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Low-temperature thermodynamics of the classical frustrated ferromagnetic chain in a magnetic field
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Low-temperature magnetization curves of the classical frustrated ferromagnetic chain in the external magnetic
field near the transition point between the ferromagnetic and the helical phases is studied. It is shown that the
calculation of the partition function in the scaling limit reduces to the solution of the Schrödinger equation of
the special form for the quantum particle. It is proposed that the magnetization of the classical model in the
ferromagnetic part of the phase diagram including the transition point defines the universal scaling function
which is valid for the quantum model as well. Explicit analytical formulas for the magnetization are given in
the limiting cases of low and high magnetic fields. The influence of the easy-axis anisotropy on the magnetic
properties of the model is studied. It is shown that even small anisotropy essentially changes the behavior of the
susceptibility in the vicinity of the transition point.
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I. INTRODUCTION

Strongly frustrated low-dimensional magnets have attracted
much attention in recent years.1 A very interesting class of such
compounds is edge-sharing chains where CuO4 plaquets are
coupled by their edges.2–7 An important feature of the edge-
sharing chains is that the nearest-neighbor (NN) interaction J1

between Cu spins is ferromagnetic while the next-nearest-
neighbor (NNN) interaction J2 is antiferromagnetic. The
competition between them leads to the frustration. A minimal
model describing the magnetic properties of these cuprates is
the so-called F-AF spin chain model the Hamiltonian of which
has the form

H = J1

∑
Sn · Sn+1 + J2

∑
Sn · Sn+2 − h

∑
Sz

n, (1)

where Sn is the spin operator on nth site, h is the exter-
nal magnetic field, and the exchange integrals are J1 < 0
and J2 > 0.

This model is characterized by the frustration parameter
α = J2/|J1|. The ground-state phase diagram of the quantum
s = 1

2 model has been intensively studied.8–17 The ground state
of model (1) at h = 0 is ferromagnetic for α < 1

4 . At α = 1
4 the

quantum phase transition to the phase with incommensurate
spin correlations of the helical type takes place. Remarkably,
this transition occurs at the same frustration parameter α = 1

4
both in the quantum and in the classical model. However, the
influence of the frustration on the low-temperature thermody-
namics in the vicinity of the transition point is less studied. This
problem is of a special interest because the recently studied
edge-sharing compound Li2ZrCuO4 is well described by the
F-AF model with the frustration parameter close to α = 1

4 .18

At present the low-temperature thermodynamics of the
quantum s = 1

2 model at α �= 0 can be studied only either by
numerical calculation of finite chains or by approximate meth-
ods. On the other hand, the classical version of model (1) can
be studied exactly at T → 0 and the classical limit is a starting
point for the study of quantum effects. Another reason to study
the classical version of F-AF model comes from the following
argument established for the quantum spin-s ferromagnetic
chain, i.e., for model (1) at α = 0. It was conjectured in
Ref. 19 that the low-temperature magnetization of this model is

a function of the scaling variable gF = s3|J1|h/T 2. According
to this scaling hypothesis the normalized magnetization m =
〈Sz〉/s (〈Sz〉 is the magnetization per site) of the quantum chain
is expressed as

m(T ,h) = φ(gF ). (2)

This equation is valid in the scaling limit, which means that
T → 0 and h → 0 but gF is fixed. Then the dependence of
the magnetization m on the spin magnitude s comes only
via the scaling variable gF . Generally, the calculation of the
function φ(gF ) is a very complicated problem. It was proposed
in Ref. 19 that this function can be obtained from the solution
of the classical ferromagnetic chain and such scaling function
φ(gF ) was obtained explicitly in Ref. 19,20. In particular, the
zero-field susceptibility χ is

χ = s
dm

dh

∣∣∣∣
h=0

= 2s4|J1|
3T 2

. (3)

Actually the conjecture of the universality of the function
φ(gF ) is based on the following observations:19,21 The zero-
field susceptibility of the s = 1

2 Heisenberg ferromagnetic
chain at T → 0 coincides with that given by Eq. (3); the
magnetization m(T ,h) obtained numerically from the thermo-
dynamic Bethe-ansatz equations and plotted as a function of
gF = h/8T 2 approaches φ(gF ) at T → 0; the leading terms of
the spin-wave expansion for magnetization coincide with those
for φ(gF ). In addition, as noted in Ref. 19, the hypothesis of
the universality originates in the universal behavior of the spin-
wave excitations from the ferromagnetic ground state for both
quantum and classical model. For this reason it is natural to
expect that such universality remains for all α corresponding to
the ferromagnetic ground state, i.e., for 0 � α � 1

4 . Moreover,
the function φ(gF ) for 0 � α < 1

4 (but α not too close to 1
4 ) will

be the same as for α = 0 but with gF replaced by gF (1 − 4α) .
Really, the zero-field susceptibility χ = 2s4(1 − 4α)/3T 2 fits
very well with numerical and analytical results.22 However,
χT 2 vanishes at α = 1

4 signaling the change of the critical
exponent at the transition point.

In our previous paper23 we studied the zero-field suscepti-
bility of the classical F-AF chain exactly at the transition point
α = 1

4 and we have shown that χ ∼ T −4/3 in contrast with the

214438-11098-0121/2011/84(21)/214438(10) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.84.214438


D. V. DMITRIEV, V. YA. KRIVNOV, AND N. YU. KUZMINYH PHYSICAL REVIEW B 84, 214438 (2011)

low-temperature asymptotic χ ∼ T −2 for 0 � α < 1
4 . As was

shown in Ref. 23 the change of the critical exponent for χ is
a consequence of the modification of the energy of spin-wave
excitations from ε(k) ∼ k2 for 0 � α < 1

4 to ε(k) ∼ k4 at
α = 1

4 . Therefore, the form of the universal magnetization
curve and the scaling variable for α = 1

4 (if the universality
is valid) differ from the case 0 � α < 1

4 and require a special
study.

Another interesting problem related to the F-AF model is
the influence of the anisotropy of exchange interactions of the
easy-axis type on the low-temperature magnetic properties of
this model. This problem is actual because it is known that in
the real edge-sharing compounds the exchange interactions are
anisotropic and the anisotropy can be of the easy-axis type.24,25

Although this anisotropy is weak it can be important especially
near the transition point. In particular, it essentially changes
the behavior of the zero-field susceptibility.26

In this paper we investigate the effect of weak anisotropy
on the magnetic curves of the classical F-AF model at the
transition point. In the low-temperature limit the easy-axis
anisotropy of the NN and NNN interactions have the same
effect (we will explain this fact below) and for simplicity we
consider the anisotropy of the NN interaction only; i.e., we
add to Hamiltonian (1) the term

−(� − 1)
∑

Sz
nS

z
n+1, (4)

where � > 1.
It is interesting to note that for the pure ferromagnetic case

(α = 0) the similarity in the magnetic properties of quantum
and classical models remains in the case of the easy-axis
anisotropy. This resemblance is based on the close relation
between the classical solitons and the quantum multimagnon
bound complexes. In this paper we will elucidate the question
of to which extent the resemblance between the anisotropic
quantum and classical models remains in the F-AF model.

The paper is organized as follows. In Sec. II the continuum
version of the model is introduced and the scaling parameters
are determined. The calculation of the partition function is
reduced to the solution of the Schrödinger equation of a special
type. In Sec. III the behavior of the magnetization curve at the
transition point is studied. The asymptotics of magnetization
for low and high magnetic field are presented and the relation
to the quantum spin model is discussed. The numerical and
analytical results for the magnetization curve in the helical
phase are given in Sec. IV. In Sec. V the influence of the
easy-axis anisotropy on the magnetic properties is studied.
The summary of the obtained results is given in Sec. VI.

II. PARTITION FUNCTION IN THE CONTINUUM LIMIT

In Refs. 23,27 we studied the partition function and the spin
correlation functions of the classical F-AF chain in the vicinity
of the transition point α = 1

4 at zero magnetic field. This study
was based on the use of a continuum approximation and the
interpretation of the partition function as a path integral for the
quantum particle in a potential well. However, the extension of
the model to nonzero magnetic field and/or nonzero anisotropy
needs the essential modification of this approach.

In the vicinity of the transition point α = 1
4 it is convenient

to rewrite Hamiltonian (1) with the anisotropic term (4) in the
form

H = 1

8

∑
(Sn+1 − 2Sn + Sn−1)2

− 1

2

(
α − 1

4

)∑
(Sn+2 − Sn)2

− (� − 1)
∑

Sz
nS

z
n+1 − h

∑
Sz

n. (5)

In Eq. (5) we put |J1| = 1 and omit the unessential constant.
In the classical approximation the spin operators Si are

replaced by the classical vectors �Si = s�ni , where �ni are the unit
vectors. In the low-temperature limit the thermal fluctuations
are weak so that neighbor spins are directed almost parallel
to each other. Therefore, at T → 0 we can use the continuum
approximation replacing �ni by the classical unit vector field
�n(x), so that

(�Si+1 − 2�Si + �Si−1) � s
d2�n(x)

dx2
, (�Si+2 − �Si) � 2s

d �n(x)

dx
,

(6)

where the lattice constant is chosen as unit length.
Using Eqs. (6) Hamiltonian (5) goes over into the energy

functional

E[�n(x)] =
∫

dx

[
s2

8

(
d2�n
dx2

)2

− s2(4α − 1)

2

(
d �n
dx

)2

− s2(� − 1)n2
z − shnz

]
. (7)

One can easily check that in the continuum approximation the
easy-axis anisotropy of NNN interactions �2 results in the
term αs2(�2 − 1)n2

z . This term merely changes the coefficient
in the third term of Eq. (7), so that the results obtained below
cover the case of the NNN anisotropy as well.

Energy functional (7) contains the second-order derivative
d2�n/dx2 in contrast with that for the ferromagnetic chain,19

which contains the first-order derivative d �n/dx only. This fact
demonstrates an essential difference between the cases α = 0
and α = 1

4 .
The partition function is a functional integral over all

configurations of the vector field on a ring of length L:

Z =
∫

D[�n(x)] exp

(
− E[�n(x)]

T

)
. (8)

It is useful to scale the spatial variable as

ξ = T 1/3x

s2/3
. (9)

Then, the partition function takes the dimensionless form

Z =
∫

D[�n(ξ )] exp

{
−

∫ λ

0
dξ

[
1

8

(
d2�n
dξ 2

)2

− γ

2

(
d �n
dξ

)2

− δn2
z − gnz

]}
, (10)

where

λ = T 1/3L

s2/3
(11)
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is the scaled system length and

γ = (4α − 1)s4/3

T 2/3
, δ = (� − 1)s8/3

T 4/3
, g = hs5/3

T 4/3
(12)

are the parameters of the model scaled by temperature.
As follows from Eq. (10) the partition function and with it

the low-temperature thermodynamics of the F-AF model near
the transition point is governed by three scaling parameters γ ,
δ, and g. The definition of the scaling parameters (12) implies
that we consider the scaling limit when T → 0, α → 1

4 , � →
1, h → 0, but the values of the scaling parameters γ , δ, and g

are finite.
We express the unit vector field through two scalar fields

φ(ξ ) and nz(ξ ),

�n(ξ ) = (
cos φ

√
1 − n2

z, sin φ

√
1 − n2

z,nz

)
, (13)

and the magnetic field is directed along the Z axis. In terms of
the fields nz(ξ ) and φ(ξ ) the partition function takes the form
of the functional integral

Z =
∫

D[nz(ξ )]D[φ(ξ )] exp

{
−

∫ λ

0
W (nz,φ)dξ

}
, (14)

where the energy density W (nz,φ) has a rather cumbersome
form:

W = 1

8

[(
1 − n2

z

)
(φ̈2 + φ̇4) + n̈2

z

1 − n2
z

+ ṅ4
z(

1 − n2
z

)3

− 4nzṅzφ̇φ̈ + 2nzṅ
2
zn̈z(

1 − n2
z

)2 + 2nzn̈zφ̇
2 + 2 + 4n2

z

1 − n2
z

ṅ2
zφ̇

2

]

− γ

2

[
ṅ2

z

1 − n2
z

+ (
1 − n2

z

)
φ̇2

]
− δn2

z − gnz. (15)

Here ṅz, n̈z and φ̇, φ̈ are the first- and the second-order
derivatives of nz and φ with respect to ξ .

If we treat ξ as an imaginary time then partition func-
tion (14) takes the form of a path integral of a quantum particle
with the Euclidean Lagrangian W (nz,φ). Here we notice that
W (nz,φ) comprises the derivatives φ̇ and φ̈ of the field φ(ξ ),
but does not contain explicitly the field φ(ξ ) itself. This allows
us to rewrite partition function (14) in terms of a new field

q(ξ ) = dφ

dξ
, q̇(ξ ) = d2φ

dξ 2
. (16)

The energy density W (nz,φ) contains explicitly the field
nz(ξ ) and its derivatives ṅz and n̈z. The presence of the second-
order derivative requires the use of the special methodology
developed by Ostrogradski28 which allows us to obtain the
Hamiltonian corresponding to the higher gradient Lagrangian.
In the Ostrogradski formalism29 the independent generalized
coordinates are nz and v = ṅz. That is, we treat the derivative
ṅz = v as a new independent variable, so that

v(ξ ) = dnz

dξ
, v̇(ξ ) = d2nz

dξ 2
. (17)

According to this formalism the Lagrangian (15) is replaced
by the equivalent one

L= 1

8

[(
1 − n2

z

)
(q̇2 + q4) + v̇2(

1 − n2
z

) + v4(
1 − n2

z

)3

− 4nzvqq̇ + 2nzv
2v̇(

1 − n2
z

)2 + 2nzv̇q2 + 2 + 4n2
z

1 − n2
z

q2v2

]

− γ

2

[
v2

1 − n2
z

+ (
1 − n2

z

)
q2

]
− δn2

z − gnz − ip(ṅz − v),

(18)

where the Lagrange multiplier p ensures the equality of ṅz

and v. The canonical momenta are p = i ∂L
∂ṅz

, pv = i ∂L
∂v̇

, and

pq = i ∂L
∂q̇

. Then, partition function (14) takes the form written
in terms of three scalar fields q(ξ ), v(ξ ), and nz(ξ ):

Z =
∫

D[nz]D[v]D[q] exp

{
−

∫ λ

0
L(nz,v,q)dξ

}
. (19)

The last term in Eq. (18) is a specific property of the
Ostrogradski methodology and we will pay a special attention
to it because it makes the following quantum Hamiltonian a
non-Hermitian one.

Now we construct the Hamilton function H = ipṅz +
ipvv̇ + ipq q̇ + L, which after replacing momenta by the
corresponding differential operators p̂ = −i ∂

∂nz
, p̂v = −i ∂

∂v
,

and p̂q = −i ∂
∂q

results in the quantum Hamiltonian:

Ĥ = −2
(
1 − n2

z

) ∂2

∂v2
− 2

1 − n2
z

∂2

∂q2

− nz

(
v2

1 − n2
z

+ (
1 − n2

z

)
q2

)
∂

∂v
+ 2nzvq

1 − n2
z

∂

∂q

+ v
∂

∂nz

+ 1

8

(
v2

1 − n2
z

+ (
1 − n2

z

)
q2

)2

− γ

2

(
v2

1 − n2
z

+ (
1 − n2

z

)
q2

)
− δn2

z − gnz. (20)

It is convenient to change variables v, q, nz to new variables
r , ϕ, θ connected by the relations

v = r cos ϕ sin θ, q = r sin ϕ

sin θ
, nz = cos θ. (21)

Then we obtain the Schrödinger equation for the quantum
particle in the form

Ĥ0�n − γ

2
r2�n − g cos θ�n − δ cos2 θ�n = εn�n, (22)

where

Ĥ0 = −2

(
∂2

∂r2
+ 1

r

∂

∂r
+ 1

r2

∂2

∂ϕ2

)

+ 1

8
r4 + r sin ϕ cot θ

∂

∂ϕ
− r cos ϕ

∂

∂θ
(23)

describes the model at the transition point at h = 0. The
last two terms in Eq. (23) make the Hamiltonian to be non-
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Hermitian one. Therefore, we have to consider the transposed
counterpart of Eq. (22):

Ĥ T
0 �n − γ

2
r2�n − g cos θ�n − δ cos2 θ�n = εn�n. (24)

The transposed differential operator Ĥ T
0 has the same form

as Ĥ0, but the sign of the last two terms in Eq. (23) is
changed. This change of sign is equivalent to the change
θ → −θ , which implies that �n(r,θ,ϕ) = �n(r,−θ,ϕ). Then,
the normalization condition for functions �n takes the
form

1

4π

∫ ∞

0
rdr

∫ π

0
sin θdθ

∫ 2π

0
dϕ�n(r,θ,ϕ)�m(r,−θ,ϕ)

= δnm. (25)

As a result of the above manipulations the partition function Z

can be considered as the partition function of quantum model
(22) at a “temperature” 1/λ:

Z =
∑

e−λεn . (26)

In the thermodynamic limit λ → ∞ (λ = s−2/3T 1/3L) only
the lowest eigenvalue of Eq. (22) gives the contribution to
Z. Thus, the free energy of the classical spin model is
determined by the ground-state energy ε0 of the Schrödinger
equation (22). The dependence of the lowest eigenvalue ε0 of
Eq. (22) on the scaling parameters g, γ , and δ determines the
magnetic properties of the system. In particular, the normalized
magnetization is given by

m = −∂ε0

∂g
. (27)

Thus, Eq. (22) is the main result of this paper. In general,
Eq. (22) does not admit analytical solution and should be
solved numerically. However, the limiting cases of high
and low magnetic fields can be studied analytically. In the
following we present both numerical solutions and analytical
expressions for asymptotics.

III. MAGNETIZATION CURVE AT THE
TRANSITION POINT

At first, let us consider the isotropic F-AF model at the
transition point when δ = 0 and γ = 0. For low magnetic
field (g 
 1) the ground-state energy ε0 can be found using
the perturbation theory (PT) in g. The numerical solution of
Eq. (22) for g = 0 shows that the ground-state wave function
does not depend on ϕ and θ ; i.e., it satisfies the equation

−2
∂2�0

∂r2
− 2

r

∂�0

∂r
+ 1

8
r4�0 = ε0�0, (28)

and ε0 = 1.861.
The eigenfunctions of Eq. (22) giving the contribution to

the second order in g have the form

�n = f1n(r) cos ϕ sin θ + f2n(r) cos θ, (29)

where the functions f1n(r) and f2n(r) satisfy the following
system of equations:

−2
∂2f1n

∂r2
− 2

r

∂f1n

∂r
+ 2

r2
f1n + 1

8
r4f1n − rf2n = εnf1n,

(30)

−2
∂2f2n

∂r2
− 2

r

∂f2n

∂r
+ 1

8
r4f2n + rf1n = εnf2n.

Normalization condition (25) transforms for the functions
f1n(r) and f2n(r) to equation

1

3

∫ ∞

0
rdr(f2nf2m − f1nf1m) = δnm. (31)

Further, we calculate the second-order correction to the
ground-state energy in g:

ε = ε0 + g2

9

∑
n

M2
0n

ε0 − εn

, (32)

where M0n is the following matrix element:

M0n =
∫ ∞

0
�0(r)f2n(r)rdr. (33)

The numerical solution of Eq. (30) and the calculation of the
sum in Eq. (32) gives

ε = ε0 − 0.534g2. (34)

Then, the magnetization m at g → 0 is

m = 1.07g + O(g3) (35)

and the zero-field susceptibility is

χ = 1.07s8/3

T 4/3
. (36)

Expression (36) naturally reproduces the result found in
Ref. 23 obtained by another method and confirmed by Monte
Carlo simulations.30 As follows from Eq. (36) the critical
exponent of χ is changed from 2 to 4

3 when α → 1
4 from

the ferromagnetic side.
If we assume that the hypothesis of the universality is valid,

then the susceptibility χ at the transition point for the s = 1
2

F-AF chain at T → 0 is

χ = 0.1681

T 4/3
. (37)

Unfortunately, the exact low-temperature asymptotic of χ

for the s = 1
2 F-AF model at α = 1

4 is unknown. However,
we can compare Eq. (37) with the susceptibility obtained
for this model by the approximate modified spin-wave
method (MSWT) proposed by Takahashi.31 The MSWT gives
χ = 0.099T −4/3.26,30 The comparison of MSWT result with
Eq. (37) shows that the critical exponents of both expressions
are the same although the prefactors are different. In Ref. 30 the
transfer-matrix renormalization group (TMRG) algorithm was
used for the calculation of the low-temperature asymptotic of
χ . The obtained numerical results are not fully consistent with
Eq. (37) and show that the exponent might actually be smaller
than 4/3. However, as pointed out in Ref. 30 the possible
reason of the deviation of the TMRG results from Eq. (37) is
that the obtainable temperatures in the TMRG calculations are
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just not low enough to observe the T −4/3 power law predicted
by Eq. (37).

Now we consider the limit of large g when the magnetiza-
tion is close to saturation. In this limit we expand cos θ near
θ = 0 and scale the variables r and θ as

r = zg−1/8, θ = xg−3/8. (38)

Keeping in Eq. (22) the terms proportional to g1/4 we arrive
at the Schrödinger equation in a form

−2

(
∂2�

∂z2
+ 1

z

∂�

∂z
+ 1

z2

∂2�

∂ϕ2

)
− z sin ϕ

x

∂�

∂ϕ

+ z cos ϕ
∂�

∂x
+ x2

2
� = ε + g

g1/4
�. (39)

Fortunately, the ground-state wave function and the ground-
state energy of Eq. (39) can be found exactly:

�0(x,z,ϕ) = C exp

(
−z2

4
+ zx cos ϕ

2
− x2

2

)
, (40)

ε0 = −g + 2g1/4, (41)

where C is unessential normalization constant.
One can also calculate the next-order correction to the

ground-state energy (41). For this aim we estimate the effect
of the next-order term which was omitted in Eq. (39) and has
the form

g−3/4

(
3z4 − x4

24
+ xz

3
sin ϕ

∂

∂ϕ

)
. (42)

The calculation of the first order in perturbation (42) gives
for ε0(g) the correction proportional to g−1/2:

ε0 = −g + 2g1/4 + 3

4g1/2
. (43)

Then, the asymptotics for the magnetization and the suscepti-
bility for h � T 4/3 are

m = 1 − 1

2g3/4
+ 3

8g3/2
+ O(g−9/4), (44)

χ (h) = 3T

8h7/4s1/4

[
1 − 3

2

T

h3/4s5/4
+ O

(
T 2

h3/2s5/2

)]
. (45)

It is interesting to compare the leading terms of this
expansion with the spin-wave expansion of the magnetization
for the spin-s quantum F-AF chain at α = 1

4 . We have checked
that this expansion reproduces Eq. (44). The second term in
Eq. (44) corresponds to the result of the linear spin-wave
theory, but the third one includes the spin-wave interaction
effect and, therefore, the coincidence is not trivial. Certainly,
we cannot prove that both expansions coincide in all orders
in small parameter g−3/4. Nevertheless, the coincidence of the
leading terms of m(g) for the quantum and the classical model
gives a promise that the universality is valid at the transition
point of the F-AF model.

We complete this subsection with the results for the spin
correlation function. It can be shown23 that the spin correlation
function 〈Sz(0)Sz(l)〉 has the form

〈Sz(0)Sz(l)〉 =
∑

〈�0|�n〉2 exp[−T 1/3(εn − ε0)l]. (46)

FIG. 1. Magnetization curves m(g) at γ = 0 for some values of
scaled anisotropy δ. The case δ = 0 corresponds to the transition
point.

As follows from Eq. (46) the spin correlation function
exponentially decays on long distances l � T −1/3, and the
correlation length is governed by the lowest eigenstates of
Eq. (22). In the case of absence of the magnetic field (g = 0)
all the eigenvalues εn are real and several lowest levels were
calculated in Ref. 23, which gives the asymptotic for the
correlation length l0 = 1.04T −1/3 at g → 0.

In the high-field limit (g � 1) there are three lowest excited
states having equal real parts of their eigenvalues:

ε1 = −g + 4g1/4 + O(g−1/2),
(47)

ε2,3 = −g + 2g1/4(2 ± i) + O(g−1/2).

According to Eq. (46) the presence of the imaginary part in
eigenvalues (47) causes the oscillations on the background
of the exponential decay of the correlation function. The
imaginary part of the eigenvalues determines the period of
the oscillations while the real part determines the correlation
length. According to Eqs. (43) and (47) the asymptotic of the
correlation length in the high-field limit is

l0 = 1

2s5/12h1/4
. (48)

So we see that the correlation length is defined by the
temperature for h 
 T 4/3 and by the magnetic field when
h � T 4/3. We note that the ratio of the correlation lengths
in these limits is proportional to g1/4. The crossover between
these two regimes occurs at g ≈ 1.

In general, the solution of Eq. (22) and the computation
of ε0(g) and m(g) has been obtained numerically. The
dependence m(g) at the transition point is shown by the thick
solid line in Fig. 1.

IV. MAGNETIZATION CURVE IN THE HELICAL PHASE

In this section we consider the behavior of the magnetiza-
tion in the helical phase in the vicinity of the transition point,
when α > 1

4 , but the anisotropy is zero δ = 0. For α > 1
4 the

ground state has the helical type of long-range order (LRO)
with the wave number kh = cos−1(1/4α). The saturation field
hs at α close to 1

4 is hs = s(4α − 1)2. The ground-state
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magnetization is given by m = h/hs for h � hs and m = 1
for h > hs . At finite temperature the helical LRO is destroyed
by thermal fluctuations and thermodynamic quantities have
singular behavior at T → 0.

The behavior of the system in the case of absence of the
magnetic field was studied in detail in Ref. 27. It was shown
that with the increase of the temperature the gapless excitations
over the helical ground states (spin waves) smear the δ peaks
of the static structure factor at k = ±kh and shift the peaks
to k = 0. Finally, at Tc = 0.925γ 3/2 the maximum of the spin
structure factor reaches k = 0 defining the Lifshitz boundary,
so that the helical type of the spin correlations for T > Tc

disappears.
Most likely, the hypothesis of the universality of the

function m(g) breaks down for α > 1
4 because the excitations

above the ground state are different in the quantum and
in the classical F-AF chain. Nevertheless, as was shown in
Ref. 23 some peculiarities of the low-temperature behavior of
the classical model at α > 1

4 is qualitatively similar to that
for the quantum s = 1

2 chain. For example, the temperature
dependence of the zero-field susceptibility is in a qualitative
agreement with the numerical data for the quantum s = 1

2
model and is in accord with the experimental data for the real
edge-sharing compounds.

The finding of the magnetization in the helical phase
reduces to the solution of Eq. (22) for γ > 0 and can
be analyzed in full analogy with the case γ = 0. For low
magnetic field (g → 0) the magnetization is m ∼ g and can
be represented as

m = h

hs

G(γ ). (49)

The function G(γ ) is found from the solution of Eq. (30)
where the terms − 1

2γ r2f1(2)n are added to the first (the second)
equation of (30). In fact, G(γ ) coincides with the normalized
zero-field susceptibility obtained before in Ref. 23. Therefore,
we do not present this function here. We note only that G(γ )
vanishes at γ → ∞, tends to finite value at γ → 0, and has a
maximum at γ � 2.2.

In the high magnetic field limit we use rescaling (38) for
Eq. (22) and keep the leading terms. The obtained equation
repeats Eq. (39) with the additional term − 1

2

√
hs/hz2�. The

ground-state wave function of this equation has a form similar
to Eq. (40),

� = C exp
(−az2 + 1

2zx cos ϕ − 2ax2
)
, (50)

and the ground-state energy is

ε0 = −g + 8ag1/4, (51)

where

a = 1
4

√
1 − √

hs/h. (52)

Equation (50) is valid for high fields when h > hs . The
asymptotic of the magnetization curve in this limit has the
form

m = 1 − (hs/h)3/4

2γ 3/2
√

1 − √
hs/h

. (53)

FIG. 2. Magnetization as a function of h/hs for several values of
parameter γ for isotropic case (δ = 0).

As follows from Eq. (53) the temperature-dependent correc-
tion to m = 1 at h � hs is proportional to γ −3/2.

The magnetization curves for several values of γ as a
function of h/hs are shown in Fig. 2 together with the ground-
state magnetization (γ → ∞). The zero-field susceptibility
defines the slopes of the magnetization curves for small h/hs

and as follows from Fig. 2 this slope can be both larger and
smaller than the ground-state value. Such behavior of the
magnetization follows from the nonmonotonic dependence of
G on γ .

V. EASY-AXIS ANISOTROPY

Up to now we have considered the isotropic F-AF chain.
At the same time it is important to study the influence of the
anisotropy of exchange interactions on the low-temperature
thermodynamics. In this subsection we pay attention mainly
to the dependence of the zero-field susceptibility on the
anisotropy at α = 1

4 .
At first, we briefly review the effect of the anisotropy on

the susceptibility for the classical and quantum ferromagnetic
model (α = 0). At T → 0 and in the scaling limit the
magnetization of the classical ferromagnetic chain is given by
Eq. (27), where ε0 is the lowest eigenvalue of the equation:19,20

−1

2

d2�

dθ2
− 1

2
cot θ

d�

dθ
− δF cos2 θ� − gF cos θ� = ε�.

(54)

In this equation δF = (� − 1)s4/T 2 and gF = s3h/T 2 are the
scaling parameters.

To find the susceptibility in the limit δF 
 1 and gF 
 1
we can use the PT in V = −δF cos2 θ − gF cos θ . At V = 0
the eigenfunctions of Eq. (54) are the Legendre polynomials
Pl(cos θ ) with the eigenvalues εl = l(l + 1)/2. The PT in the
lowest orders in V gives

ε0 = −δF

3
− g2

F

3
− 44g2

F δF

135
. (55)
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Then, according to Eq. (27) the zero-field susceptibility in the
limit of weak anisotropy δF → 0 (� − 1 
 T 2) is

χ = 2s4

3T 2

(
1 + 44s4(� − 1)

45T 2

)
. (56)

In the opposed limit δF → ∞ and gF = 0 Eq. (54) has two
almost degenerated lowest eigenvalues corresponding to the
states with even and odd parity with respect to exchange θ ↔
(π − θ ). The tunnel splitting between these states can be found
with the exponential accuracy in the WKB approximation:32

�ε ∼ exp(−2
√

2δF ). The term (−gF cos θ ) in Eq. (54) has a
nonzero matrix element between the states with even and odd
parities, so that the contribution to the second-order PT in gF

is given by

ε0 ∼ −g2
F exp(2

√
2δF ) (57)

and the zero-field susceptibility is

χ ∼ 1

T 2
exp

(
�E

T

)
, (58)

where �E = 2s2√2(� − 1).
As follows from Eq. (58) the susceptibility diverges

exponentially at T → 0 and the value of the thermal gap
�E is equal to the kink energy (or one-half of the energy
of the large soliton) of the weakly anisotropic ferromagnetic
chain. As is known33 the soliton energy coincides with the
energy of the multimagnon bound states of the quantum
anisotropic ferromagnetic chain. It is interesting to note that the
susceptibility of the easy-axis anisotropic s = 1

2 ferromagnetic
chain found on the basis of the Gaudin formalism in Ref. 34
behaves at T → 0 as χ ∼ exp(�E/T )/T and �E is the same
as given in Eq. (58). This fact manifests the close relation
between the magnetic properties of the quantum and the
classical anisotropic ferromagnetic chains.

We will show that this resemblance remains in the F-AF
model at the critical point α = 1

4 . For example, it was shown by
us in Refs. 26,36 that the energies of multimagnon bound states
in the quantum model and the energy of large classical solitons
at α = 1

4 are both proportional to (� − 1)3/4 although the
numerical coefficients are different. We have also shown26 that
the susceptibility of the quantum s = 1

2 F-AF model diverges at
T → 0 exponentially; i.e., χ ∼ exp(�E/T ) and the thermal
gap �E equals one-half of the energy of the multimagnon
complexes. We will show below that the susceptibility of the
classical model at δ � 1 has similar exponential behavior and
the corresponding thermal gap is the classical kink energy.

Similar to the pure ferromagnetic chain the calculation of
the zero-field susceptibility reduces to the computation of the
ground-state energy of Eq. (22) in the second order in V =
−g cos θ . Then the susceptibility can be represented as χ =
2(s2/T )4/3f (δ) where

f (δ) =
∑
n�=0

〈�0| cos θ |�n〉2

εn − ε0
(59)

and �n and εn are the eigenfunctions and the eigenvalues of
Eq. (22) at g = 0.

It is convenient to introduce the normalized suscep-
tibility χ̃ = (� − 1)χ and the normalized temperature

FIG. 3. Dependence of two lowest eigenvalues of Eq. (22) on the
normalized temperature T̃ = T/s2(� − 1)3/4 at γ = g = 0.

T̃ = T/s2(� − 1)3/4 (T̃ = δ−3/4), so that χ̃ is a function
of T̃ only. The function χ̃ (T̃ ) can be found explicitly in
the limits of large and small values of T̃ (at small and
large δ correspondingly). For high temperatures T̃ � 1 the
states giving the contributions to the sum in Eq. (59) are
separated from the ground state by finite gap and the numerical
calculation of this sum gives

χ̃ = 1.07T̃ −4/3 + 0.87T̃ −8/3. (60)

The calculation χ̃(T̃ ) for small T̃ is more complicated. At
T̃ → 0 (δ → ∞) we can expand the term δ cos2 θ up to θ2

in the Schrödinger equation (22). Then the ground-state wave
function has a form similar to Eq. (40) and the energy ε0 =
−T̃ −4/3 + 25/4T̃ −1/3. Further, we can compute perturbative
corrections to ε0 from omitted anharmonic terms to obtain the
ground-state energy in a form

E0 = ε0 +
∑

anT̃
n+2/3. (61)

If we expand the term δ cos2 θ near the second minimum
θ = π we would obtain a result identical to Eq. (61), so that
we have two degenerated states. But there is a nonperturbative
tunnel splitting which is not captured by the PT. The splitting
is exponentially small at T̃ → 0 as demonstrated in Fig. 3. On
the other hand, these quasidegenerated states have a nonzero
matrix element in Eq. (59) and, therefore, the splitting between
them determines the behavior of χ̃ at T̃ → 0.

The most convenient way to evaluate this splitting is the
calculation of the original functional integral (14). Certainly,
the exact calculation of this integral is impossible and,
therefore, we use a semiclassical approximation. In this
approximation the functional integral (14) is represented as
the sum of the contributions of the classical paths in Z

minimizing the Euclidean action and the paths which are
close to the classical ones. The minimization of the energy
functional W (θ,ϕ) [Eq. (15)] gives ϕ = 0 and the following
Euler equation for θ (ξ ):

1

4
θ

′′′′ − 3

2
θ

′′
θ

′2 + 1

T̃ 4/3
sin(2θ ) = 0. (62)
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FIG. 4. Instanton solution of Eq. (62) with boundary conditions:
θ (−∞) = 0, θ (∞) = π .

We note that there are a few classical solutions of this Euler
equation. Two of them θ = 0 and θ = π correspond to trivial
ferromagnetic configurations. A systematic expansion around
these saddle points is equivalent to a purely perturbation
expansion of the eigenvalues of the Schrödinger equation (22).
The corresponding contribution to the partition function is
Z(0) = exp(−λE0) where E0 is given by Eq. (61) and λ is
the scaled system length (11). The tunnel splitting is given
by an instanton contribution to the functional integral (14).35

The classical solution of the Euler equation corresponding
to the instanton satisfies the boundary condition: θ (−∞) =
0, θ (∞) = π or θ (−∞) = π , θ (∞) = 0. This solution of
the Euler equation can be found numerically. Actually, it
coincides with the solution for the kink excitation in the
F-AF chain found by us in Ref. 36. The dependence θ (ξ )
in this solution is shown in Fig. 4. According to the result of
Ref. 36, the classical action corresponding to the instanton is
S0 = 2/T̃ . The summation of the contributions to Z using the
semiclassical approximation can be performed in the standard
way.35 As a result, the partition function is represented in a
form

Z = Z(0) + Z(2) + Z(4) + · · · , (63)

where Z(0) is defined above, Z(2) is the instanton–anti-
instanton contribution (IA), Z(4) is the IAIA contribution, and
so on.

Using the usual approximation of the semiclassical method
(in particular, neglecting instanton-instanton interactions) we
have

Z(2) = λ2e−2S0

2
e−λE0 , Z(4) = λ4e−4S0

4!
e−λE0 , (64)

and so on [here λ is the scaled system length (11)].
Summing (63) we arrive at

Z = e−λE0 cosh(λe−S0 ). (65)

On the other hand, the partition function at λ → ∞ can be
represented as

Z = e−λEs + e−λEa , (66)

where Es and Ea are the energies of the lowest states with even
and odd parity with respect to exchange (r,θ ) ↔ (−r,π − θ ).
Then, Es = E0 − e−S0 and Ea = E0 + e−S0 . The tunnel split-
ting is

�E = Es − Ea = 2 exp(−2/T̃ ). (67)

Then the susceptibility at T̃ → 0 to the exponential accuracy
is given by

χ̃ ∼ exp

[
2s2(� − 1)3/4

T

]
. (68)

The thermal gap in Eq. (68) is the kink energy of the weakly
anisotropic classical F-AF chain. It is interesting to compare
χ̃ [Eq. (68)] with the susceptibility of the quantum F-AF
model at α = 1

4 .26 The susceptibility for both models shows
the exponential dependence with the thermal gap proportional
to (� − 1)3/4. If we use Eq. (68) for the s = 1

2 case we
find that the thermal gap is 1

2 (� − 1)3/4 while in fact it is
0.35(� − 1)3/4;26 i.e., the numerical coefficients at (� − 1)3/4

are slightly different.
Equations (60) and (68) give asymptotics of χ̃ (T̃ ) for small

and large values of T̃ . In the general case the function χ̃ (T̃ )
has been calculated numerically and the dependence χ̃ (T̃ ) is
shown in Fig. 5 together with asymptotics of χ̃ for small and
large T̃ . As can be seen from Fig. 5 the dependence χ̃ on T̃

is characterized by two types of behavior: χ̃ is proportional
to T̃ −4/3 at T̃ � 1 and grows exponentially at T̃ → 0. The
crossover between the two regimes occurs at T̃ ∼ 1.

The calculation of the susceptibility of the anisotropic F-AF
model can be expanded to the case γ > 0. We do not dwell
on details of these calculations. We note only that χ̃ becomes
a function of T̃ and of a parameter μ = (4α − 1)/

√
� − 1.

χ̃ (μ,T̃ ) as a function of T̃ has a minimum for μ > μ0 � 1 and
is finite at T̃ → 0. The normalized susceptibility χ̃ diverges
at T̃ → 0 for μ < μ0. The line (4α − 1) = μ0

√
� − 1 can be

identified with the boundary between the ferromagnetic and
the helical phase.

FIG. 5. Dependence of the normalized magnetic susceptibility
χ̃ = (� − 1)χ on the normalized temperature T̃ = T/s2(� − 1)3/4

(thick solid line). Dashed and thin solid lines are asymptotics of χ̃ at
T̃ → ∞ and T̃ → 0 given by Eqs. (60) and (68), correspondingly.
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Finally we give the results for the magnetization of the
anisotropic F-AF model at α = 1

4 . According to Eqs. (60) and
(68) m(g) at g → 0 is

m(g) = 1.07g(1 + 0.81δ), δ 
 1,
(69)

m(g) ∼ g exp(2δ3/4), δ � 1.

The behavior of the magnetization in the high magnetic field
limit is obtained by analogy with that for the isotropic case
[see Eq. (44)]. Then m(g) at g � 1 is

m = 1 − 1

2(g + 2δ)3/4
+ O((g + δ)−3/2). (70)

The magnetization curves m(g) for several values of δ obtained
by the numerical solution of Eq. (22) is shown in Fig. 1. Its
behavior in the limits g 
 1 and g � 1 agrees with Eqs. (69)
and (70).

VI. CONCLUSIONS

We have studied the low-temperature magnetic properties
of the classical anisotropic F-AF chain in the vicinity of the
transition point from the ferromagnetic to the helical ground
state. This means that the frustration parameter α = J2/|J1|
is close to its critical value α = 1

4 and the anisotropy of the
exchange interaction (� − 1) is weak. In the vicinity of the
transition point the nearest spins in the ground state are directed
almost (or even exactly) parallel to each other. Therefore, in the
low-temperature limit when the thermal fluctuations are weak,
we can use the continuum approximation and represent the
partition function as a functional integral over the spin vector
field. In the obtained energy functional the model parameters
(α − 1

4 ), (� − 1) and the magnetic field h are scaled by the
temperature and form three independent scaling parameters γ ,
δ, and g defined in Eq. (12). This implies that we considered
the scaling limit when α → 1

4 , � → 1, h → 0, and T → 0,
but the values of the scaling parameters γ , δ, and g are finite
and govern the low-temperature thermodynamics of the F-AF
model near the transition point.

The derived functional integral for the partition function
was treated as a path integral of the quantum mechanics.
The peculiarity of this path integral is that the Lagrangian
contains the second-order derivative. To handle this problem
we used the special Ostrogradski prescription, which allowed
us to obtain the quantum Hamiltonian corresponding to such
path integral in a special unusual form. Then the dependence
of the lowest eigenvalue of the Hamiltonian on the scaling
parameters determines the magnetization curves of the system.
The eigenvalue problem has been solved numerically and
explicit expressions for the magnetization were obtained in
the limits of low and high magnetic fields.

It is known19 that the magnetization curve for the pure
ferromagnetic chain has a universal form when plotted against
the scaled magnetic field gF = s3h/T 2, and this curve is valid
for any value of spin s including the classical limit s → ∞.
We suppose that such universality remains for the F-AF
model at the transition point against the scaling parameter
g = hs5/3/T 4/3. If this is the case the obtained magnetization
curves for the classical model can be easily recalculated to the
quantum spin case. To validate this hypothesis one needs to
compare the obtained classical results with the magnetization
of the s = 1

2 F-AF model. Unfortunately, the exact thermo-
dynamics of the latter model is unknown. Nevertheless, there
are two indirect arguments supporting this conjecture. The
first is that the obtained critical exponent 4

3 in the temperature
dependence of susceptibility at the transition point coincides
with that obtained in the MSWT method. The second argument
is that three leading terms of the spin-wave expansion of the
magnetization of the quantum model coincide with those for
the classical model. Certainly these two facts do not prove
the proposed hypothesis and the question about its validity
remains open.30 In this respect the numerical calculations of
the magnetization as a function of the magnetic field at T → 0
for s = 1

2 and s = 1 are very desirable.
Probably, the hypothesis of the universality of the function

m(g) (if any) breaks down for α > 1
4 because the excitations

above the ground state are different in the quantum and
in the classical F-AF chain. Nevertheless, as was shown in
Ref. 23 some peculiarities of the low-temperature behavior of
the classical model at α > 1

4 is qualitatively similar to that
for the quantum s = 1

2 chain. For example, the temperature
dependence of the zero-field susceptibility is in qualitative
agreement with the numerical data for the quantum s = 1

2
model and is in accord with the experimental data for the real
edge-sharing compounds.

We have studied the influence of the easy-axis anisotropy
on the behavior of the susceptibility at the transition point. It is
shown that even weak anisotropy essentially changes χ . In the
low-temperature limit the susceptibility diverges exponentially
in contrast with the isotropic case where the divergence is
of a power-like type. We note that such behavior of the
susceptibility takes place in the quantum s = 1

2 F-AF chain26

and the corresponding thermal gap has the same functional
form as the classical one. This fact confirms the close
relation between the low-temperature magnetic properties of
the quantum and classical F-AF model in the ferromagnetic
part of the phase diagram.
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