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Possibility of superconductivity due to electron-phonon interaction in graphene
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We discuss the possibility of superconductivity in graphene taking into account both electron-phonon and
electron-electron Coulomb interactions. The analysis is carried out assuming that the Fermi energy is far away
from the Dirac points, such that the density of the particles (electrons or holes) is high. We derive proper
Eliashberg equations that allow us to estimate the critical superconducting temperature. The most favorable is
pairing of electrons belonging to different valleys in the spectrum. By using values of electron-phonon coupling
estimated in other publications, we obtain the critical temperature Tc as a function of the electron (hole) density.
This temperature can reach the order of 10 K at the Fermi energy of order 1–2 eV. We show that the dependence
of the intervalley pairing on the impurity concentration should be weak.
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I. INTRODUCTION

Since its experimental discovery in 20041 and first ob-
servations of unusual properties,2,3 graphene has gained a
lot of experimental and theoretical attraction. In the last
decade, thousands of articles devoted to the study of graphene
have appeared. Possessing novel electromechanical properties,
graphene is a promising material for electronic devices. The
linear Dirac-type electron spectrum makes graphene very
interesting from the theoretical point of view, and many
interesting effects have been predicted and observed.4

However, still there are open questions on fundamental elec-
tronic properties of graphene, and one of the most interesting
ones concerns a possibility of superconductivity. Graphene is
a good conductor unless the Fermi energy is too close to the
Dirac points and the electron-phonon coupling in graphene is
not very weak. Therefore, although the superconductivity in
graphene has not been observed, it is not clear why one should
discard the possibility of this phenomenon.

Superconductivity can be induced in graphene by super-
conducting contacts due to the proximity effect,5 but can it
be obtained in a “natural way”? What should one do in order
to obtain a considerable value of the superconducting critical
temperature Tc? What type of the superconductivity and what
structure of the order parameter could one expect?

In the last years, there have been various attempts to answer
these questions. Due to the special type of the spectrum, the
main attention has been devoted to investigating the possibility
of unusual types of the superconducting pairing. Supercon-
ducting pairing mediated by conventional electron-phonon or
electron-plasmon coupling was considered in Ref. 6 with a
conclusion that, in addition to the conventional s-wave pairing,
an exotic p + ip state is possible. Superconducting properties
of Dirac electrons in graphene were considered in Ref. 7 within
the conventional BCS approach. In these publications, the
main emphasis was put on the study of properties of unusual
superconducting pairing for a small electron density.

It is clear that one can expect very interesting new properties
of the superconductivity in the vicinity of the Dirac points.
However, this region is least favorable for the existence of
superconductivity due to the very low density of states, and
one should tune the Fermi energy away from the Dirac points
in order to have a hope to obtain superconductivity.

By doping graphene by various combinations of K and Ca,
the authors of Ref. 8 were able to shift the Fermi energy far
away from the Dirac points and even to put it in the vicinity of
the van Hove singularity (VHS). Another experimental method
based on the use of electrolytic gates9 allowed the authors
to tune continuously the electron density up to values n =
4 × 1014 cm−2, which is apparently not very far away from
the VHS. These experimental works have demonstrated that
one can achieve a ultrahigh electron density, and this makes
observation of superconductivity in graphene considerably
more realistic. At the same time, transport measurements were
not carried out in Ref. 8 and the superconductivity has not
been seen in Ref. 9 for temperatures T � 1 K.

Although the superconductivity has not been observed
yet, theoretical considerations10–12 predict superconductivity
at the VHS even for a repulsive electron-electron interaction.
In this case, the superconductivity is expected to have an
unconventional symmetry of the order parameter. No doubt, an
experimental observation of the superconductivity at the VHS
would be of a great interest, but one should be able to tune the
Fermi energy exactly to the singularity. Disorder may also play
a destructive role in formation of such a superconductivity.

Therefore, it would still be important to investigate theoret-
ically the possibility of a superconducting pairing due to the
conventional electron-phonon pairing far away from the Dirac
point, but, at the same time, not in the vicinity of the VHS.
Such a study implies using conventional schemes of computing
the superconducting transition temperature. Then, one should
check the stability of the pairing against disorder in the system,
clarify the dependence of the transition temperature Tc, etc.

In several publications, models with an electron-phonon
interaction have been considered. The authors of Ref. 13
discussed the valley structure of the order parameter using an
electron-phonon model without the electron-electron Coulomb
interaction. They argued that there might be a superconducting
instability in highly doped graphene, while the valley structure
depends on the parameters of the electron-phonon interaction.
Superconductivity in hydrogenized graphene (graphane) has
been considered as well.14 In this system, a model based
on electron-phonon interaction was used and a transition
temperature of 90 K in p-doped graphane was predicted. At
the same time, it is clear that taking into account the Coulomb
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interaction is very important because it can in principle be
even stronger than the electron-phonon interaction. Moreover,
considering the latter in the weak-coupling limit can also lead
to incorrect predictions.

In this paper, we use a generic model including both the
electron-phonon and electron-electron Coulomb interactions.
Using Eliashberg-type equations,15–17 we derive an expression
for the transition temperature determined by the electron
and phonon interactions in graphene. By using experimental
values and results of numerical calculations for the interactions
obtained for the normal state, we estimate the transition
temperature Tc and conclude that the superconductivity is
possible with Tc of the order of several Kelvin. Most favorable
is a singlet pairing between different valleys. We show that
such a pairing is not very sensitive to disorder.

The paper is organized as follows. In Sec. II, we formulate
the Hamiltonian of quasiparticles in doped graphene describ-
ing the interaction of quasiparticles with phonons and the
Coulomb interaction. In Sec. III, we consider the electron
pairing by deriving and solving the Eliashberg equations. The
effects of impurity scattering are considered in Sec. IV. In
Sec. V estimates are made, and the concluding Sec. VI is
devoted to discussions.

II. MODEL HAMILTONIAN

In this section, we introduce the Hamiltonian of interacting
quasiparticles in a single layer of graphene. For the undoped
system, the Fermi surface consists of two nonequivalent points
K and K′ = −K, called the Dirac points.4 The quasiparticles
around these points have a linear spectrum. This approximation
remains valid up to quite high energies. We consider in this
work doping levels corresponding to the Fermi energy εF of
the order of 1 eV. In other words, we consider the case when
the Fermi energy is sufficiently far away from both the Dirac
point and the VHS. In this region of parameters, the spectrum
consists of two well-resolved valleys and each valley is a cone.
As the Fermi energy is far away from the Dirac points, one does
not need to account for effects specific for the Dirac equation.

The two valleys are numerated by a variable called isospin.
Due to the electron-phonon and electron-electron interactions,
there are matrix elements of the Hamiltonian mixing these two
valleys. As we do not investigate properties of the system near
the Dirac point, we do not use the Dirac-type representation
of the Schrödinger equation.

The Hamiltonian describing the electron-phonon system
can be written in a general form

Ĥ = Ĥ0 + Ĥe,ph + Ĥe,e, (2.1)

where

Ĥ0 =
∑
p,σ

[ε(p) − μ]c†p,σ cp,σ (2.2)

is the operator of the kinetic energy, ε(p) is the spectrum of the
noninteracting electrons, μ is the chemical potential (Fermi
energy at low temperatures), σ is the spin index, cp,σ (c†p,σ ) is
the electron annihilation (creation) operator for the electron
with momentum p and spin σ , Ĥe,ph stands for the electron-
phonon interaction, and Ĥe,e stands for the electron-electron
one.

A. Electron-phonon interaction

The Hamiltonian Ĥe,ph describing the interaction between
the electrons and phonons can be written in a general form
as18,19

Ĥe,ph =
∑

p,q,j,σ

gp,q,j �q,j c
†
p+q,σ cp,σ , (2.3)

where gp,q,j is the electron-phonon coupling function and �q,j

is the phonon field operator for the mode j . As usual, the most
important contributions to the thermodynamics are expected
from the vicinity of the Fermi surface that consists in the case
involved of two circles.

In order to distinguish explicitly between the valleys, we
write cK+p,σ ≡ a1,p,σ and cK′+p,σ ≡ a2,p,σ for quasiparticles
in the vicinity of the Fermi circles of the two valleys 1 and
2, where aα,p,σ , α = 1,2, are fermionic annihilation operators
with the momentum p measured from the Dirac point of the α

valley.
Using these notations, we write the electron-phonon inter-

action Ĥe,ph [Eq. (2.3)] in the form

Ĥe,ph =
2∑

α,β=1

∑
p,q,j,σ

g
αβ

p,q,j �
αβ

q,j a
†
α,p+q,σ aβ,p,σ . (2.4)

In Eq. (2.4), the coupling constants gαβ and the phonon field
operators are related to those in Eq. (2.3) as

g11
p,q,j = gp−K,q,j , g22

p,q,j = gp−K′,q,j ,

g12
p,q,j = gp−K′,q−Q,j , g21

p,q,j = gp−K,q+Q,j ,
(2.5)

�11
q,j = �q,j , �22

q,j = �q,j ,

�12
q,j = �q−Q,j , �21

q,j = �q+Q,j ,

where Q = K′ − K is the vector connecting the Dirac points.
The phonon fields � are real in the coordinate representation
and therefore we obtain the following relations:

�11
−q,j = (

�11
q,j

)∗
, �22

−q,j = (
�22

q,j

)∗
,

(2.6)
�12

−q,j = (
�21

q,j

)∗
, �21

−q,j = (
�12

q,j

)∗
.

In Eq. (2.4), the sum is taken over such p and q that both
p and p + q are in the vicinity of the Fermi circle. The terms
with α = β in the Hamiltonian Ĥe,ph [Eq. (2.4)] describe
the intravalley scattering of electrons by the phonons, while
the terms with α �= β stand for the intervalley scattering.

Formally, we can speak of an isospin dependence of the
electron-phonon interaction.

The bare Hamiltonian Ĥ0 [Eq. (2.2)] takes in these notations
the form

Ĥ0 =
2∑

α=1

∑
p,σ

ξpα
†
α,p,σ αα,p,σ , (2.7)

where the energy ξp equals

ξp = v0|p| − μ, (2.8)

and v0 ≈ 108 cm s−1 is the Fermi velocity.
Equations (2.4)–(2.7) specify how the presence of the two

valleys can be written in terms of the isospin. The coupling
constants gαβ are different for the intravalley and intervalley
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scattering (equal or unequal α, β, respectively). In graphene,
two two-phonon peaks are seen in the Raman spectrum (see,
e.g., Refs. 20 and 21): the D∗ peak near 2ωA1 = 2650 cm−1

corresponding to the scalar A1 optical phonons and the G∗ peak
near 2ωE2 = 3250 cm−1 corresponding to twofold-degenerate
pseudovector E2 phonon mode. The E2 mode is responsible
for intravalley scattering, while the scalar A1 optical mode
leads to the intervalley scattering.22

B. Coulomb interaction

The operator of the electron-electron interaction Ĥe,e in
Eq. (2.1) can be written in the standard form

Ĥe,e = 1

2

∑
p,p′,q

Vq c
†
p+qc

†
p′−qcp′cp, (2.9)

where Vq is the matrix element of the Coulomb potential
in two dimensions. We assume here that corrections to the
bare Coulomb potential have already been calculated and use
therefore for Vq the static screened Coulomb interaction. Due
to a specific form of the wave functions of graphene leading to a
suppression of the backscattering, the function Vq differs from
the conventional Fourier transform of the Coulomb interaction
and can be written in the form

Vq = 2πe2

κ|q|ε(q)
γ (q), (2.10)

where κ is the dielectric constant of the substrate, ε(q) = 1 +
2πe2

κ|q| 
(q) is the static dielectric permeability of the electron
gas, and

γ (q) = 1
2 (1 + cos φq) (2.11)

with φq = arctan qy

qx
is the form factor accounting for the

absence of backscattering in graphene. The static polarizability

(q) is given by23


(q)

4ν

=
{

1 for q � 2pF ,

1 − 1
2

√
1 − 4pF

q
− q

4pF
sin−1

( 2pF

q

)+ πq

8pF
for q > 2pF ,

(2.12)

where

ν(μ) = μ

2πv2
0

(2.13)

is the density of states per one spin direction and one valley
and pF is the Fermi momentum. The factor 4 in Eq. (2.12)
accounts for the number of the spin and isospin directions.

Again, we can use the isospin formulation to bring the
operator Ĥe,e to a more convenient form

Ĥe,e = 1

2

∑
α,β

∑
p,p′,q

V αβ
q a

†
α,p+qa

†
β,p′−qaα,p′aβ,p, (2.14)

where

V 11
q = V 22

q = Vq,
(2.15)

V 12
q = Vq−Q, V 21

q = Vq+Q,

and the sum in Eq. (2.14) includes such momenta p,p′, and
q that both p + q and p′ − q are in the vicinity of the Fermi
circle.

In the next section, we will derive Eliashberg equations for
the model described by Eqs. (2.1), (2.4), (2.7), and (2.14).

III. ELIASHBERG EQUATIONS

In order to describe the electron pairing mediated
by electron-phonon interaction, we derive the Eliashberg
equations15,17,24,25 for the system under consideration using
conventional methods of quantum field theory.18 We introduce
the imaginary-time normal and anomalous Green functions
that are 4 × 4 matrices in the valley and spin space

Ĝp(τ ) ≡ −〈Tτ ψ̂p(0) ˆ̄ψp(τ )〉, F̂p(τ ) ≡ 〈
Tτ ψ̂−p(0)ψ̂T

p (τ )
〉
,

(3.1)

where the field operators ψp(τ ) are 4-component vectors
having as components the operators aα,p,σ in the Heisenberg
representation.

In the isospin representation, the gap function �̂p,εn
entering

the Gorkov equation is a 4 × 4 matrix. Using the normal Ĝp,εn

and anomalous F̂p,εn
Green functions, we consider the Dyson

equations containing both normal and anomalous self-energy
parts. Using this matrix representation, we derive the Gorkov
equations in the generalized form

(iZnεn − ξp)Ĝp,εn
+ Zn�̂p,εn

F+
p,εn

= 1,
(3.2)

(iZnεn + ξp)F+
p,εn

+ Zn�̂
+
p,εn

Ĝp,εn
= 0,

where εn = πT (2n + 1) is the fermionic Matsubara frequency,
and the symbol “+” stands for the Hermitian conjugation of
the 4 × 4 matrices.

According to the Eliashberg15 theory developed for an
arbitrary value of the coupling in the limit ωD 	 μ, where ωD

is the Debye frequency, one has to take into account normal
contributions of the self-energy to the Green functions, but
neglect the renormalization of the vertices. As we assume
that both the electron-phonon and electron-electron interaction
are not necessarily weak, one should introduce the factor Zn

coming from the normal self-energy. This factor renormalizes
the coefficient in front of the frequency, but the renormalization
of the coefficient for ξp is neglected. This nonequivalence orig-
inates from the fact that the renormalization of the coefficient in
front of the frequency is proportional to ω−1

D , while corrections
to the coefficient in front of ξp are proportional to μ−1. The
factor Zn in front of �̂p,εn

is written for a convenience.
By solving Eqs. (3.2), we write the anomalous Green

function F+ as

F̂+
p,εn

= (
Z2

nε
2
n + ξ 2

p + Z2
n�̂

+
p,εn

�̂p,εn

)−1
Zn�̂

+
p,εn

. (3.3)

Explicit calculations show that, in the absence of magnetic
interactions in the system, the most favorable is singlet pairing.
Therefore, we do not present here calculations for the general
case and consider only the singlet pairing. At the same time,
the structure of the gap function �̂p,εn

can be nontrivial due
to the presence of two valleys. In our representation using the
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isospin, �̂p,εn
is a 4 × 4 matrix in both spin and isospin space

and we write it as

�̂p,εn
=

(
�11

p,εn
�12

p,εn

�21
p,εn

�22
p,εn

)
⊗ iσ2, (3.4)

where σ2 is the second Pauli matrix. The fact that only this
matrix enters the gap function in the spin space is standard for
the singlet pairing. Exchanging the electrons, the gap function
must change the sign. As the matrix σ2 is antisymmetric, one
comes to the relation

�αβ
p,εn

= �
βα
−p,εn

. (3.5)

Considering the triplet order parameter, one would obtain
instead of the symmetric relation for �

αβ
p,εn

[Eq. (3.5)] an
antisymmetric one.

As the spectra of the valleys are identical, we can consider
a simpler form of Eq. (3.4) taking

�11
p,εn

= �22
p,εn

= �0,p,εn
= �0,−p,εn

,

�12
p,εn

= �21
−p,εn

= �Q,p,εn
. (3.6)

The gap �0,p,εn
corresponds to the intravalley pairing and

�Q,p,εn
to the intervalley one. By substituting Eqs. (3.4) and

(3.6) into (3.3), we write the solution for the anomalous Green
function F̂p,εn

as

F̂p,εn
= Zn

(
P +

p,εn
+ P −

p,εn

)
2

(
�0,p,εn

�Q,p,εn

�Q,−p,εn
�0,p,εn

)
⊗iσ2

+Zn

(
P +

p,εn
− P −

p,εn

)
2

(
�Q,−p,εn

�0,p,εn

�0,p,εn
�Q,p,εn

)
⊗iσ2,

(3.7)

where the function P ±
p,εn

equals

P ±
p,εn

= 1

(Znεn)2 + ξ 2
p + Z2

n

∣∣�0,p,εn
± �Q,p,εn

∣∣2 . (3.8)

Equation (3.7) should be complemented by a self-
consistency equation, which is actually a matrix equation in the
isospin space. Writing separately the anomalous and normal
parts of the self-energy, we come to the following equations:

Zn�̂p,εn
=

(
T

∑
j,m

∫
dp′

(2π )2
Dj (q,εn − εm)

∣∣g11
p,q,j

∣∣2 + T
∑
m

∫
dp′

(2π )2
Vpp′

)(
F 11

p′,εm
F 12

p′,εm

F 21
p′,εm

F 22
p′,εm

)

+
(

T
∑

j,m,±

∫
dp′

(2π )2

1

2
Dj (q ± Q,εn − εm)

∣∣g12
p,q,j

∣∣2 + T
∑
m,±

∫
dp′

(2π )2

1

2
Vpp′±Q

)(
0 F 12

p′,εm

F 21
p′,εm

0

)
, (3.9)

(1 − Zn)iεn1̂ =
(

T
∑
j,m

∫
dp′

(2π )2
Dj (q,εn − εm)

∣∣g11
p,q,j

∣∣2 + T
∑
m

∫
dp′

(2π )2
Vpp′

+T
∑

j,m,±

∫
dp′

(2π )2

1

2
Dj (q ± Q,εn − εm)

∣∣g12
p,q,j

∣∣2 + T
∑
m,±

∫
dp′

(2π )2

1

2
Vpp′±Q

)(
G11

p′,εm
0

0 G22
p′,εm

)
, (3.10)

where Dj is the phonon Green function for the polarization j :

Dj (q,ωn) = − 2ωj (q)

ω2
n + ω2

j (q)
. (3.11)

In Eqs. (3.9) and (3.10), q = p − p′ and the symmetry
relation |gαβ |2 = |gβα|2 for the coupling functions is used.
Further, we neglect off-diagonal terms of the normal Green
function.

Equation (3.10) describes the normal contribution to the
self-energy. The intravalley and intervalley scattering contri-
butions enter on equal footing. In principle, the integrals in the
right-hand side contain not only linear in εn contributions, but
also renormalize the Fermi energy and the spectrum. The latter
types of the contributions do not lead to important changes of
physical quantities and are neglected.

Equation (3.9) is the self-consistency equation for the order
parameter �̂p,εn

. It is clear that the equation for the intravalley
order parameter �intra

p,εn
= �0,p,εn

[diagonal elements of the
matrices in Eq. (3.9)] differs from the one for the intervalley
gap function �inter

p,εn
= �Q,p,εn

[off-diagonal elements of the

matrices in Eq. (3.9)]. For the former, only the intravalley
interaction is important, while for the latter, both the intravalley
and intervalley interactions contribute. It is clear that, provided
the intervalley interaction is negative, the intervalley pairing
is more favorable than the intravalley one.

For explicit calculations, it is convenient to use the
representation of the temperature Green functions in terms
of retarded Green’s functions

F̂p,εn
=

∫ ∞

−∞

dz

2π

2 ImF̂ R(p,z)

z − iεn

, (3.12)

Dj,q,�n
=

∫ ∞

−∞

dz

2π

bj (q,z)

z − i�n

, (3.13)

where F̂ R is the retarded Green function, and bj = 2 ImDR
j is

the phonon spectral function.
By substituting Eqs. (3.12) and (3.13) into (3.9), we

carry out the summation over the Matsubara frequencies
and perform an analytic continuation iεn → ω + iδ with an
infinitesimal positive δ.
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Considering first the contribution of the intravalley pairing
to the gap function [first line of Eq. (3.9)], we bring it to the
form

�̂intra
p,ω = Z−1(ω)

∫
dp′

(2π )2

∫ ∞

−∞

dz

2π

∫ ∞

−∞

dz′

2π
bj (p − p′,z)

× ∣∣g11
p,q,j

∣∣2 tanh z′
2T

+ coth z
2T

ω − z − z′ + iδ
ImF̂ R(p′,z)

+
∫

dp′

(2π )2

∫ ∞

−∞

dz

2π
Vpp′ tanh

z

2T
ImF̂ R(p′,z).

(3.14)

The contribution �̂inter
p,ω to the gap function coming from the

intervalley pairing can be written similarly. Now, we will
analyze the phonon and Coulomb parts separately.

A. Phonon part

In the case of large doping levels considered here, one
can use standard approximations well known in the theory
of conventional metals. In particular, only momenta close to
the Fermi surface can be taken into account. Reducing the
dependence on the momenta p by the dependence on the unit
vector n, p =pF n, we average the gap function �̂p,ε over the
Fermi surface and introduce the quantity

�̂ω =
∫

SF

dn �̂pF n,ω, (3.15)

where
∫
SF

dn denotes the integral over all directions on the
Fermi surface, and ν is the density of states at the Fermi
energy. The normalization is chosen in such a way that∫

SF

dn = 1. (3.16)

The integral over the momentum in the right-hand side of
Eq. (3.14) reduces in this approximation to the form∫

(. . .)
d2p

(2π )2
= ν(μ)

∫
SF

dn
∫ ∞

−∞
dξp(. . .), (3.17)

where ν(μ) is the density of states [Eq. (2.13)].
Using for the phonon Green function its bare value

Eq. (3.11), such that

bj (q,z) = 2π{δ[z + ωj (q)] − δ[z − ωj (q)]} (3.18)

and integrating over the variable ξp, we write the phonon
contribution (�̂intra

ω )ph to the gap function �̂intra
ω of Eq. (3.14) as

(�intra
ω )ph = Z−1(ω)

∫ ∞

−∞
K11

ph(z,ω) Im[F̄ R(z)]11dz. (3.19)

The intravalley phonon kernel K11
ph(z,ω) entering Eq. (3.19)

can be written as

K11
ph(z,ω) = −1

2

∫ ∞

0
dz′ α2

11f (z′)

×
(

tanh z
2T

+ coth z′
2T

ω − z′ − z + iδ
− tanh z

2T
− coth z′

2T

ω + z′ − z + iδ

)
,

(3.20)

where α2
11f (z) is the Eliashberg function for intravalley

phonon scattering processes

α2
11f (z) = ν

∫
SF

dn
∫

SF

dn′ ∑
j

∣∣g11
pF n,pF (n−n′)

∣∣2

× δ{z − ωj [pF (n − n′)]}. (3.21)

According to Eq. (3.21), this function contains the double
average over the Fermi surface of the electron-phonon
coupling function squared.

The function F̄ (z) in Eq. (3.19) equals

F̄ R =
∫ ∞

−∞
F̂ Rdξ, (3.22)

where F̂ R is the retarded anomalous Green function ob-
tained from the corresponding temperature Green function
[Eq. (3.7)].

This integration over ξ in Eq. (3.22) results in a replacement
of the functions P± by P̄± given by

P̄±(z) = iπ sign(z)

Z(z)
√

z2 − |�0,p,z ± �Q,p,z|2
. (3.23)

As concerns the off-diagonal parts of the gap function, we
have to include the intervalley interaction processes into the
self-consistency relation. Then, we obtain(

�inter
ω

)
ph

= Z−1(ω)
∫ ∞

−∞
K11

ph(z,ω) Im[F̄ R(z)]12dz

+Z−1(ω)
∫ ∞

−∞
K12

ph(z,ω) Im[F̄ R(z)]12dz,

(3.24)

with the intervalley kernel

K12
ph(z,ω) = −1

2

∫ ∞

0
dz′ α2

12f (z′)

×
(

tanh z
2T

+ coth z′
2T

ω − z′ − z + iδ
− tanh z

2T
− coth z′

2T

ω + z′ − z + iδ

)
,

(3.25)

where the Eliashberg function for the intervalley scattering
equals

α2
12f (z) = ν

∫
SF

dn
∫

SF

dn′ ∑
j,±

1

2

∣∣g12
pF n,pF (n−n′)

∣∣2

× δ{z − ωj [pF (n − n′) ± Q]}. (3.26)

Similar calculations for the normal self-energy part lead to an
expression applicable for the contribution of both intervalley
and intravalley phonon modes

[1 − Z(ω)]ω =
∫ ∞

−∞

[
K11

ph(z,ω) + K12
ph(z,ω)

]
Im[ḠR(z)]dz,

(3.27)

where

ḠR =
∫ ∞

−∞
ĜR dξ. (3.28)

The formulas derived in this section completely describe the
effects of the electron-phonon interactions. Now, we will
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investigate the remaining parts of Eq. (3.9) originating from
the Coulomb interaction.

B. Coulomb part

Calculating the Coulomb part in Eq. (3.9), one should first
renormalize the Coulomb interaction integrating out high-
energy degrees of freedom16,24 and thus reduce the original
model to a model with a certain energy cutoff ωc, such that
ωD 	 ωc 	 μ, where ωD = 2300 K. This renormalization is
also logarithmic and can easily be carried out in the ladder
approximation. The final results can be expressed in terms of
the pseudopotentials U 11 and U 12, respectively:

U 11 = V 11

1 + νV 11 ln
(

μ

ωc

) ,

(3.29)

U 12 = V 11 + V 12

1 + ν(V 11 + V 12) ln
(

μ

ωc

) ,

where

V αβ =
∫

SF

∫
SF

V
αβ

pF (n−n′)dn dn′ (3.30)

and the matrix elements V 11
q , V 12

q are given by Eqs. (2.15) and
(2.10).

Equations (3.29) show that the effective Coulomb interac-
tion U

αβ
q can not be very strong. Since the Coulomb potential

decays as |q|−1 in the momentum space, the function V 12
q is

smaller than V 11
q and the pseudopotentials do not differ much

from each other. The pseudopotentials U
αβ
q monotonically

grow with increasing V αβ , but their values are limited by ν−1.
The renormalization of the Coulomb interaction (3.29) is

not important near the Dirac point because both ν and μ are
small, but can considerably reduce it in the region μ � 1 eV.
As concerns the normal self-energy, a contribution coming
from the Coulomb interaction is small and can be neglected.24

Using the pseudopotentials U 11 and U 12 [Eqs. (3.29)], we
write their contributions �11

C and �12
C to the gap function as

(
�intra

ω

)
C

= νZ−1(ω)U 11
∫ ωc

0
tanh

z

2T
Im[F̄ R(z)]11 dz

2π
,

(3.31)(
�inter

ω

)
C

= νZ−1(ω)U 12
∫ ωc

0
tanh

z

2T
Im[F̄ R(z)]12 dz

2π
.

(3.32)

Equations (3.19), (3.24), (3.31), and (3.32) are basic
equations of the electron-phonon theory of superconductivity
in graphene. Based on them, we can derive a formula for the
critical temperature.

C. Critical temperature

In order to make an estimate for the critical temperature, we
simplify our equations according to standard procedures. Our
goal is to clarify which type of pairing is more favorable and
to estimate the critical temperature rather than to calculate it
from first principles. Within these procedures, the calculations
become considerably simpler, but we believe that our goal is
still achieved.

Following Ref. 24, we approximate the system of equations
by linearizing their right-hand side with respect to the gap
functions, and we approximate the phonon kernels Eqs. (3.20)
and (3.25) by the following expressions:

K
αβ

ph (z,ω) =
{

λαβ

2 tanh z
2Tc

, |z|,|ω| < ωD

0, otherwise
(3.33)

where λαβ (α,β = 1,2) are the intravalley and intervalley
electron-phonon coupling constants

λαβ = 2
∫ ∞

0

α2
αβf (z)

z
dz. (3.34)

(Actually, we have to calculate only λ11 and λ12 because λ22 =
λ11 and λ12 = λ21.) Equations (3.33) show that the further
calculations can be performed independently for the quantities
with “11” and “12.”

The function Z(ω) coming from the normal self-energy,
Eq. (3.27), is just a constant and can be written as

Z = 1 + λ11 + λ12 ≡ 1 + λ. (3.35)

Then, the fact that Z does not depend on frequency leads us to
the conclusion that the gap function �αβ does not depend on
the frequency for ω < ωD either [see Eqs. (3.31) and (3.32)].

By using Eqs. (3.33) and linearizing the self-consistency
equations (3.19), (3.24), (3.31), and (3.32), we can derive
equations for the critical temperatures of the intravalley and
intervalley pairings T intra

c and T inter
c , respectively. At the end,

only the pairing with a higher critical temperature should be
kept and used for the description of the superconductivity.

In order to obtain the equation for the critical temperature,
we choose the following form of the function �ω:

�ω =
{
�ph, ω < ωD

�C, ωD < ω < ωc

(3.36)

with constants �ph and �C .
By using the approximation (3.36), we reduce the equation

for the critical temperature T intra
c to the form∫ ωD

0

dz

z
tanh

z

2T intra
c

= 1 + λ11 + λ12

λ11 − μ∗
11

, (3.37)

where the parameter μ∗
11 equals

μ∗
11 = νV11

1 + νV11 ln
(

μ

ωD

) . (3.38)

Note that the approximation written in Eq. (3.36) leads to
the replacement of ωc in the argument of the logarithm in
Eq. (3.29) by the Debye frequency ωD in Eq. (3.38).

The solution of Eq. (3.37) exists only when the right-hand
side is positive. Therefore, the intravalley pairing is possible
provided λ11 > μ∗

11. By calculating the integral over z in
Eq. (3.37), we write the critical temperature T intra

c of the
intravalley pairing explicitly as

T intra
c = 1.13ωD exp

(
− 1 + λ

λ11 − μ∗
11

)
. (3.39)

As concerns the intervalley pairing, both the intravalley and
intervalley phonon interactions contribute and we come to the
following equation for the critical temperature T inter

c of the
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intervalley pairing:∫ ωD

0

dz

z
tanh

z

2T inter
c

= 1 + λ11 + λ12

λ11 + λ12 − μ∗
12

, (3.40)

with the renormalized Coulomb interaction given by

μ∗
12 = ν(V11 + V12)

1 + ν(V11 + V12) ln
(

μ

ωD

) . (3.41)

The intervalley superconductivity is possible provided the
condition λ = λ11 + λ12 > μ∗

12 is fulfilled and we obtain the
critical temperature T inter

c for this type of the superconductivity
in the form

T inter
c = 1.13ωD exp

(
− 1 + λ

λ − μ∗
12

)
. (3.42)

As the constant μ∗
12 only slightly exceeds μ∗

11 for a strongly
renormalized Coulomb interaction, the intervalley pairing
looks more favorable. Moreover, the electron-phonon coupling
λ entering Eq. (3.42) is a quantity that can be extracted
directly from the angle-resolved photoemission spectroscopy
(ARPES), which simplifies estimates of the transition tem-
perature T inter

c [Eq. (3.42)]. Clearly, the superconductivity is
possible provided the condition

λ > μ∗
12 (3.43)

is fulfilled. Explicit estimates for the critical temperature T inter
c

are performed in Sec. V. We restrict ourselves with calculation
of the temperature T inter

c because the critical temperature of the
intravalley coupling T intra

c [Eq. (3.39)] is lower than T inter
c for

realistic parameters of μ∗
11 and μ∗

12. In addition, the intravalley
pairing is sensitive to impurity scattering, which contrasts the
intervalley pairing. The effect of the impurities on the two
types of the superconducting pairings is considered in the next
section.

IV. IMPURITIES

In the previous sections, we considered superconductiv-
ity in clean systems. Usually, it is assumed that nonmag-
netic impurities do not affect the superconducting transition
temperature.18 However, the situation is not as simple for a
system with several valleys, where some of the superconduct-
ing correlations can be sensitive to the impurities. We have
considered the superconducting intervalley and intravalley
pairing in the clean graphene, and now we will study effects of
the potential impurities on these types of the superconductivity.

In order to model this, we introduce an impurity Hamilto-
nian for the two-valley system. Generally, both intervalley and
intravalley impurity scatterings are possible. The most general
form of the Hamiltonian for disordered graphene taking into
account its Dirac-type spectrum has been written (in absence
of electron-electron interactions) in Ref. 26. However, as
we consider graphene for energies far away from the Dirac
point, we introduce a standard impurity Hamiltonian in the
momentum space

Ĥimp =
∑
p,q,σ

uqc
†
p+q,σ cq,σ (4.1)

with the momentum-dependent impurity potential uq. By using
the isospin representation, we rewrite this expression in the

form

Ĥimp =
2∑

α,β=1

∑
p,q,σ

uαβ
q a

†
α,p+q,σ aβ,p,σ , (4.2)

where the functions u
αβ
q are related to the scattering potential

as

u11
q = u22

q = uq, u12
q = uq−Q, u21

q = uq+Q.

Since intervalley scattering processes require a large
momentum transfer, they can not be caused by Coulomb
impurities of the substrate. On the other hand, vacancies in
the graphene sheet, adatoms, surface ripples, or topological
defects can lead to both intravalley and intervalley scattering
events.4

For calculations, we use the standard diagrammatic ap-
proach and treat the corrections in the Born approximation.18,27

Studying the system far from the Dirac points, we consider
only diagrams with noncrossing impurity lines. For the
calculations, we assume that the effects of electron-phonon
and Coulomb interaction have already been taken into account
according to Eqs. (3.2), (3.9), and (3.10), which determine Zn

and �̂. Calculating the corrections to these quantities arising
from the impurity scattering, we denote the renormalized
values by Z̃n and �̃, respectively.

By using the standard diagrammatic expansion in the
approximation of noncrossing impurity lines, we obtain the
modified self-energy equations

Z̃n
˜̂�p,εn

− Zn�̂p,εn
=

∫
dp′

(2π )2

∣∣u11
q

∣∣2

(
F 11

p′,εm
F 12

p′,εm

F 21
p′,εm

F 22
p′,εm

)

+
∫

dp′

(2π )2

∣∣u12
q

∣∣2
(

0 F 12
p′,εm

F 21
p′,εm

0

)
,

(4.3)

(Zn − Z̃n)iεn =
∫

dp′

(2π )2

(∣∣u11
q

∣∣2 + ∣∣u12
q

∣∣2)(G11
p′,εm

0

0 G22
p′,εm

)
,

(4.4)

where Fp,εn
and Gp,εn

denote the renormalized Green func-
tions. To obtain these functions, one has just to replace Zn and
� by Z̃n and �̃ in Eq. (3.2). The further calculations are similar
to those performed previously. We calculate the momentum
integral in Eqs. (4.3) and (4.4) in the standard way and expand
the right-hand sides of the equations in the gap functions �̃0,p,
�̃Q,p, which gives us the possibility to calculate the critical
temperature Tc. As before, the intervalley interactions affect
only the intervalley gap and the normal self-energy.

This leads to the following set of equations:

Z̃n = Zn + 1

2τ

1√
ε2
n + |�̃Q,p + �̃0,p|2

, (4.5)

Z̃n�̃Q,p = Zn�Q,p + 1

2τ

�̃Q,p√
ε2
n + |�̃Q,p + �̃0,p|2

, (4.6)

Z̃n�̃0,p = Zn�0,p + 1

2τ11

�̃0,p√
ε2
n + |�̃Q,p + �̃0,p|2

. (4.7)
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Here, we have defined the elastic scattering time

τ−1 ≡ τ−1
11 + τ−1

12 . (4.8)

In Eq. (4.8), τ11 and τ12 are intravalley and intervalley
scattering times

τ−1
11 = nimp ν

∫
SF

dn
∣∣u11

pF n

∣∣2
, (4.9)

τ−1
12 = nimp ν

∫
SF

dn
∣∣u12

pF n

∣∣2
, (4.10)

where nimp is the impurity concentration. Deriving Eqs. (4.5)–
(4.10), we assumed as usual that the disorder is weak.
Therefore, the main contribution in the integral over the
momenta comes from the vicinity of the Fermi energy.

Calculating T inter
c , we can put in Eqs. (4.5)–(4.7) �̃0,p =

�0,p = 0, which immediately leads to the relation

�Q,p = �̃Q,p (4.11)

because the normal and anomalous self-energy renormal-
izations of �̃Q,p cancel each other. Using Eq. (4.11), we
conclude that both �Q,p and �̃Q,p must turn to zero at the
same temperature T inter

c , and this means the superconducting
transition temperature T inter

c for the intervalley pairing is not
affected by the disorder.

One can also come to this result by replacing the functions
Zn and �Q,p in Eqs. (3.3) and (3.7) by Z̃n and �̃Q,p and using
again Eqs. (4.5)–(4.7) ). Then, one comes to Eqs. ((3.32) with
�Q,p replaced by �̃Q,p, which leads to Eq. (3.42).

On the other hand, we see that the cancellation of the normal
and anomalous self-energies does not occur when calculating
�0,p at zero �Q,p, which indicates that impurities influence this
parameter. In fact, comparing this result with the conventional
theory of paramagnetic impurities in superconductors,27,28 we
see that τ12 plays the role of the scattering time on magnetic im-
purities. Thus, the intravalley superconductivity is completely
destroyed as soon as the inverse scattering intervalley time
τ−1

12 becomes larger than the transition temperature T intra
c in

the absence of the disorder.
It follows from the results obtained in the present and

previous sections that, by studying the possibility of super-
conductivity in graphene, it is sufficient to concentrate on the
intervalley pairing.

V. ESTIMATES

Having derived the analytical expressions for the critical
temperature [Eqs. (3.39) and (3.42)], we should determine
now the parameters λ and μ∗. Since we want to describe a
graphene sheet where the Fermi level can be tuned, we examine
the dependence of Tc on the chemical potential μ.

In order to estimate the Coulomb repulsion parameters
μ∗

11 and μ∗
12 [Eqs. (3.38) and (3.41)], we use the screened

Coulomb potential [Eq. (2.12)] and average this expression
over the Fermi surface in order to obtain νV11 and νV12.
These quantities allow us to calculate the Coulomb parameters
μ∗

11 and μ∗
12 as functions of the chemical potential μ using

Eqs. (3.38) and (3.41). In order to be specific, we have chosen
κ = 2.5 (Ref. 23) for the value of the effective dielectric
permeability of the substrate (occupying half-space) entering

FIG. 1. (Color online) Pseudopotentials μ11 (blue line) and μ12

(green crosses) as function of the charge carrier density n.

Eq. (2.10). This value corresponds to SiO2. The dependence of
the parameters μ∗

11 and μ∗
12 on the chemical potential μ (doping

level) is represented for this value of κ in Fig. 1. Further, we
use v0 = 5.3 eV Å for calculations. One can see from Fig. 1
that both pseudopotentials μ∗

12 and μ∗
11 decay slightly with

increasing electron density n.
Calculation of the numerical values of the electron-phonon

coupling constant λ is more difficult because one has to know
exact values of the matrix elements of the electron-phonon
interaction. At the same time, the electron-phonon coupling λ

determines the self-energy of the electron-phonon interaction
and can be extracted from photoemission studies. Therefore,
we simply take this value from literature.

For a long time, there has been a rather poor agreement
between theoretical results obtained using the local density
approximation (LDA) and experimental values concerning the
total coupling strength and the ratio between the two nonequiv-
alent coupling parameters. The electron-phonon coupling is
also sensitive to the substrate. (For details, see Ref. 29 and
citations therein.)

A possible source of the disagreement has been identified
in a recent paper,30 where a copper substrate substantially
screening the electron-electron Coulomb interaction was used
and the agreement between the theoretical results31 and the
photoemission experiment was found. Both the theory and the
experiment with the copper substrate lead to quite low values
of the electron-phonon coupling constant λ that remain below
0.05 for electron densities up to 1014 cm−2. Using the metallic
substrate, one should assume that the dielectric permeability
of the substrate κ entering Eq. (2.10) is a nontrivial function
of the momentum. In order to avoid additional calculations
for this system, we note that even setting μ∗

12 = 0, the values
λ < 0.05 can not provide superconductivity with a noticeable
transition temperature.

Measurements of the electron-phonon coupling in
potassium-doped graphene on Ir(111) substrate29 have led
to the value λ = 0.28 for a doping level of μ = 1.29 eV
(corresponding to the electron density n ≈ 1 × 1014 cm−2).
Such a value of λ would lead to a rather high transition
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temperature. However, the authors of Ref. 30 argue that the
assumption of the linear spectrum used in Ref. 29 leads to a
considerably overestimation of λ and expect lower values of
this parameter corresponding to theoretical values of Ref. 31.

The authors of Ref. 31 suggest the following formula for
the function λ(μ) describing the dependence of the electron-
phonon coupling on the chemical potential:

λ(μ) = 5.55C
√

n10−9 cm, (5.1)

where n is the number of electrons per surface area depending
on μ via μ = √

πn and C = 1. This formula gives for n =
1 × 1014 cm−2 the value λ = 0.056, which perfectly agrees
with the experimental results of Ref. 30 for graphene on the
metallic substrate.

However, angle-resolved photoemission spectroscopy
(ARPES) experiments32–34 performed on doped graphene
grown epitaxially on SiC lead to considerably higher values
of λ. Larger values of the coupling constants obtained
for graphene on other substrates mean that the unscreened
Coulomb interaction renormalizes the electron-phonon inter-
action enhancing the latter. This conclusion correlates with
the results of Ref. 22, where an enhancement of the intervalley
electron-electron coupling constant λ12 was predicted. So, we
can try to use the values of the coupling constant λ obtained
for such a nonmetallic substrate.

According to a detailed analysis presented in Ref. 34, the
value of the coupling constant is 3.5–5 times larger than
predicted theoretically,31 which apparently implies that the
coefficient C in Eq. (5.1) should take the values C ∼ 3.5–5.
The dielectric permeability of SiC equals κ ≈ 3.8.35

As the constants C somewhat vary depending on the method
of their calculation and the pseudopotential μ∗

12 depends on
the substrate, we simply draw in Fig. 2 the dependence of the
critical temperature T inter

c on the electron density n for several
values of C and κ using Eqs. (3.41), (3.42), and (5.1). One
can see from Fig. 2 that the superconductivity is possible
for realistic parameters characterizing the system, and the
transition temperature T inter

c grows with increasing the electron
density in graphene. Using the maximal possible value for C,
Tc becomes very high, reaching the value of 70 K for very
high electron densities. This value of the critical temperature
is apparently too high, otherwise, it would have been observed
in the experiment.9 Therefore, the value C = 5 does not look
realistic. At the same time, the value C = 3.5 leads already to
noticeable values of Tc.

The analysis presented above was done assuming that the
chemical potential μ is far away from the Dirac points but is not
close to the VHS. According to Ref. 32, when approaching the
VHS, the electron-phonon coupling λ grows very fast, which
would further increase the chances for the superconducting
pairing. However, the linear-band estimation method used
in Ref. 32 was shown to overstate the coupling,35 and the
growth of the coupling λ near VHS obtained in the latter
publication was very slow reaching the value λ ≈ 0.22. This
value would still be sufficient for obtaining superconductivity
with a reasonable critical temperature [see Eqs. (3.42)].

Unfortunately, the experiments29,30,32–34 have not been
supplemented by transport experiments on the same materials
at low temperatures, and it is not clear whether the samples

FIG. 2. (Color online) Critical temperature calculated with
Eq. (3.42). The curves show Tc as function of the electron density n.
Solid lines correspond to κ = 2.5, while dashed lines are curves for
κ = 3.8. The bottom blue lines correspond to C = 3.5 and the top
green lines to C = 5.

studied could be superconducting at low temperatures or not.
At the same time, the superconductivity has not been observed9

in the transport measurements on graphene with SiO2 substrate
for the electron density n up to 4 × 1014 cm−2, and more efforts
should be expended to clarify the situation.

VI. DISCUSSION

In this work, we estimated the superconducting transition
temperature for graphene as a function of the chemical
potential μ or area electron density n. We considered the case
when the chemical potential is far away from the Dirac point,
which corresponds to very high electron density n. At the same
time, we assumed that the chemical potential μ is not in the
vicinity of the VHS.

Starting with a model describing the electron-phonon and
Coulomb interactions, we derived the Eliashberg equations
for this system. Considering both anomalous and normal
self-energies, we have obtained explicit formulas for the super-
conducting critical temperature that can be used not only for
a weak electron-phonon coupling λ, but also for λ of order 1.
We show that the Coulomb interaction in graphene is not
very strong at high electron densities and does not necessarily
destroy the superconducting pairing.

As the parameters entering Eq. (3.42) are not precisely
known, we have drawn several curves in Fig. 2 corresponding
to different values. It is clear that the critical temperature rather
weakly depends on the dielectric permeability of the substrate
and other details characterizing the Coulomb interaction.
At the same time, the dependence on the electron-phonon
coupling is strong, and we have shown curves corresponding
to different values of these constants that may be considered
as realistic.

By estimating the pseudopotentials μ∗ describing the
Coulomb interaction and using values of the electron-phonon
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coupling λ extracted from photoemission experiments, we
come to the conclusion that the transition temperature of the
intervalley pairing T inter

c can reach values exceeding 10 K for
sufficiently high electron area density n.

We have considered intravalley and intervalley supercon-
ducting pairing and demonstrated that the intervalley pairing
is more favorable. Effect of disorder on the intervalley super-
conductivity is weak, but already a moderate concentration of
impurities can destroy the intravalley pairing. All this means
that the possibility of the intravalley pairing can be discarded
in realistic situations.

According to previous findings, the coupling constant λ

can be considerably reduced provided a metallic substrate is
used, which makes the superconductivity improbable in such
systems. Intercalating graphene by various materials may lead
to an additional source of attraction between electrons and
increase of the superconducting transition temperature.

The superconductivity becomes even more favorable when
approaching the VHS. This is clear from the theoretical point
of view because the density of states diverges at this point,
which should lead to a considerable increase of λ. The region
of electron densities of order 1014 cm−2 is apparently already
rather close to the VHS. This would imply that the approxi-
mation of the linear spectrum is no longer applicable. At the
same time, the Fermi velocity decreases when approaching the
VHS, leading to an additional increase of the density of states
and, hence, of the critical temperature Tc.

A slow growth of the electron-phonon coupling near
the VHS obtained in Ref. 35 using noncrossing self-energy
diagrams indicates that this divergency is missed in this cal-
culation. Moreover, using only noncrossing electron-phonon

diagrams is not legitimate near the VHS and, therefore, the
analysis of Ref. 35 is incomplete.

Provided the electron-phonon interaction grows and the
interaction remains essentially attractive, one should expect
at the VHS the conventional s-wave singlet superconduc-
tivity with a sufficiently high transition temperature. By
analyzing logarithmically diverging diagrams with the help
of renormalization-group equations, a new type of unconven-
tional (chiral) superconductivity was predicted recently11,12

in the situation when the interaction is repulsive. All this
means that superconductivity in graphene at high electron
density is very probable and we hope that it will be observed
experimentally in the nearest future.

Strictly speaking, superconductivity with the identically
zero resistance is not possible in two dimensions due to
fluctuations of the order parameter and a finite energy required
for generation of vortices. The transition temperature Tc has
been calculated in this work in the mean-field approximation
neglecting the fluctuations and vortices, and this is not justified.

In practice, this means, however, that, instead of a sharp
transition typical for three-dimensional superconductors, one
would observe a slower decay of the resistivity, which would
make the transition rather broad. Although the resistivity does
not become exactly zero in such a superconducting state, its
value can be extremely small and not distinguishable from
zero in real experiments.
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