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Hybrid superconducting quantum magnetometer
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A superconducting quantum magnetometer based on magnetic flux-driven modulation of the density of states
of a proximized metallic nanowire is theoretically analyzed. With optimized geometrical and material parameters
transfer functions up to a few mV/�0 and intrinsic flux noise ∼10−9�0/

√
Hz below 1 K are achievable. The

opportunity to access single-spin detection joined with limited dissipation (of the order of ∼10−14 W) make this
magnetometer interesting for the investigation of the switching dynamics of molecules or individual magnetic
nanoparticles.
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I. INTRODUCTION

The superconducting quantum interference device1

(SQUID) is recognized as the most sensitive magnetic flux
detector ever realized, and combines the physical phenom-
ena of Josephson effect2 and flux quantization3 to operate.
SQUID’s are nowadays exploited in a variety of physi-
cal measurements4,5 with applications ranging, for instance,
from pure science to medicine and biology.1,6 Recently, the
interest in the development of nanoscale SQUID’s7–9 has
been motivated by the opportunity to exploit these sensors
for the investigation of the magnetic properties of isolated
dipoles,10–14 with the ultimate goal to detect one single atomic
spin, i.e., one Bohr magneton.

Here we theoretically analyze a hybrid superconducting
interferometer that exploits the phase dependence of the
density of states (DOS) of a proximized metallic nanowire
to achieve high sensitivity to magnetic flux. The operation of a
prototype structure based on this principle, the SQUIPT,15 has
been recently reported. We show that with a careful design,
transfer functions as large as a few mV/�0 and intrinsic flux
noise ∼10−9�0/

√
Hz can be achieved below 1 K. Limited

dissipation joined with the opportunity to access single-spin
detection make this structure attractive for the investigation of
the switching dynamics of individual magnetic nanoparticles.

The paper is organized as follows. The model of the
hybrid superconducting magnetometer is presented in Sec. II.
The Josephson and quasiparticle currents are calculated in
Secs. III and IV, respectively. The flux resolution and device
performance are finally presented in Sec. V, where we address
briefly the feasibility of this structure as a single-spin detector.
Sec. VI is devoted to conclusions.

II. MODEL

The interferometer [sketched in Fig. 1(a)] consists of
a diffusive normal metal (N) wire of length L in good
electric contact (i.e., ideal interface transmissivity) with two
superconducting electrodes (S1) that define a ring. We assume
the wire transverse dimensions to be much smaller than L

so that it can be considered as quasi-one-dimensional. The
contact with S1 induces superconducting correlations in N
through the proximity effect,16–20 which is responsible for the
modification of the wire DOS.21 For lower-transparency NS1

interfaces the proximity effect in the wire will be reduced,

thus weakening the effects described below. In addition, a
superconducting junction (S2) of width w and normal-state
resistance Rt is tunnel-coupled to the middle of the N region.
The loop geometry allows the change of the phase difference
(ϕ) across the NS1 boundaries through the application of
a magnetic field which modifies the wire DOS22 and the
transport through the tunnel junction.15,23

The proximity effect in the wire can be described with
the quasiclassical Usadel equations.16 The short-junction limit
(i.e., for �1 � h̄D/L2 = ETh, where �1 is the order parameter
in S1, D is the wire diffusion constant, and ETh is the Thouless
energy) will be considered in the following, since in such
a regime the Usadel equations allow an analytic expression
for the wire DOS,24 thus simplifying the device analysis. In
addition, the interferometer performance is optimized in this
limit as the proximity effect in the wire is maximized.22,24

Assuming a step-function form for the order parameter �1,25

i.e., constant in S1 and zero in the N wire, the wire DOS
normalized to the DOS at the Fermi level in the absence of
proximity effect is given by24

NN (x,ε,T ,ϕ) = Re{cosh[θ (x,ε,T ,ϕ)]}, (1)

where

θ = arcosh(α(ε,ϕ,T )cosh{2xarcosh[β(ε,ϕ,T )]}), (2)

α =
√

ε2/
[
ε2 − �2

1(T )cos2(ϕ/2)
]
, (3)

and

β =
√[

ε2 − �2
1(T )cos2(ϕ/2)

]/[
ε2 − �2

1(T )
]
. (4)

In the above expressions, ε is the energy relative to the chemi-
cal potential of the superconductors, T is the temperature, and
x ∈ [−L/2,L/2] is the spatial coordinate along the wire. NN

exhibits a minigap (εg)

εg(ϕ) = �1(T )|cos(ϕ/2)| (5)

for |ε| � εg whose amplitude depends on ϕ and is constant
along the wire. In particular, εg = �1 for ϕ = 0 and decreases
by increasing ϕ, vanishing at ϕ = π . Finally, by neglecting the
ring inductance the phase difference becomes ϕ = 2π�/�0,
where � is the total flux through the loop area and �0 =
2.067 × 10−15 Wb is the flux quantum.
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FIG. 1. (Color online) (a) Scheme of the device. L is the wire
length whereas w is the width of the superconducting tunnel junction
(S2) coupled to the middle of the N region. ϕ is the macroscopic
quantum phase difference in S1, while � is the magnetic flux
threading the loop. Furthermore, Rt is the tunnel junction normal-state
resistance and Ibias is the current flowing through the structure.

III. JOSEPHSON CURRENT

At equilibrium, a current through the system Ieq can flow
thanks to a direct Josephson coupling between the supercon-
ducting electrode S2 [with order parameter equal to �2(T )eiχS

where χS is the macroscopic phase] and the proximized N
wire. We assume the BCS temperature dependence for �1,2(T )
with critical temperature Tc1,2 = �0

1,2/(1.764kB ) where �0
1,2

is the zero-temperature order parameter in S1,2 and kB is the
Boltzmann constant. Since the junction NS2 is extended in the
x direction, one can calculate, in the tunneling limit, Ieq using
the quasiclassical approach16,27,28 as the following integral:

Ieq(ϕ) = − 1

8ewRt

∫ w/2

−w/2
dx

×
∫ +∞

−∞
dεTr

[
σ3

[
GN

R (ε,x,ϕ),GS2
R (ε)

]

× tanh

(
ε

2kBT

)]
, (6)

where σ3 is the third Pauli matrix, [·,·] represent the commu-
tator, and e is electron charge. Furthermore, GN

R (ε,x,ϕ) is the
position-dependent retarded Green’s function on the N wire
and G

S2
R (ε) is the retarded Green’s function of the electrode

S2. They are defined as follows:

GN
R (ε,x,ϕ) =

(
cosh θ sinh θeiχ

− sinh θe−iχ − cosh θ

)
(7)

and

G
S2
R (ε) = 1√

ε2 − �2
2

(
ε �2e

iχS

−�2e
−iχS −ε

)
, (8)
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FIG. 2. (Color online) Josephson current vs flux (Ieq − �) char-
acteristics calculated for a few values of temperature T assuming
�0

1 = 0.1ETh and �0
1 = 4�0

2. Thick lines represent the supercurrent
calculated using the Ambegaokar-Baratoff formula Eq. (11), whereas
the thin lines are the supercurrent calculated for an extended tunnel
junction with width w = L/2.

where θ is defined in Eq. (2) and

χ = −arctan(γ (ε,ϕ,T )tanh{2xarcosh[β(ε,ϕ,T )]}), (9)

with

γ =
√[

ε2 − �2
1(T )cos2(ϕ/2)

]/[
�1(T )cos(ϕ/2)

]
. (10)

Note that the supercurrent Ieq depends on the phase χS of the
order parameter in the electrode S2. We are interested in the
critical current that we determine by fixing χS such that it
gives the maximum supercurrent for a given value of ϕ. In
Fig. 2 the equilibrium critical current is plotted, for different
values of temperature, as a function of ϕ in units of �0

2/(eRt ),
assuming �0

1 = 0.1ETh, �0
1 = 4�0

2, and w = L/2. For the
sake of comparison we also plot the supercurrent calculated
through the Ambegaokar-Baratoff29 formula, relative to a
pointlike NS2 junction:

IAB
eq = πεg(ϕ)�2(T )kBT

eRt

×
∑

l=0,±1,...

1√[
ω2

l + ε2
g(ϕ)

][
ω2

l + �2
2(T )

] , (11)

where ωl = πkBT (2l + 1). Interestingly, for our choice of
parameters the difference between Ieq and IAB

eq is hardly
noticeable: the lateral spatial extension of the NS2 junction
along x plays a marginal role. As a matter of fact, the
supercurrent turns out to be negligible in the experiments
reported in Refs. 15 and 37. The reason for such Josephson
current suppression is currently unclear. One possibility is that
the system is brought out of equilibrium by voltage fluctuations
that might originate from the measuring circuit. Such voltage
fluctuations will drop mostly across the tunneling barrier, being
the most resistive component of the system. As a result, the
Josephson current will oscillate at high frequency, hindering
the possibility of detection. This fact is fortunate, since a
supercurrent might prevent a correct voltage readout of the
device, which is not observed experimentally.
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IV. QUASIPARTICLE CURRENT

The current through the tunnel junction biased at voltage
V is therefore dominated by the quasiparticles, and can be
written as3

I = 1

ewRt

∫ w/2

−w/2
dx

∫
dεNN (x,ε,ϕ)NS2(ε̃)F (ε,ε̃), (12)

where

NS2(ε,T ) = |ε|√
ε2 − �2(T )2

�[ε2 − �2(T )2] (13)

is the normalized DOS of the S2 electrode, ε̃ = ε − eV,
�(y) is the Heaviside step function, F (ε,ε̃) = [f0(ε̃) −
f0(ε)], and f0(ε) = [1 + exp(ε/kBT )]−1 is the Fermi-Dirac
energy distribution. In the following we set �0

2 = 200 μeV
and �0

1 = 4�0
2 = 800 μeV as representative values for a

structure exploiting aluminum (Al) and vanadium (V) as
superconductors,30,31 respectively, w = L/2 and Rt = 5 M�.

Figure 3 shows the interferometer current vs voltage (I -V )
characteristics calculated at T = 0.1Tc2 for different values of
the applied flux �.32 In particular, for � = 0 the I -V charac-
teristic resembles that typical of a superconductor-insulator-
superconductor junction (i.e., S1IS2 where I denotes an insu-
lator) where the minigap in the wire is maximized [i.e., εg =
�1(T )], and the onset for large quasiparticle current occurs
at3 V = [�1(T ) + �2(T )]/e. For � = �0/2 the characteristic
is similar to that of a normal metal-insulator-superconductor
junction (i.e., NIS2) with εg suppressed. The curves show a
peak at V = |�1(T ) − �2(T )|/e, which corresponds to the
singularity appearing in the tunneling characteristic between
different superconductors.3 In a current-biased setup the inter-
ferometer operates as a flux-to-voltage transducer providing a
voltage response V (�) that depends on the bias current Ibias

fed through the tunnel junction (see Fig. 3). For any Ibias, V (�)
is determined by solving the equation Ibias − I = 0.

Figure 4(a) shows V (�) at T = 0.1Tc2 calculated for
several Ibias values. V (�) turns out to be maximized at the
lower bias currents where the voltage swing obtains values as
large as 4�0

2/e, whereas it is gradually reduced by increasing
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FIG. 3. (Color online) Interferometer quasiparticle current vs
voltage (I − V ) characteristics calculated for a few values of �

at T = 0.1Tc2. Tc2 is the critical temperature of S2, Ibias is the
current flowing through the device, and V (�) is the resulting voltage
modulation.
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FIG. 4. (Color online) (a) V vs � calculated for several bias
currents Ibias at T = 0.1Tc2. (b) F vs � calculated for the same Ibias

values and T as in (a).

Ibias. The interferometer performance is thus improved at low
Ibias.

An important figure of merit of the interferometer is
represented by the flux-to-voltage transfer function1

F(�) = ∂V

∂�
, (14)

which is shown in Fig. 4(b) for the same Ibias values as in
panel (a). In particular, F as large as �12.5�0

2(e�0)−1 can
be obtained at the lowest currents, whereas it is gradually
suppressed at higher Ibias.

The role of the temperature is shown in Fig. 5(a) which
displays V (�) calculated for several T values at I =
1.0�0

2/(eRt ). An increase in T leads to a reduction of V (�)
as well as to a suppression and smearing of the voltage swing.
This directly reflects on the transfer function, as displayed in
Fig. 5(b). We note that even at T = Tc,2, i.e., when S2 is driven
into the normal state, F as large as �8.6�0

2(e�0)−1 can be
achieved. It follows that voltage swings up to 0.8 mV and F
as large as 2.5 mV/�0 can be achieved with the suggested
materials combination for T � 1 K.

V. NOISE AND DEVICE PERFORMANCE

We now turn to the discussion of the noise properties of the
interferometer. In the actual current-biased setup an important
quantity is represented by the voltage noise spectral density
(SV ) defined as

SV = R2
dSI , (15)
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FIG. 5. (Color online) (a) V vs � calculated for a few temper-
atures at Ibias = 1.0�0

2/eRt . (b) F vs � calculated for the same T

values and Ibias as in (a).

where Rd = ∂V/∂I is the tunnel junction dynamic resistance,
and SI is the current noise spectral density (shot noise) given
by34

SI = 2

wRt

∫ w/2

−w/2
dx

∫
dεNN (x,ε,�)NS2(ε̃)M(ε,ε̃), (16)

where

M(ε,ε̃) = f0(ε̃)[1 − f0(ε)] + f0(ε)[1 − f0(ε̃)]. (17)

The intrinsic flux noise per unit bandwidth of the interfer-
ometer (�ns) is related to the voltage noise spectral density
as1

�ns =
√

SV

|F(�)| . (18)

Note that �ns ∝ √
Rt , as SV ∝ Rt and F(�) is independent

of tunnel junction resistance.
Figure 6(a) shows �ns versus Ibias for several flux values

at T = 300 mK. �ns is a nonmonotonic function of Ibias with
a minimum that depends, for each �, on the bias current. In
particular, an increase in � leads to a general reduction of
�ns at low Ibias, while its minimum moves toward lower bias
current. We stress that �ns as low as 10−9 �0/

√
Hz or better

can be achieved at this temperature in the ∼10–80 pA range
for suitable values of �. This good flux sensitivity stems from
the low shot noise SI (which is peculiar to all-superconducting
tunnel junctions) together with a small Rd at the biasing point
and large F(�).
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FIG. 6. (Color online) (a) �ns vs Ibias calculated for different
� values at T = 0.3 K. (b) �ns vs Ibias for � = 0.3�0 calculated
at different temperatures. (c) P vs Ibias calculated for different �

values at T = 0.3 K. In all calculations we set �0
2 = 200 μeV, �0

1 =
800 μeV, and Rt = 5 M�.

The temperature dependence is displayed in Fig. 6(b) where
�ns vs Ibias is plotted for different T values at � = 0.3�0.
Notably, the minimum of �ns turns out to be quite insensitive
to the temperature up to �900 mK. Then, higher T yields
to a reduction of the current window suitable for high flux
sensitivity and to an overall enhancement of �ns . Furthermore,
for T � Tc2 [see the line corresponding to T = 1.5 K in
Fig. 6(b)], �ns is significantly degraded in the whole Ibias

range. This emphasizes the effectiveness of a superconducting
tunnel probe for a drastic suppression of �ns .

The impact of dissipation P = V I is displayed in Fig. 6(c),
which shows P vs Ibias for different � values at T = 0.3 K.
P can largely change by varying � and Ibias as well. In
particular, in the ∼10–80 pA current range, P can vary from a
few femtowatts to some tens of femtowatts. Such a small power
has the additional advantage to prevent substantial electron
heating in the N wire.35 By contrast, in conventional SQUID’s
dissipation is typically from two to five orders of magnitude
larger.1,6 As P ∝ R−1

t , dissipation can be tailored by choosing
a proper value of the tunnel junction resistance.

For a correct operation of the interferometer the two
following conditions should be fulfilled: (i) 2πI 0

c LG/�0 � 13

(where I 0
c is the zero temperature critical current of the S1NS1

Josephson junction and LG is the loop geometric inductance),
and (ii) LS1

k � LN
k

15,23 [where LS1,N
k � h̄RS1,N/π�0

1 is the
kinetic inductance3 and RS1,N is the normal-state resistance of
S1(N)]. Condition (i), where I 0

c = 0.66π�0
1/eRN ,24 ensures

the avoidance of magnetic hysteresis whereas (ii), which is
equivalent to RS1 � RN , ensures that the phase difference
set by � drops entirely at the wire ends thus allowing
a full modulation of its DOS. As an additional set of
parameters we choose a silver (Ag) wire with L = 80 nm, cross
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section A = 30 × 10 nm2, and D = 0.02 m2s−1 which yields
RN = L/(AνF e2D) � 5.2 �, where νF = 1 × 1047 J−1m−3

is the DOS at the Fermi level in Ag, �1/ETh � 0.3, and
I 0
c � 318 μA. By choosing, for instance, a circular washer

geometry1 with 2r = 150 nm as the internal diameter and
external radius R 	 r , we get LG = 2μ0r ≈ 0.19 pH, where
μ0 is the vacuum permeability, so that 2πI 0

c LG/�0 ≈ 0.18.
Condition (ii) can be fulfilled as well by choosing a suitable
washer thickness and R.

As LG has to be kept small to satisfy condition (i) it
follows that the present structure could be suitable for the
measurement of the magnetic properties of small isolated
samples. In this context, the magnetometer sensitivity (Sn)
to an isolated magnetic dipole placed at the center of the loop
is approximately given by10,12

Sn = 2r�ns

μ0μB

, (19)

where μB is the Bohr magneton. With our choice for r and
by coupling the device to a cryogenic voltage preamplifier36

(which we assume dominates the voltage noise) with
√

S
pre
V �

0.1 nV/
√

Hz yields a total flux noise �tot
ns =

√
S

pre
V

max|F(�)| �
40 n�0/

√
Hz, leading to Sn ≈ 1 atomic spin/

√
Hz below 1 K.

Furthermore, the best achievable energy resolution1 would be

E = (�tot
ns )2

2LG
� 170h̄.

VI. CONCLUSIONS

In summary, we have theoretically investigated a hybrid
superconducting magnetometer whose operation is based on
magnetic flux-driven modulation of the density of states of a
proximized metallic nanowire. In particular, we have shown
that with suitable geometrical and material parameters the
interferometer can provide large transfer functions (i.e., of the
order of a few mV/�0) and intrinsic flux noise down to a few
n�0/

√
Hz below 1 K. Furthermore, joined with limited power

dissipation, the structure has the potential for the realization of
sensitive magnetometers for the investigation of the switching
dynamics of small spin populations.
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