there is not a single confinement length,
but rather a weighted average of exponential confinement
on length scales πh̄vf cos α/�. For this reason, an analytic
expression for the net current density analogous to Eq. (36)
does not appear possible. However, the total edge current
and ground-state angular momentum can be computed by
first carrying out the integration over the region of the edge
current. In the limit R � ξ�, the resulting ground-state angular
momentum reduces to the following integration over the
continuum spectrum:

LC 2
z = Nh̄

2

π

∫ +π/2

−π/2
dα p̂x p̂y �1(p)�2(p) (50)

×
∫ ∞

0

dε

[ε2 + |�2(p)|2]
√

ε2 + �2
,

which evaluates to (see Appendix B)

LC 2
z = N

2
h̄ . (51)

Thus, the results of Ishikawa,12, McClure and Takagi,14 and
Stone and Roy8 are recovered from the continuum response to
the formation of the chiral edge state.

VI. TEMPERATURE DEPENDENCE OF Lz

For T �= 0, thermal excitations out of the ground state lead
to a reduction of the order parameter �(T ), the edge current,
and the angular momentum. The latter can be expressed as

Lz(T ) = N

2
h̄ Y Lz

(T ), (52)

where Y Lz
(T ) → 1 for T → 0, vanishes for T → Tc, and can

be calculated from the edge current at finite temperature.
Calculations of the temperature dependence of the angular

momentum for 3He-A were carried out by Kita on the
basis of numerical solutions to the Bogoliubov equations
for mesoscopic cylindrical (3D) geometries with dimensions
R ∼ 4h ∼ 2ξ . Kita showed that Y Lz

(T ) decreases rapidly
for T � 0, indicating that there are low-lying excitations
that are thermally populated even at low temperatures that
reduce the ground-state angular momentum. Based on his
numerical results (Fig. 2a of Ref. 7), Kita conjectured that
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the temperature dependence of Y Lz
(T ) resulted from the

excitations responsible for the suppression of the superfluid
density ρs,||(T ) of bulk 3He-A corresponding to superflow
along the nodal direction for the 3D chiral p-wave superfluid.
For 3D bulk superfluid 3He-A, the stiffness for ps || l̂ is
strongly suppressed at finite temperature compared to the
stiffness for superflow perpendicular to the nodal direction,
i.e., ρs,⊥ � ρs,||. However, as I discuss below, the softness of
the angular momentum response function Y Lz

(T ) that Kita
found numerically, including its near equality with ρs,||(T ) for
the 3D A phase, is also present in the 2D limit in which the
chiral p-wave superfluid is fully gapped.

For T �= 0, the edge current is determined by the continuum
contribution to the spectrum defined in Eq. (43) with

J (p) = 1

2
Im

∫
C R

dξ
ξ tanh(

√
ξ 2 + �2/2T )(

ξ 2 + �2
1

)√
ξ 2 + �2

e2iξ x/vx .

(53)

As is the case for T = 0, the resonant contribution to the
continuum current density coming from the isolated pole
at ξ = +i|�1| exactly cancels the bound-state contribution.
However, the total edge current and angular momentum, which
at T = 0 is calculated from the branch cut in Fig. 5, now results
from the sum of contributions from a discrete set of poles at
the complex momenta defined by

ξn = i

√
ε2
n + �2 , (54)

where εn = (2n + 1)πT , n = 0,±1,±2, . . ., are the fermion
Matsubara frequencies.37 The resulting edge current density is
given by

jC 2
y (x) = 2Nf vf

∫ +π/2

−π/2

dα

π
p̂y |�1(p)|�2(p)

×πT
∑
εn

1

ε2
n + |�2(p)|2 e−2

√
ε2
n+�2 x/vx . (55)

Multiple confinement scales are manifest in Eq. (55). The total
surface current obtained by integrating over the boundary re-
gion determines the equilibrium angular momentum generated
by these edge currents,

Y Lz
(T ) = 8

π

∫ 1

0
dx (1 − x2)

1
2 πT

∑
εn

�2 x2

ε2
n + �2x2

1√
ε2
n + �2

,

(56)

where x = p̂y = sin α. Figure 6 shows the temperature de-
pendence of the equilibrium angular momentum, Y Lz

(T ),
calculated from Eq. (56). Also shown for comparison is the
bulk excitation gap and superfluid stiffness for both 2D and 3D
chiral p-wave states. Note that the temperature dependence of
the angular momentum is much softer than the bulk superfluid
stiffness for the gapless 2D phase.

Just as Kita found for his 3D mesoscopic geometry,
the temperature dependence of Lz(T ) for the fully gapped
2D phase is nearly identical to the superfluid stiffness for
superflow parallel to the nodal direction for the 3D phase.
However, the reasons for the rapid suppression of Lz(T )
and ρs,||(T ) are of different physical origin. For the bulk 3D
phase, ρs,||(T ) is strongly reduced compared to ρs,⊥(T ) due

FIG. 6. (Color online) Temperature dependence of the angular
momentum, Lz(T ), for the 2D chiral p-wave superfluid (blue line).
Also shown is the superfluid stiffness (black dashed line) and the
bulk gap (green dots and line) for the fully gapped 2D chiral p-wave
state. Shown for comparison are the two components of the superfluid
stiffness for the 3D chiral p-wave superfluid phase (3He-A): ρs,|| for
ps ||l̂ (red dotted line) and ρs,⊥ for ps ⊥ l̂ (brown dotted line).

to the backflow current carried by the nodal excitations when
ps || l̂.26 In contrast, for the fully gapped 2D chiral phase there
are low-energy backflow surface currents for 0 < ε < � that
reduce the edge current when thermally populated (cf. Fig. 4).
The presence of low-energy surface excitations is also evident
in the spectral sums that define the edge current and angular
momentum in Eqs. (55) and (56).

VII. ROBUSTNESS OF THE EDGE CURRENTS

The result of Ishikawa12 and McClure and Takagi14 for
the ground-state angular momentum is based on a geometry
with cylindrical symmetry, a chiral p-wave order parameter,
a many-body wave function that is an eigenfunction of the
angular momentum operator, and two-particle wave functions
that vanish at the boundary. The analysis presented above relies
on the formation of edge states by boundary scattering in
the presence of a chiral order parameter. The resulting chiral
edge states, and their dispersion relation shown in Fig. 2,
play a key role in generating the edge current carried by
the continuum states and the resulting ground-state angular
momentum of (N/2)h̄. One can ask, “How robust are these
results to boundary conditions, geometry, and topology?”

For example, consider the spectrum, edge currents, and
ground-state angular momentum for a geometry such as that
shown in Fig. 7. There are two classes of trajectories that
determine the local spectral current density. Far from a corner
(≈5ξ ), trajectories with a single reflection determine the local
surface spectrum, and for specular reflections we obtain the
chiral edge states and the local edge currents of Eqs. (30) and
(49). However, near a corner the sharp change in curvature
leads to double reflections, as shown in Fig. 7. These double
reflections dramatically alter the local excitation spectrum.
They are also essential for enforcing current conservation
near the corner, and they provide the mechanism for the edge
currents to “turn the corner” and maintain continuity of the
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x’xα
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p

p

h

Δ x + pyi

FIG. 7. (Color online) A thin film (h � ξ ) of px + ipy superfluid
(“2D 3He-A”) confined in a noncylindrical geometry with area
A � ξ 2 bounded in the x−y plane by specular surfaces. Double
reflections are important in determining the surface spectrum and
edge current near a corner.

current circulating near the boundary. Furthermore, since the
double reflections are relevant only for incident trajectories
within a few coherence lengths of a corner, the ground-state
angular momentum measured from the center of mass of the
film is given by (N/2)h̄ for a finite number of corners, with
corrections that are of order ξ/R̄ � 1, where R̄ is the minimum
linear dimension of the film.

This example also indicates how nonspecular scattering
can dramatically alter the surface spectrum, reducing or even
eliminating the edge currents. To illustrate the effect of
nonspecular scattering, consider a surface that is facetted with
mesoscopic mirror surfaces that are large compared to the
Fermi wavelength but small compared to the coherence length,
a � L � ξ , and oriented at right angles to one another, as
shown in Fig. 8. Such a surface is a retroreflector analogous
to optical retroreflectors constructed from dense packing of
corner reflectors.27 Note that a retroreflecting surface does not
break time-inversion symmetry or reflection symmetry in a
plane containing the normal to the surface, but translational
invariance is broken on short-wavelength scales, L � ξ . As
a result, retroreflection can dramatically modify the spectrum
of edge states.38 In the limit of perfect retroreflection, i.e.,
retroreflection of all incident trajectories, the spectrum of
edge states is obtained by an analogous calculation to that
of perfect specular reflection since every incident trajectory
is paired with a single reflected trajectory. In particular, the
quasiparticle propagator and the corresponding bound-state
spectral function are given by (see Appendix A)

gR
3 (x,p; ε) = −πε̃R

λ(ε)
+ π�2

λ(ε)ε̃R
e−2λ(ε)x/vx , (57)

N bs(x,p; ε) = π |�| e−2� x/vx δ(ε) . (58)

In place of the chiral branch of edge states for perfect specular
reflection (Fig. 2), perfect retro-reflection leads to an edge
state at the Fermi level, εbs(p) = 0, i.e., a zero mode for
every incident trajectory, p. These modes do not carry current,
nor do they generate continuum currents. Indeed, the spectral
current density [Eq. (34)] vanishes identically, and thus the
ground-state angular momentum resulting from the edge states
vanishes as well.

_p

p

L

x

FIG. 8. (Color online) Mesoscopic facets of dimension h̄/pf �
L � ξ are retroreflectors of quasiparticles.

The spectrum of zero modes is also inferred from the
observation that �(p,x) = −�(p,x) for any pair (p,p) of
retroreflected trajectories. Thus, Andreev’s equation for a pair
of retroreflected trajectories is equivalent to Dirac fermions
in 1D coupled to a scalar field ϕ(z) = � sgn(z) (z being the
coordinate measured along the classical trajectory), which has
the well-known Jackiw-Rebbi zero mode bound to the domain
wall at z = 0.28

However, the zero modes generated by retroreflection and a
chiral p-wave order parameter are fragile and unprotected from
small perturbations. For an imperfect retroreflecting surface,
some incident trajectories will be reflected forward and
generate edge currents and a ground-state angular momentum
with a magnitude in proportion to the probability for forward
reflection. Thus, depending on the distribution of trajectories
with forward versus retroreflection, the resulting ground-state
angular momentum will generally be less than (N/2)h̄, and
may take on any value in the range Lmin

z � Lz � (N/2)h̄, with
the lower limit set by the intrinsic angular momentum,10,11,19

Lmin
z = (N/2)h̄ 1

4 (�/Ef )2 ln(Ef /�). (59)

For 3He-A confined by the walls of an experimental cell, a
realistic estimate for Lz is likely below (N/2)h̄ but much larger
than the intrinsic limit, and determined by the mean fraction
f of forward reflections by the boundary, i.e., sgn(py) =
sgn(p

y
),

Lz = f (N/2)h̄, (60)

with f min � f � 1. The sensitivity of the ground-state angular
momentum to retroreflection is at first glance in conflict with
the result of McClure and Takagi. However, the MT boundary
condition does not account for retroreflection on mesoscopic
scales because it assumes perfect cylindrical symmetry on the
atomic scale. This result highlights the fact that the spectrum of
edge states, currents, and the ground-state angular momentum
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is sensitive to surface scattering on all scales from several
coherence lengths down to the atomic scale.

VIII. TOROIDAL GEOMETRY

The combination of geometry and surface boundary con-
ditions can lead to dramatically different results for the
ground-state angular momentum of a chiral p-wave superfluid.
Consider the toroidal geometry shown in Fig. 9 in which the
superfluid is confined between inner and outer boundaries with
radii R2 and R1, respectively. I assume both radii are large
compared to the confinement scale of the chiral edge currents,
and that the edge states on the inner and outer boundaries are
well separated; i.e., R1,R2,R1 − R2 � ξ�. The ground-state
angular momentum is given the radial moment of the mass
current density in Eq. (38), which in these limits is determined
by the mass sheet current on the inner and outer boundaries,
K2 and K1, respectively,

Lz = 2π h
(
K1 R2

1 + K2 R2
2

)
. (61)

At T = 0, the magnitude of the mass sheet current (with units
of “action/volume”) for a specular boundary is obtained from
Eq. (49) with vf → pf , and evaluates to

K =
∫ ∞

0
dx gϕ(x) = 1

4
Nf vf pf h̄ = 1

4
nh̄. (62)

For perfect specular reflection on both boundaries, we obtain
edge currents of equal magnitude flowing in opposite direc-
tions, K1 = −K2 = K , as indicated in Fig. 9, and thus once
again the MT result for the ground-state angular momentum,

Lz = 2π h
(
R2

1 − R2
2

) 1

4
nh̄ = N

2
h̄. (63)

Note that the counterpropagating edge currents conspire to
give a ground-state angular momentum, in units of h̄/2, that
is extensive and proportional to the volume, or total number
of particles. If the boundary is not perfectly specular, then
the corresponding sheet current is reduced by the suppression
of the edge currents by retroreflection: Kf = f 1

4 nh̄, with
suppression factor 0 < f < 1.

For the toroidal geometry, the inner and outer boundaries
may have different degrees of specularity, i.e., K1 = f1 K and
K2 = −f2 K with f1 �= f2. The generalization of Eq. (63) is

Lz = N

2
h̄

(
f1 − r f2

1 − r

)
, (64)

hh J
1J

2

R2

R1

p+xΔ yp i

FIG. 9. (Color online) A thin film of chiral p-wave superfluid
(“2D 3He-A”) with h � ξ , inner and outer radii R2,R1, and area A =
π (R2

1 − R2
2) bounded by specular surfaces that reflect quasiparti-

cles p → p = p − 2x̂(x̂ · p). For R1,R2, R1 − R2 � ξ , only single
reflections are relevant in determining the surface spectrum and edge
currents on the inner and outer boundaries.

where 1 > r � 0 is the ratio, r = (R2/R1)2. The asymmetry in
the counterpropagating edge currents now leads to a ground-
state angular momentum that no longer scales with the volume.
Two cases highlight the nonextensive property of Lz and its
sensitivity to the asymmetry in the edge currents on different
boundaries.

For perfect specular reflection on the outer boundary,
f1 = 1, and perfect retroreflection on the inner boundary,
f2 = 0, the resulting ground-state angular momentum,

Lz = N

2
h̄

(
1

1 − r

)
, (65)

can be much larger than the MT result of (N/2)h̄ for
1 − r � 1.

Equally dramatic would be to engineer the outer boundary
to be retroreflecting, f1 = 0, and the inner boundary to be
specular reflecting, f2 = 1. In this limit, only the countercir-
culating current on the inner boundary survives, which leads
to a ground-state angular momentum that is opposite to the
chirality of the Cooper pairs,

Lz = N

2
h̄

( −r

1 − r

)
. (66)

This reversal of the ground-state angular momentum for a
toroidal geometry would both be a signature of the broken
time-reversal symmetry of the ground state of superfluid 3He-
A and also establish its origin as the edge current from the
inner boundary.
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APPENDIX A: BOUNDARY SOLUTIONS

Using the representation for ĝR in Eq. (23), Eilenberger’s
equation can be expressed as coupled equations for the
quasiparticle and pair propagators in a three-dimensional
vector space,

1
2 vp · ∇| g 〉 = M̂| g 〉 , (A1)

with

| g 〉 ≡
⎛⎝ fR

1

fR
2

gR
3

⎞⎠ , M̂ =
⎛⎝ 0 ε̃R �2

−ε̃R 0 −�1

�2 −�1 0

⎞⎠. (A2)

For a uniform order parameter defined by trajectory p, we
express |g〉 in terms of the eigenvectors of M̂ , M̂|μ〉 = μ|μ〉.
The eigenvector with μ = 0,

| 0; p 〉 = 1

λ(p,ε)

⎛⎝−�1(p)
−�2(p)

+ε̃R

⎞⎠ , (A3)

generates the bulk equilibrium propagator,

ĝR
0 = −π

λ
(ε̃Rτ̂3 − �̂(p)) , (A4)
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where λ =√
|�(p)|2 − (ε̃R)2 and |�(p)|2 = �2

1(p) + �2
2(p) = �2.

This solution satisfies Eilenberger’s normalization condition in
Eq. (22). There is also a pair of eigenvectors with eigenvalues
μ = ±λ,

| ±; p 〉 = 1√
2λλ1

⎛⎝±λε̃R − �1�2

λ2
1

ε̃R�2 ∓ λ�1

⎞⎠ , (A5)

with λ1 ≡
√

�2
1(p) − (ε̃R)2. These eigenvectors generate “ex-

ploding solutions” to Eq. (A1) for energies within the gap
of the bulk quasiparticle spectrum, |ε| < |�(p)|, and thus are
physical solutions only in the vicinity of a boundary, or near
a localized defect such as a vortex or domain wall.29 For the
same value of momentum, p, the eigenvectors are orthonormal,
〈μ; p | ν; p 〉 = δμν .39 The Nambu propagators corresponding
to the eigenvectors | ± ,p〉 are

ĝR
±(p,ε) = 1√

2λλ1

(
(ε̃R�2 ∓ λ�1) τ̂3

∓ iσx (λε̃R ∓ �1�2) τ̂2 + iσx λ2
1 τ̂1

)
. (A6)

These matrices are non-normalizable and anticommute with
the bulk propagator,(̂

gR
±
)2 = 0 ,

[
ĝR

0 , ĝR
±

]
+ = 0 . (A7)

For a boundary far from other boundaries or defects, we must
exclude solutions that explode into the bulk of the superfluid.
In particular, for a pair of specular or retroreflected trajectories,
the solutions for the incident and reflected trajectories are

| gin(p,x) 〉 = | 0; p 〉 + Cin(p) e−2λ(p,ε)x/vx | +; p 〉 , (A8)

| gout(p,x) 〉 = | 0; p 〉 + Cout(p) e−2λ(p,ε)x/vx | −; p 〉 , (A9)

where vx = vf cos(α) for −π/2 < α < π/2 and x � 0 is the
coordinate normal to the boundary, as shown in Fig. 3. The
corresponding Nambu propagator for the incident trajectory in
the vicinity of the boundary is constructed from these solutions
with Eqs. (22) and (A7) to fix the normalization,

ĝR
in = −π

(̂
gR

0 (p,ε) + Cin(p,ε) ĝR
+(p,ε) e−2λ(ε) x/vx

)
. (A10)

1. Specular reflection

For an incident trajectory p = (px,py), the specularly
reflected trajectory is p = (−px,py). Thus, the eigenvectors
for the specularly reflected trajectory p are obtained from

Eqs. (A3) and (A5) by the replacement, �1 → −�1. The spec-
ular boundary condition requires continuity of the incoming
and outgoing propagators at x = 0, which fixes the amplitudes,
Cin(p,ε) and Cout(p,ε). For the incident trajectory,

Cspec
in (p) = 1 − 〈 0; p | 0; p 〉

〈 0; p | +; p 〉 =
√

2�1(p)λ1(p,ε)

λ(ε)ε̃R − �1(p)�2(p)
.

(A11)

Similarly, for the specularly reflected trajectory, C
spec
out (p,ε) =

C
spec
in (p,ε). The resulting propagator from Eqs. (A10) and

(A11) gives the results for the pair propagators, fR
1,2, and

quasiparticle propagator gR
3 in Eqs. (27)–(29).

2. Retroreflection

For retroreflection, we have p = (−px, − py), and in this
case the eigenvectors are obtained from Eqs. (A3) and (A5) by
the replacements, �1 → −�1 and �2 → −�2. This boundary
condition dramatically alters the propagator near the boundary
with

Cretro
in (p) =

√
2 �2λ1(p,ε)

ε̃R [λ(ε)�1(p) − ε̃R�2(p)]
, (A12)

which gives the propagator for retroreflection in Eq. (57), with
a spectrum of zero modes replacing the branch of chiral edge
states for specular reflection.

APPENDIX B: ANGULAR MOMENTUM INTEGRATION

The second integral in Eq. (50), derived from the branch
cut in Fig. 5, evaluates to∫ ∞

0

dε

[ε2 + |�2(p)|2]
√

ε2 + �2
= 1

|�1| |�2| tan−1

( |�1|
|�2|

)
.

(B1)
Setting |�2| = � t , |�1| = �

√
1 − t2 reduces Eq. (50) to

LC 2
z = Nh̄

4

π

∫ 1

0
dt t tan−1

(√
1 − t2

t

)
. (B2)

Integration by parts reduces to a beta function,30∫ 1

0
dt t tan−1

(√
1 − t2

t

)
= 1

4
B

(
3

2
,
1

2

)
= π

8
, (B3)

which yields the MT result, Lz = (N/2)h̄, given in Eq. (51).
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