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Electric potential of the electron sound wave: Sharp disappearance in the superconducting state
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We study the ac electric potential induced by the electron sound wave (a perturbation of the electron distribution
function propagating with the Fermi velocity) in single crystals of high-purity gallium. The potential and the elastic
components of the electron sound demonstrate qualitatively different dependencies on the electron relaxation
rate: while the phase of the potential increases with temperature, the phase of elastic displacement decreases.
This effect is explained within the multiband model, in which the potential is attributed to the ballistic quasiwave,
while the elastic component is associated with the zero-sound wave. We observed a mysterious property of the
superconducting state: all manifestations of the potential accompanying the lattice deformations, including usual
sound wave, disappear below Tc in almost jumplike manner.
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I. INTRODUCTION

Longitudinal perturbations of the electronic and elastic
subsystems of metals are accompanied by fluctuations of
the electron density and occurrence of alternating electric
fields, which provide electrical neutrality of the system. The
ac electric potential of a longitudinal sound wave has been
first measured in Ref. 1; it should be distinguished from the
nonlinear dc potential arising due to the dragging effect.2–4 In
metals, besides the acoustic mode, there exists several types
of electron sound, i.e., longitudinal oscillations of the electron
distribution function, propagating with nearly Fermi velocity
and coupled to elastic deformations and electric fields: acoustic
plasmons,5 ballistic quasiwaves,6 and zero sound.7–11 The
study of these fast modes gives important information about
the mechanisms of electron relaxation, spectrum of the Fermi
velocities and Fermi-liquid correlation function in metals.10–15

In the experiments mentioned above, excitation of the
electron sound has been performed by a high-frequency elastic
deformation of the sample surface. As a result, both the
acoustic and the electron sound waves were simultaneously
excited in the bulk of the sample. These waves can be easily
separated in the time-of-flight experiment; the signal ϕS , which
comes with the sound delay, will be referred to below as “sound
potential,” and the signal ϕES propagating with the Fermi
velocity will be called “electron sound potential.” It should
be noted, however, that the potential as well as the elastic
displacement are measured at the metal boundary, where
partial conversion between different types of the oscillations
always occurs. Therefore the recorded signal is generally
the result of interference between different processes, and its
magnitude may differ from its bulk value in the propagating
wave. Indeed, an analysis of the electric signals of the first
type, assuming specular reflection of electrons from the sample
surface, showed1 that the potential ϕS is formed by two
contributions: ϕq , which has the sound spatial period, and
ϕqw, generated by the fast quasiwave excited at the receiving
interface. Diffuseness of the sample boundary numerically
modifies the effect, but the main features remain qualitatively
unchanged.16

Elastic deformations coupled to the electron sound have
been studied in Refs. 10–15 and 17. In the present paper, we

pay our main attention to the electron sound potential ϕES. This
study is of interest due to the following reasons. First, it pro-
vides additional arguments in favor of earlier assumptions10,11

of Fermi-liquid nature of the electron sound, enabling us to sep-
arate the zero-sound mode from the quasiwave. Furthermore,
the behavior of ϕES in the superconducting state is a topic
of particular interest. The earlier study of ϕS has revealed
a quite unexpected effect:1 the sound potential disappeared
almost abruptly below Tc. In the present study, we found a
similar effect for the potential ϕES of the electron sound, it also
abruptly disappears below Tc, though its elastic component
changes more smoothly in the superconducting state. Such a
behavior of ϕS and ϕES has no explanation within the existing
knowledge about the penetration of the longitudinal electric
field in superconductors.18 It can be thought that the mysterious
behavior of the electric field generated by an inhomogeneous
elastic deformation in a superconductor is a common property
of the superconducting phase irrespective of investigated
materials.

The paper is organized as follows. In Sec. II, we present
the measured temperature dependencies of the modulus and
the phase of the signals. In Sec. III, we examine various
theoretical models that describe formation of ϕES for both
diffusive and specular interfaces. We conclude that the theory
of elasticity of metals19 applied to multiband metals satis-
factorily describes the behavior of ϕES and ϕS in the normal
state. The results for the superconducting state are presented
in Sec. IV.

II. EXPERIMENTAL SETUP AND RESULTS IN THE
NORMAL STATE

The experimental setup was the same as described in Refs. 1
and 14. One of the faces of a high-purity gallium single crystal
(impurity mean free path ∼5 mm) was excited through the
delay line by a longitudinal elastic wave with the frequency
of 55 MHz and the diameter of the sound beam ∼4 mm.
The elastic component of the signal at the opposite face of
the sample was registered by a piezoelectric transducer, and
the electric potential was measured by an electrode attached
to the sample within the region of the “sound spot.” The
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electrode has been made from the sound-absorbing material
(brass) to prevent appearance of its own potential. In contrast
to Ref. 1, where we used a point contact, the electrode
diameter was 2.5 mm, which provides more controlled
mechanical boundary conditions. The electrode can be glued
to the sample surface by the acoustic grease or slightly
appressed to the sample by a spring. Obviously, the first
case is more similar to a matched boundary, while the
second case to a free one. The experiment was performed
in the time-of-flight regime; the duration of the excitation
signal has been chosen smaller than the sound delay in
the sample, which excludes the possibility of the acoustic
resonance. The electron sound resonance was suppressed
due to diffusive scattering of electrons at the sample bound-
aries.

In all cases, we detected two types of signals: fast modes
propagating with the Fermi velocity (electron sound) and slow
ones having the sound velocity. The elastic component uES

of the electron sound was about of 80 dB lower than its
value uS in the acoustic signal, while the magnitudes of the
potentials ϕES and ϕS were comparable. For the sample length
of 4 mm in the temperature range of impurity scattering and
excitation intensity ∼10 W/cm2, the measured potentials have
the level of 10−5 V. The amplitude of ϕES was found to be
independent of the mechanical boundary conditions, while
ϕS exceeds ϕES by 8 dB for a “matched” boundary and by
14 dB for an almost free boundary. The dependencies of
the amplitude and phase of ϕES and uES on the temperature
(i.e., on the electron scattering rate), measured in the same
sample in the normal state, are shown in Fig. 1. We draw one’s
attention to the qualitative difference between the behavior of
the phases for these components, which seems to be a decisive
test for possible theories, as we will see below. The temperature
changes of the amplitude and phase of ϕS are shown in Fig. 2.
In contrast to analogous data presented in Ref. 1, the potential
ϕS(T ) shows a more complicated nonmonotonic behavior,
which indicates interference of nearly antiphase signals, ϕq

and ϕqw, whose amplitudes have different dependencies on the
electron scattering intensity.1
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FIG. 1. Amplitudes (a) and phases (b) of the potential ϕES (curves
1) and elastic displacement uES (curves 2) in the electron sound wave
vs temperature.
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FIG. 2. Amplitude (a) and phase (b) of the potential ϕS of the
acoustic wave vs temperature; curves 1 are for the “almost free”
interface and curves 2 are for the “almost matched” interface.

III. THEORETICAL ANALYSIS

A. Free-electron model

As in Ref. 1, we first analyze a free-electron model
by using a slightly different approach, which is consistent
with the scheme of the experiment and enables simultaneous
calculations of the potentials ϕES and ϕS . We consider a metal
plate with the thickness x0, subjected by elastic vibrations
with the amplitude u0 at the face x = 0, and calculate ϕES and
ϕS at x = x0. For simplicity, we assume the same densities
ρ and sound velocities s for the delay line, the receiving
electrode and the sample. The system of equations19 consists
of the one-dimensional linearized kinetic equation in the
relaxation time approximation [the time dependence is chosen
as exp(iωt)],

iωψ + v
dψ

dx
+ νψ = −iω�

du

dx
+ ev

dϕ

dx
, (1)

the equation of the elasticity theory,

−ρω2u = ρs2 d2u

dx2
− dW

dx
, W = 〈�ψ〉 , (2)

and the electroneutrality condition

〈ψ〉 = 0. (3)

Here, ψ is a nonequilibrium addition to the distribution
function, u is the elastic displacement, v is the x component of
the Fermi velocity, � is the longitudinal part of the deformation
potential (� = λ − 〈λ〉 / 〈1〉, λ = −mv2), ν is the relaxation
frequency,

ϕ = ϕE + 1

e

du

dx

〈λ〉
〈1〉 − mω2

e

∫ x

0
udx (4)

is a full electrochemical potential measured by a voltmeter,
ϕE is its electrical component satisfying Maxwell’s equations.
The last term in Eq. (4) describes a small Stewart-Tolmen’s
effect, which can be ignored for all cases analyzed below. The
angle brackets denote averaging over the Fermi surface,

〈A〉 ≡ 2

h3

∫
AdS

vF

.
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Equations (1) and (3) lead to the condition of the absence of
the longitudinal current,

〈vψ〉 = 0. (5)

The condition of completely diffusive reflection of electrons
for the boundary x = 0 has the form

ψ(x = 0) =
{

ψ0(v), v < 0,

C0 = const, v > 0,
(6)

and similarly for x = x0. The function ψ0 and the constant C0

must be found self-consistently.
Typically, such a problem is solved by the representation

of the solution of Eq. (1) through an integral formula,16,20

with subsequent solution of integrodifferential equations by
the Wiener-Hopf method.21 We will use a more simple
implementation of this method: extending the solution to the
whole x axis and assuming all fields outside the interval (0,
x0) to be zero, we apply the integral Fourier transformation

Ak =
∫ x0

0
A(x) exp(−ikx)dx, A(x) =

∫ ∞

−∞
Ak exp(ikx)

dk

2π

directly to Eqs. (1)–(3). The Fourier transform of the kinetic
equation (1) reads as

ψk(L + ik) − ωk
�

v
uk − iekϕk

−
[
−iω

�

v
u(x0) + eϕ(x0) − ψ(x0)

]
e−ikx0

= −iω
�

v
u(0) − eϕ(0) + ψ(0), L = iω + ν

v
≡ iω̃

v
.

(7)

To ensure the validity of Eq. (7) in the entire complex plane
of k, the functions ψk , uk , and ϕk should have components
proportional to the factor exp(−ikx0), which compensate
the last term in the left-hand side of Eq. (7). A similar
conclusion relates to the Fourier transforms of Eqs. (2)
and (3). Thus the system splits into two blocks, with and
without the exponential factor; however, direct application
of the Wiener-Hopf procedure to these blocks is impossible,
which can be demonstrated by a simple example. The above
defined Fourier transform of any wave mode propagating with
attenuation in the forward (+) or backward (−) direction in
the interval (0, x0), having initial amplitudes A+

0 = A+(0) or
A−

0 = A−(x0), respectively, is given by

A±
k = A±

0

i(±r − k)
[ei(±r−k)x0 − 1]. (8)

Here, r is the complex wave number located, e.g., for the direct
(+) wave in the second quadrant. The Fourier components
of the fields, representing a separate solution for each block,
generally contain both direct and backward waves, therefore
they have singular points in the upper and lower half-planes,
as follows from Eq. (8). The Wiener-Hopf method is not
applicable to such functions.

In order to get around this difficulty, we group the terms in
each block obtained from Eq. (7) according to the location of
their singular points, i.e., divide the full solution for each block
into the forward and backward waves. The values of the fields

at the interfaces x = 0 and x0 also contain partial contributions
of the direct and backward waves, A(0) = A+(0) + A−(0)
(and similar for x = x0), which are to be attached to the related
groups. Taking into account the existence of the common band
of analyticity −Imr < Imk < Imr for these two groups and
the relation kAk|k→∞ = iA(0) for each partial component,
and using the Liouville’s theorem,21 we conclude that each
of these groups is equal to 0. After such a separation, the
Wiener-Hopf method is already applicable, and we come to the
conclusion that in the case of diffusive sample boundaries, the
response to an external perturbation at the receiving interface is
a combination of solutions for the forward and backward waves
in the half-space with corresponding partial amplitudes of the
perturbing signals. The relation between these amplitudes is to
be found from the continuity conditions for the displacements
and stresses at the boundary.

By using these considerations, we address the equations
for the forward wave, obtained from the Fourier transforms
of Eqs. (1)–(3) after the separation procedure. After some
algebra, we get the relation between uk and ϕk in the forward
wave (we omit the upper index +),

(k2 − q2)uk + iζ ekϕkλ
−1
0 = −iku0 + C1. (9)

Here and below, the symbol Ci (i = 1,2) denotes combinations
of the fields at the exciting interface (the single used property of
Ci is their independence of k), λ0 = mv2

F , ζ = λ0/Ms2 ∼ 1,
M is the ion mass. Eliminating ϕk from Eqs. (3) and (9), we
arrive at the equation for uk ,

Z(k)[kBuk − u0(B + q2) + kC2] = A(−q2u0 + kC2)

− Bζ

λ0

(〈
ψ0

L + ik

〉
v<0

−
〈

C0

L + ik

〉
v<0

)
,

Z(k) = A + BJ, A = kωζ

3k0
, kω = ω

vF

, k0 = ω̃

vF

,

(10)

B = k2 − q2 + kωζ

(
k0 + k2

3k0

)
, q = ω

s
,

J = 1

〈1〉
〈

1

L2 + k2

〉
= 1

k2
− k0

2k3
ln

k0 + k

k0 − k
.

In derivation of Eq. (10), we used the following chain of
transformations,〈

ψ(0)

L + ik

〉
=

〈
ψ0

L + ik

〉
v<0

+
〈

C0

L + ik

〉
v>0

=
〈

ψ0

L + ik

〉
v<0

−
〈

C0

L + ik

〉
v<0

+ C0J. (11)

We emphasize that the possibility to take the factor C0 out of
the averaging in Eq. (11) determines the applicability of the
Wiener-Hopf method to our problem. We also note that the
combination in the curly brackets in Eq. (10) plays the role of
a “fictitious” function appearing in this method.

The characteristic function Z(k) determines the spectrum
of the wave numbers of the propagating modes. In our
simplest case, the equation Z(k) = 0 has only a pair of the
roots r± = ∓q ± iαL, corresponding to the acoustic wave
renormalized by interaction with electrons. At q� 	 1, the
attenuation decrement αL = πkω/12 represents the Landau
damping independent of the mean free path � = vF /ν. Besides,
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the function Z(k) has a pair of the branch points k = ±k0

associated with the quasiwave (ballistic) process with the
propagation velocity close to vF . The function Z(k) has no
singular points near the real axis within the band −δ < Imk <

δ, δ = min(αL,�−1), and turns to unity at k → ∞. These
properties enable us to factorize Z(k) by using a standard
procedure,21 i.e., to present it as a product of the functions
T +(k) and T −(k), analytical at Imk > −δ and Imk < δ,
respectively. In particular,

T +(k) = exp

[
1

2πi

∫ ∞−iγ

−∞−iγ

ln Z(ξ )

ξ − k
dξ

]
, γ < δ. (12)

This function can be calculated by the methods of contour
integration. In the lower half-plane, the integrand in Eq. (12)
has two branch points: ξ = k0 from the internal logarithm in
Z(ξ ) and ξ = r−, in which the function Z(ξ ) turns to zero. We
make a cut for the internal logarithm along the ray ξ = k0y

(1 < y < ∞). Since the function Z(ξ ) is regular at ξ = 0,∞,
the second cut, beginning at the point ξ = r−, is finished at
some point ξ = r0 belonging to the first cut. Then, tracing the
cuts and calculating corresponding contour integrals, we get

T +(k) = k − r−
k − r0

τ+(k), (13)

where τ+(k) is the contribution of the cut of the internal
logarithm,

τ+(k) = exp

[
k0

2πi

∫ ∞

1

ln Z(k0y + 0i) − ln Z(k0y − 0i)

k − k0y
dy

]
.

(14)

The value of r0 can be found assuming k = 0 in Eq. (12). In
this limit, after displacement of the integration contour to the
real axis, the principal value of the integral vanishes and only
the contribution πi ln Z(0) of the trace around the coordinates
origin survives. Comparing this result with Eq. (13), we get
r0 = r−τ+(0)Z−1/2(0). Note that the formal singularity in
Eq. (13) at k = r0 is removable, because τ+(k)k→r0 → 0.

Dividing Eq. (10) over T +(k), we obtain a functional
equation with the right-hand and left-hand sides analytical at
Imk > −γ and Imk < γ , respectively. Due to the Liouville’s
theorem, they can be presented as a first power polynomial
A(αk + β), and we obtain the final expression for the Fourier
image of the elastic displacement in the forward wave:

uk = A(αk + β)T +(k)

ikB(k)Z(k)
. (15)

According to Eq. (5), the combination in curly brackets
in Eq. (10) vanishes at k = 0, which gives β = √

3qk0u0.
Expression for the parameter α follows from Eq. (10) at
k = ±b, where b is a root of the equation B(k) = 0. Note
that we omitted the terms in Eq. (15), which are inessential
for the calculation of u(x) [they eliminate nonphysical poles in
Eq. (15) at k = 0, ± b and give zero contribution to the inverse
Fourier transform of uk].

According to Eq. (15) and the properties of the function
Z(k) described above, the forward wave consists of two modes
having different velocities: the quasiwave and the sound wave.
Elastic displacements in these excitations, uqw ∼ (s/vF )2u0

and uq ∼ u0, respectively, differ by 4–5 orders of magnitude.

However, the electric potentials excited by these modes are
comparable by their magnitudes,

ϕq ∼ ϕqw ∼ kωλ0

e
u0. (16)

These estimations follow from Eq. (9) at k = q + iαL, u ∼
u0 for the sound wave and k ≈ kω, u ∼ (s/vF )2u0 for the
quasiwave. Comparing Eq. (16) with Eq. (4), we conclude that
the resulting sound potential is formed by practically complete
(∼s/vF ) cancellation of two large terms. On the contrary,
the quasiwave potential is mainly represented by the electric
component.

Now we consider the values of the fields registered at the
receiving interface. The excitation incoming at the sample
boundary x = x0 produces its deformation, which is the source
of backward waves. Their behavior is described by similar
equations with substituting u0 by the partial amplitude ũ(x0),
whose value can be found from the mechanical boundary
conditions. The measured potential is the sum of contributions
of the forward and the backward waves. As an example, we find
the elastic displacement and the potential created by a direct
quasiwave, coming with the amplitude uqw(x0) to the matched
interface. In this case, evaluation of the integral in Eq. (14) is
required; however, we will use instead the characteristic values
of k ∼ k0 � q for estimations. For the backward waves, the
quasiwave contribution is negligible, and we should take into
account only the acoustic component. In this approximation,
the conditions of equality of displacements and stresses for
both sides of the interface read as

uES = uqw + ũ(x0), ũ(x0) ≈ 1

2iq

Wqw(x0)

ρs2
− uqw

2
, (17)

−iquES = ik0uqw(x0) + iqũ(x0) − Wqw

ρs2
. (18)

Here, uES is the amplitude of displacements created by the
electron sound signal in a load (including the receiving piezo-
transducer). The electronic pressure for a direct quasiwave can
be found from the Fourier transform of Eq. (2),

Wqw

ρs2
≈ q2 − k2

ik
uqw(x0). (19)

As a result, we obtain uES ≈ ũ(x0) ≈ (q/2k0)uqw(x0) ∼
(s/vF )u0, i.e., the displacement amplitude at the receiving
interface exceeds its value in the incoming wave of the electron
sound by a large factor vF /s.14 At the same time, the potential
created by the backward waves is small, thus, ϕES equals to the
potential of a direct quasiwave ϕqw(x0). Although the quantity
ũ(x0) at the free boundary is twice as large, the contribution
of backward waves can be also neglected in this case. This
means that the amplitude of ϕES is practically independent of
the mechanical boundary conditions, in agreement with our
experiments.

For the sound potential, the cases of the matched and the
free boundaries differ in essence. In the first case, the quantity
ũ(x0) is small by the parameter αL/q, thus the contribution
of the secondary waves is negligible, and ϕS(x0) equals to the
potential of the primary sound wave. For the free interface,
ũ(x0) coincides with the amplitude of the incident wave, their
potentials are fully compensated, and only the potential of the
secondary quasiwave survives. In the regime of the impurity
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scattering (low-temperature limit), the quasiwave contribution
exceeds the acoustic one by the factor of 1.5 (for the specular
boundary,1 ϕqw exceeds ϕq by a factor more than 3). When
the electron scattering increases, the acoustic component ϕq

always becomes prevalent.
The experimental dependencies in Fig. 2 qualitatively agree

with the estimations given above. Of course, the used variants
of measurement of the potential cannot be attributed to the
purely matched or free boundary, therefore both the acoustic
and quasiwave contributions are present in ϕS . Nevertheless,
we note that in the regime of the impurity scattering, ϕS is larger
for the variant more close to a free boundary case than for a
matched one. And vice versa, in a high-temperature region,
only ϕq remains, and a more intensive signal is observed in the
“matched” variant.

Within the same model, we analyze the case of a specular
receiving interface, assuming the exciting interface to be
diffusive to avoid possible resonant effects. Different authors
used various approaches to similar problems (see, e.g., Ref. 20)
but they actually exploit an identical procedure—replacement
of the interface by a specularly inverted sample. The scalars
in the fictitious sample are the same as in the real one, the
x components of polar vectors change their signs, and the
tensor functions are transformed in accordance with the usual
rules. Due to the specular reflection conditions, the distribution
function is continuous at x = x0.

Applying the Fourier transformation [now within the
interval (0, 2x0), out of which all fields are assumed to be equal
to 0] to our system, we conclude that the complete solution
splits into three blocks [cf. with Eq. (7)]. One of them (without
the exponential factor) coincides with the one discussed above
and describes the waves generated at the interface x = 0.
Two others [∼exp(−2ikx0) and ∼exp(−ikx0)] are virtual
excitations, but their sum determines real backward waves.
The first of these terms is the “specularly inverted” wave, in
accordance with the rules accepted. Obviously, at x = x0, this
wave produces a displacement opposite in phase and a potential
of the same sign compared to those in the incoming wave.
The second term is the excitation generated by complete (not
partial!) displacements u(x0) of the interface. In our notations,
its Fourier transform is

uk = − 2Aq2u(x0)

ikB(k)Z(k)
, (20)

where we omitted inessential terms, which cancel out the poles
at k = 0, ± b, similar to Eq. (15). The potential is determined
by Eq. (9) with minor modification of the right-hand side. If
one considers u(x0) as an independent value, then Eqs. (15)
and (20) determine the relationship between the amplitudes
of displacements generated at the diffusive and specular
boundaries, respectively. For the acoustic mode, it is very close
to 1, while for the quasiwave this relation is about 0.5.

In analysis of the mechanical boundary conditions, all three
solutions must be taken into account. Obviously, the sum
of first two solutions gives zero displacement and doubled
potential and electronic pressure. In the case of a quasiwave
incident on the specular interface, the corrections arising from
the backward waves are small, therefore the full potential ϕES

at the specular interface is twice as large than at the diffusive
one.

In the case of the sound wave incident on the matched
interface, the quantity u(x0) coincides with the incoming
signal. Summing up the solutions, we find the potential created
by the acoustic wave and an additional potential generated by
the quasiwave. The relationship between these contributions
coincides with that calculated before.1 The amplitude of
displacements in the backward sound wave is small because
of practically full cancellation of the second and third terms.

Thus, for the specular interface, the potentials ϕES and ϕS

exceed, as a rule, their values for the diffusive case. The only
exception is a hypothetical fully fastened surface, u(x0) = 0;
in the diffusive case, both the doubled potential ϕq and ϕqw

contribute to ϕS , while for the specular interface, the term ϕqw

is absent. It is also worth noticing that there is a qualitative
difference between the diffusive and specular cases for the
matched interface in the clean limit q� 	 1; the contribution
to ϕS from the quasiwave for a diffusive boundary is practically
absent, while it dominates in a specular case.

B. Multiband models

Despite the successful explanation of several important
experimental facts, the free-electron model has an essential
drawback: it does not explain the difference between the
phases of ϕES and uES clearly seen in Fig. 1(b). Indeed,
comparing Eqs. (9) and Eqs. (17), (19), we see that the electron
sound potential and elastic displacements at the interface are
described by expressions, similar up to a scale factor. It seems
that the consideration of the quasiwave as a single carrier of
the electron sound will lead to an analogous conclusion for
any modification of the approach.

However, the quasiwave is not a unique mechanism of the
electron sound transport. In the presence of strong enough
Fermi-liquid interaction (FLI) and several sheets of the Fermi
surface with close Fermi velocities but different values of the
deformation potential, the excitation of zero sound in metal is
possible.8–13 It was found14,15 that a considerable change in the
phase of the elastic component of the electron sound in Ga with
temperature is related to the change of its velocity, associated
with the crossover from the collisionless propagation of the
zero sound to the concentration wave regime15,17 (the electron
analog of ordinary sound). Theoretical analysis, based on the
model of a compensated metal with two equivalent zones
showed that the necessary condition for such a crossover is
relatively weak interband scattering.15 This requirement is
not an artificial limitation of the model, since the interband
gaps are often large enough, therefore in the actual range
of temperatures, the interband transitions are only due to
rare electron-impurity or electron-electron collisions. At the
same time, the intraband relaxation above the crossover
temperature is determined by much more frequent electron-
phonon collisions.

Within this model, the elastic component of the zero sound
(or concentration mode) predominates the ballistic one at
reasonable values of the FLI parameters, but the potentials
ϕES and ϕS are identically zero. For their emergence, a certain
asymmetry must be introduced: unequal FLI coefficients,
different densities of states, or different (but close) values of
the Fermi velocities. However, in this case, the phase of the
zero sound potential behaves similar to the phase of the elastic
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component. Thus, the two-band model also cannot give any
explanation of the data presented in Fig. 1(b).

A qualitative interpretation of these data can be obtained
within the framework of a three-band model. We represent the
Fermi surface by three spheres of identical sizes, two of which
are of the electron type and one of the hole type (or vice versa).
The Fermi velocities, the densities of states, the relaxation
rates, and the intensity of FLI are supposed to be equal for all
bands. Besides, we assume the absence of interband transitions
caused by the electron-phonon scattering and equality of the
rates of the intra- and interband impurity scattering. Under
these assumptions, the kinetic equation in each band (i =
1,2,3) for the distribution function renormalized by FLI14,15

has a form similar to Eq. (1), with an additional force term in
the right-hand side,

iω̃ψi + v
dψi

dx
+ νψ = −iω�i

du

dx
+ evi

dϕ

dx
+ ω−

〈1〉 〈ψi〉 ,

(21)

where F is the difference of the isotropic parts of Landau
correlation functions for the intra- and interband FLI, ω− =
νph + iωF/(1 + F ), ν = νph + 3νimp, νph and νimp are the
frequencies of the intraband electron-phonon and electron-
impurity collisions, respectively. The FLI renormalizes the
function W in Eq. (2) as well,

W =
∑

i

(
〈�iψi〉 − F

1 + F
〈�i〉 〈ψi〉

〈1〉
)

,

and Eqs. (3) and (5) take the form
∑

i〈ψi〉 = 0 and∑
i〈viψi〉 = 0.
As well as in the two-band model,8,9,11 these equations

have a zero-sound solution transformed into the concentration
mode with the increase of scattering. The results, obtained
for the specular receiving interface, show that for reasonable
intensity of FLI (F ∼ 1), the elastic and potential components
of the electron sound in this case are formed by different
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FIG. 3. Calculated relations (a) of the amplitudes of elastic
displacements and potentials for separate components of electron
sound vs electron-phonon scattering rate in the three-band model and
(b) of computed phases of the dominant components. The following
parameters are used: ζ = 1, F = 1, and ω/3νimp = 5. Dotted line
is the phase of the quasiwave components for the free-electron
model.

mechanisms. Indeed, as is obvious from Fig. 3(a), the elastic
component uZS of the zero sound much exceeds its value in
the quasiwave and, at the same time, the quasiwave potential
dominates. As a result, the behavior of the phases of dominant
components presented in Fig. 3(b) qualitatively agrees with
the experimental data shown in Fig. 1(b).

The behavior of the phase of the quasiwave potential,
following from the one-band model with the diffusive surface,
is also presented in Fig. 3(b). Almost complete coincidence
of these results with the ones for the three-band model
indicates insensitivity of the phase of quasiwave solutions to
the particular choice of the model and to the character of
electron scattering at the interface.

IV. BEHAVIOR OF POTENTIAL IN SUPERCONDUCTING
PHASE

The algorithm of calculation of the potential in the su-
perconducting phase is similar to the procedure described in
Sec. III. In particular, the same equations of elasticity, electro-
and current neutrality are used. Of course, the calculation
of corresponding averages is much more difficult due to the
energy dependence of both the velocity of normal excitations
and the relaxation frequencies.1,22 However, in derivation of
Eq. (9) within the free-electron model, no specific calculations
of the kinetic coefficients were performed, therefore the
structure of Eq. (9) holds in the superconducting state as
well. This means that ϕq cannot decrease below Tc faster
than the sound attenuation decrement αL(T ) (for the case of
a specular interface, a detailed analysis was given in Ref. 1).
Moreover, since the sound attenuation in our sample is rather
large, αLx0 > 1, the dependence ϕq(T ) must pass through
a maximum due to rapid increase of the damping factor
exp[−αL(T )x0] near Tc. The relationship similar to Eq. (9),
following from the elasticity equation, occurs in any model,
therefore the conclusion about the temperature dependence of
ϕq seems to be always true.

However, as it has been already reported,1 the experimental
value of ϕS decreases considerably faster than expected on the
basis of these considerations. We note that the measurement
of the potential in these experiments was carried out by a
point contact, for which the mechanical boundary conditions
depend on its pressing, i.e., on a badly controlled parameter.
In particular, it can be thought that the situation with a point
contact is close to the case of free boundary, and, corre-
spondingly, the contribution of ϕq in the potential measured
in Ref. 1 is completely absent. In the present experiments,
ϕq is unambiguously a part of ϕS ; nevertheless, the result of
measurements of ϕS(T ) in the superconducting state shown in
Fig. 4 completely reproduces the previous result.

At large excitation intensity, |ϕS(T )| exhibits a maximum,
which is due to local overheating of the receiving interface
and vanishes with the decrease of u0. In the absence of the
overheating, the quantity |ϕS(T )|−1 obeys the law close to
linear in �T = Tc − T (see Fig. 4, inset) with a large prefactor
similar to that in the imaginary part of the transversal con-
ductivity of a superconductor, Imσs/σn ≈ (2vF /s)(�T/Tc),
which describes screening of the electromagnetic field of the
sound wave by supercurrents. This enables one to suspect
that the oscillating currents, spreading over the sample surface
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from the sound spot, take part in formation of ϕS(T ).
These currents were indeed observed in the experiments;1

however, they disappear at T < Tc as quickly as the potential
does and therefore hardly can be a primary cause of its
decrease.

Generally, the theoretical analysis of ϕS(T ) and the in-
terpretation of its experimental behavior represent a rather
complicated problem, because both ϕq and ϕqw contribute to
the sound potential. In principle, these terms may compensate
each other, although such a situation seems to be hardly
probable. Moreover, as was noted above, the potential ϕq

is the result of practically complete (∼s/vF ) cancellation of
large electric and deformation contributions; for this reason,
the ordinary accuracy of estimations (also ∼s/vF ) must be
substantially increased. In this sense, the measurement of ϕES

is more preferable, because this potential has a purely electric
nature. The results of measurements of ϕES(T ) and uES(T )
presented in Fig. 5 show that the potential of the electron sound
disappears at T < Tc practically in a jumplike way, similar to
ϕS . Strangely, but the result of measuring ϕS and ϕES looks as
an evidence of impossibility of the existence of the potential
gradient in a superconductor. Of course, we do not adhere to
such a point of view, because it fully contradicts the universally
recognized theories and well established experimental facts
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displacement in the electron sound wave below Tc. Inset: expanded
scale near Tc.

(see, e.g., a review18), but the problem of interpretation of
these paradoxical data still exists.

The nature of the signal uES(T ) also remains unclear. Taking
into account the analysis of the three-band model, it could be
thought that a small jump in uES(T ) near Tc (see Fig. 5) can be
interpreted as the suppression of the quasiwave just below Tc.
Furthermore, it was shown experimentally14 that the change
of both the amplitude and the phase of uES(T ) below Tc has
nothing to do with the change of attenuation and velocity of
the electron sound and relates only to the behavior of the
coefficient of coupling between the electron sound and the
exciting elastic deformation. This contradicts the theoretical
predictions22 about the behavior of the quasiwave amplitude
and phase in the superconductor. Besides, we would remind the
conclusion of Ref. 23 that in presence of the interband Cooper
pairing, the zero sound spectrum in the superconducting phase
has an activating character with a gap close to the energy gap
of the superconductor. Thus the propagation of the zero sound
at our frequencies is forbidden in the superconducting state.
But if the signal uES(T ) below Tc is neither zero sound nor the
quasiwave, then what is it? No clear answer on this question
exists yet.

V. CONCLUSION

We have measured the temperature dependencies of the
amplitude and the phase of the potential ϕES and the elastic
displacement uES accompanying a fast electron sound wave
excited by the longitudinal ultrasound in a single crystal of
high-purity Ga. Simultaneously, the amplitude and the phase
of the potential ϕS and the elastic displacement uS in the
excited acoustic wave have been studied. We found that in
the normal state, the behavior of the phases of ϕES and uES

differs qualitatively: while the phase of ϕES increases with
temperature, the phase of uES decreases. By using the Wiener-
Hopf method, we examined several theoretical models that
describe excitation and propagation of different types of the
electron sound in samples of finite size with the diffusive
exciting interface.

The model of free electrons, in which only the quasiwave
is responsible for the electron sound transport, enabled us to
explain several important experimental facts: giant enhance-
ment (by the factor vF /s) of elastic displacements induced by
the electron sound wave at the sample boundary, insensitivity
of ϕES on the boundary conditions at the receiving interface,
and the temperature behavior of ϕS and its closeness to ϕES in
the magnitude. However, neither this model nor the model of
a compensated metal with two sheets of the Fermi surface (in
which zero-sound or concentration modes occur in presence of
the Fermi-liquid interaction) are able to explain the difference
between the phases of ϕES and uES.

We obtained a qualitative interpretation of this experimental
result within a model with three equal Fermi spheres, which
reflects the presence of three main sheets of the Fermi surface
in Ga.24 For reasonable values of the Fermi-liquid interaction
coefficients, the elastic signal uES was found to be formed by
the zero sound, while the potential ϕES is basically associated
with the quasiwave, which results in opposite changes of
their phases with temperature. Of course, this simple model
cannot pretend to be a quantitative description of the real
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situation. Nevertheless, our estimations indicate a possibility,
in principle, for the “potentialless” propagation of the zero
sound (or the concentration wave) on a background of the
potential created by the ballistic transport and enable us
to suppose actual realization of a similar scenario in the
experiments.

Below the temperature of the superconducting transition,
we observed a sharp disappearance of the potential of both
the electron sound wave and the acoustic wave, which
contradicts our theoretical estimations and generally adopted

conceptions of the behavior of the longitudinal electric field
in superconductors. The origin of this puzzling effect, as well
as the nature of the elastic signal of the electron sound in the
superconductor, is not clear yet.
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