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Spin waves in a skyrmion crystal
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We derive the spectrum of low-frequency spin waves in skyrmion crystals observed recently in noncentrosym-
metric ferromagnets. We treat the skyrmion crystal as a superposition of three helices whose wavevectors form
an equilateral triangle. The low-frequency spin waves are Goldstone modes associated with displacements of
skyrmions. Their dispersion is determined by the elastic properties of the skyrmion crystal and by the kinetic
terms of the effective Lagrangian, which include both kinetic energy and a Berry-phase term reflecting a nontrivial
topology of magnetization. The Berry-phase term acts like an effective magnetic field, mixing longitudinal and
transverse vibrations into a gapped cyclotron mode and a twist wave with a quadratic dispersion.
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I. INTRODUCTION

Baby skyrmions are magnetic textures conjectured to exist
in two-dimensional Heisenberg ferromagnets.1 Like domain
walls and vortices, skyrmions are stable for topological
reasons. A localized magnetic texture, parametrized by the
unit vector field m̂(r), has a quantized topological charge

n =
∫

d2r
m̂ · (∂xm̂ × ∂ym̂)

4π
. (1)

A state with a single skyrmion (n = ±1) cannot be continu-
ously deformed into a uniform ground state (n = 0). While
skyrmions are metastable excitations in the pure Heisenberg
model, the presence of additional interactions may lower their
energy cost and create a ground state with a finite concentration
of skyrmions. Bogdanov and collaborators pointed out that a
Lifshitz invariant m̂ · (∇ × m̂) in the free energy may stabilize
skyrmion-like line defects in a three-dimensional ferromagnet
with easy-axis anisotropy.2–4 Such a term is allowed in a crystal
without the inversion symmetry.

Recent experiments5–8 have revealed ordered arrays of
skyrmion lines in three-dimensional MnSi and Fe1−xCoxSi
and arrays of skyrmions in thin films of Fe0.5Co0.5Si and FeGe.
A common theme of these materials is the lack of the inversion
symmetry. Thin films are a particularly favorable environment
for “skyrmion crystals” (SkX). The stabilizing factor is likely
dipolar interactions, which tend to favor inhomogeneous states
such as the closely related bubble phase in a two-dimensional
Ising ferromagnet.9

The dynamics of magnetization in the SkX phase is an
interesting question in its own right. Zang et al. approached
it by treating skyrmions as point-like particles.10 Because
of a nontrivial topology of a skyrmion, its kinematics are
similar to that of a charged particle in a uniform magnetic
field. Moving skyrmions are subject to a Lorentz-like force
that is proportional to the skyrmion velocity and is thus more
important than inertia in the limit of slow motion. (A similar
effect is well known for magnetic vortices.11) Like a Wigner
crystal in magnetic field,12,13 an SkX exhibits a quadratic
phonon dispersion ω ∼ q2/2m.

In the SkX phase, skyrmions form a dense lattice with the
distance between skyrmions comparable to their size.7,8 In this
case, treating skyrmions as point particles may not be justified.
From a complementary perspective, the SkX phase is a

spin-density wave (SDW) depicted in Fig. 1. It is a super-
position of uniform magnetization parallel to the applied field
H and three phase-locked helices whose wavevectors,

k0a = k0(1,0,0), k0b = k0(−1/2,
√

3/2,0),
(2)

k0c = k0(−1/2,−
√

3/2,0),

form an equilateral triangle in the plane normal to H.5 In the
vicinity of the Curie point, higher harmonics are suppressed
because they are not soft modes. This makes the SDW picture
a more accurate starting point. In light of that, we set out to
characterize low-frequency excitations of the SkX phase in
the SDW limit. The calculation of the spin-wave spectrum
is nontrivial even for a single helix.14,15 To make the paper
self-contained, we present a simple derivation of the spin-wave
spectrum in a single helix for a three-dimensional ferromagnet
in Sec. II. We then discuss the case of three coupled helices in
Sec. III.

The results can be briefly summarized as follows. The
SkX (Fig. 1) breaks the symmetry of translations in the xy

plane; translations in the z direction remain a good symmetry.
Thus low-energy excitations of the crystal are associated with
displacements in the xy plane, u(r) = (ux,uy,0). The potential
energy of these displacements is expected to be the same as
that of an isotropic two-dimensional (columnar) solid,

U =
∑
i=x,y

∑
j=x,y

(
λ

2
uiiujj + μuijuij

)
+ B

(
∂2
z u

)2

2
. (3)

Here uij = (∂iuj + ∂jui)/2 are components of the strain
tensor in the xy plane, and λ and μ are the elastic Lamé
coefficients.16 Displacements inhomogeneous along the z axis
bend the crystal, hence an elastic energy proportional to
(∂2

z u)2 with a bending modulus B. The dispersion of elastic
waves depends on the kinetic terms in the Lagrangian. By
analogy with ordinary solids, one might expect a kinetic-
energy term ρ(u̇)2/2, which is indeed present. Excitations in
a columnar solid with these properties would be longitudinal
and transverse sound waves with a linear dispersion for waves
propagating in the plane of the crystal and a quadratic one for
waves propagating normal to the plane. However, the nontrivial
topology of magnetization in a unit cell adds a Berry-phase
term Bu̇xuy to the Lagrangian of the SkX. Because this term
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FIG. 1. Distribution of magnetization M(r) of a skyrmion crystal
in a plane z = const with magnetic field applied normal to that plane.
The crystal is a superposition of three helices with wavenumbers
given by Eq. (2). The vector plot shows components Mx and My ;
shades of gray encode Mz (arbitrary units).

is linear in the velocity, it dominates over the kinetic energy in
the limit of slow motion. The resulting Lagrangian is

L = Bu̇xuy + ρ(u̇)2

2
−

∑
i=x,y

∑
j=x,y

(
λ

2
uiiujj + μuijuij

)

− B
(
∂2
z u

)2

2
. (4)

At the lowest frequencies, transverse and longitudinal spin
waves are mixed and exhibit a quadratic dispersion ω ∼
q2/2m, in agreement with the result obtained in the limit of
point-like skyrmions.10

With the sole exception of the Berry-phase term, the
coupling constants of the SkX are set by the physics of a
single helix. It is interesting that the anharmonic coupling that
locks the phases of the helices does not enter the Lagrangian
(4). This coupling constant sets an upper limit of frequencies
for which the three locked helices move together as a solid.

II. SINGLE HELIX

A. Static solutions

We consider an isotropic ferromagnet in three dimensions
with the magnetization field M(r). The Landau free-energy
functional is

F [M(r)] =
∫

d3r[A(∇M)2 + aM2 + cM4 + DM · (∇ × M)],

(5)

where A is the exchange coupling and (∇M)2 ≡∑
i

∑
j (∂iMj )2. The Dzyaloshinskii-Moriya coupling DM ·

(∇ × M) breaks the inversion symmetry and is only allowed
in magnets with a noncentrosymmetric lattice.

The quadratic part of the free energy is diagonalized by
Fourier transform,

F [M(r)] =
∑

k

Mα∗
k �

αβ

k M
β

k , (6)

ê1

ê2

ê3

ê1

ê2

ê3
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FIG. 2. The global frame {n̂1,n̂2,n̂3} and the local frame
{ê1,ê2,ê3} of a single helix, Eq. (8).

with a coupling matrix

�
αβ

k = (a + Ak2)δαβ − iDεαβγ kγ . (7)

Its lowest eigenvalue, a + Ak2 − Dk, is minimized by
wavenumber k0 = D/2A. When a drops below the critical
value ac = D2/4A, the ground state is a helical SDW,

M(r) = M0[n̂1 cos (k0 · r) + n̂2 sin (k0 · r)], (8)

where k0 = k0n̂3 and M2
0 = (ac − a)/(2c). The unit vectors

{n̂1,n̂2,n̂3} are mutually orthogonal and form a right-handed
triplet. We will also find it convenient to use a local frame set
by the unit vectors {ê1,ê2,ê3}, where

ê1 = n̂1 cos (k0 · r) + n̂2 sin (k0 · r),
(9)

ê2 = −n̂1 sin (k0 · r) + n̂2 cos (k0 · r), ê3 = n̂3.

Here ê1 is parallel to the local direction of magnetization in
equilibrium, the pair (ê1,ê2) defines the plane of the helix, and
ê3 is parallel to its wavevector k0. The orientations of the local
and global frames are shown in Fig. 2.

B. Spin waves

Small deviations from equilibrium can be described by two
angles parametrizing twists of magnetization in the plane of
the helix (α) and out of the plane (β):

M/M0 = ê1[1 − (α2 + β2)/2] + αê2 + β ê3. (10)

For convenience, we align the coordinate axes x, y, and z with
the vectors n̂1, n̂2, and n̂3. To the second order in the twist
angles, the energy cost is

U = DM2
0 (−∂x sin k0z + ∂y cos k0z)β (11a)

+AM2
0

[
(∇α)2 + (∇β)2 + k2

0β
2
]

(11b)

+DM2
0 [β(∂x cos k0z + ∂y sin k0z)α

−α(∂x cos k0z + ∂y sin k0z)β]. (11c)

The linear term [Eq. (11a)] is a total divergence that reduces
to a boundary term upon integration over the volume. It does
not influence the physics in the bulk and can be ignored.

The dynamics of spin waves can be obtained by construct-
ing a Lagrangian for the fields α and β. The kinetic term comes
from the Berry phase for a spin, SB = S

∫
(cos θ − 1)φ̇ dt .17

Measuring the inclination angle θ from the local magnetization
axis ê1 yields α = θ cos φ and β = θ sin φ for infinitesimal
α and β, so that the Berry-phase term in the Lagrangian
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becomes LB = J (α̇β − αβ̇)/2, or equivalently J α̇β, where
J = M0/γ is the density of angular momentum and γ is the
gyromagnetic ratio. The resulting Lagrangian is

L = LB − U = J α̇β − AM2
0

[
(∇α)2 + (∇β)2 + k2

0β
2
]

− 2DM2
0 β(∂x cos k0z + ∂y sin k0z)α. (12)

The Euler-Lagrange equations of motion are

−[
J ∂t + 2DM2

0 (∂x cos k0z + ∂y sin k0z)
]
β = 2AM2

0 ∇2α,

(13a)[
J ∂t + 2DM2

0 (∂x cos k0z + ∂y sin k0z)
]
α

= 2AM2
0

(∇2β − k2
0β

)
. (13b)

The equations, though linear, are complicated by the presence
of oscillatory terms reflecting the breaking of the translational
symmetry by the helix. Simple closed-form solutions can only
be obtained for waves propagating along the direction of the
helix n̂3, α = ᾱ cos (ωt − q||z), β = β̄ sin (ωt − q||z), with the
dispersion

ω = (
2AM2

0 /J
)√

k2
0q

2
|| + q4

||. (14)

For short wavelengths q|| � k0, we recover the quadratic
dispersion of magnons in a Heisenberg ferromagnet. For
wavelengths longer than the pitch of the helix, the dis-
persion becomes linear, ω ∼ sq||, with the wave velocity
s = 2AM2

0 k0/J = γM0D. It is worth noting that the wave
velocity is independent of the exchange coupling A.

C. Long-wavelength approximation

Further progress can be made by analyzing spin waves in the
long-wavelength limit. The helical modulation mixes waves
with wavevectors q and q ± k0, but the effects of the mixing
can be controlled in the limit q � k0. As usual, we expect
that low-frequency waves are associated with the generators of
broken symmetries, in this case the global rotational symmetry
SO(3) and translations along the helix axis n̂3. Zero modes,
which leave the energy of the system invariant, can also be
obtained by requiring that the first variation of energy vanish:
δ
∫
U dV = 0. The general solution is an infinitesimal global

rotation parametrized by three angles {φi} about the global
axes {n̂i}:

α = −φ1k0y + φ2k0x + φ3, β = φ1 sin k0z − φ2 cos k0z.

(15)

Note that φ3 can also be viewed as a translation of the helix
through distance −φ3/k0 along its axis n̂3. Although there are
three parameters describing an infinitesimal global rotation,
only one of them—φ3—is associated with a Goldstone mode.
Radzihovsky and Lubensky18 pointed out that the other two
modes become “massive” via a Higgs-like mechanism similar
to that in smectics A.19

The explicit form of the zero modes (15) shows that soft
modes of the helix are situated near wavevectors 0 and k0.
We therefore focus on the respective Fourier components of
α and β:

α(r) = α0 + α1 cos k0z + α2 sin k0z,
(16)

β(r) = β0 + β1 cos k0z + β2 sin k0z,

where fields αi(r) and βi(r) vary slowly in space. We express
the Lagrangian (12) in terms of these. After averaging over
spatial regions large compared to the helix period, oscillatory
terms such as cos 2k0z vanish and we obtain

L = α̇0β0 − (∇α0 + β)2 − β2
0 − (∇β)2

2
(17a)

+ α̇ · β

2
− (∇β0)2 − α2

2
− (∇α)2

2
+ 2α · ∇β0

+ α · ∇ × α

2
+ β · ∇ × β

2
. (17b)

Here we introduced vectors α = (α1,α2,0) and β =
(β1,β2,0) and switched to natural units,

length: 1/k0, time: J /AM2
0 k2

0, energy: AM2
0 /k0. (18)

The term (∇β)2 is understood as (∇β1)2 + (∇β2)2.
The low-frequency dynamics of the soft mode α0 is

determined by the terms displayed in Eq. (17a). The rest of the
terms (17b) provide corrections containing higher powers of
the gradients and can be safely dropped in the long-wavelength
limit.

Integrating out the hard field β0 with the aid of its equation
of motion β0 = α̇0/2 generates a “kinetic energy” for the soft
mode α̇2

0/4. At low frequencies and long wavelengths, the
“gauge field” β follows the gradient of the “Higgs field” α0

so that β ≈ −∇⊥α0, where ∇⊥ = (∂x,∂y,0) is the transverse
part of the gradient. Integrating out β yields the following
Lagrangian for the soft mode α0:

L = α̇2
0

4
− (∇||α0)2 − (∇2

⊥α0)2

2
. (19)

Here ∇|| = ∂z is the longitudinal part of the gradient.
Low-frequency spin waves are slow twists of the magne-

tization in the helix plane described by the “Higgs field” α0

(Fig. 3). Twists out of the plane, described by the “gauge field”
β, adjust to them as needed. Alternatively, the spin waves can
be viewed as displacements of planes of constant phase of the
helix along its propagation direction n̂3,

u(r) = −α0(r)/k0. (20)

Waves propagating along the helix direction are regular
phonons, with the energy density (∇||α0)2. Waves propagating
along the planes of constant phase are flexural modes, with
a much lower energy density (∇2

⊥α0)2/2. This results in a
strongly anisotropic dispersion. With the units of length and
time restored, we have

ω = (
2AM2

0 /J
)√

k2
0q

2
|| + q4

⊥/2. (21)

This expression agrees with the dispersion for the longitudinal
direction, Eq. (14), in the long-wavelength limit.

III. SKYRMION CRYSTAL

A. Three coupled helices

The skyrmion-crystal phase is realized in the vicinity of the
critical point in an applied magnetic field H.5 The field induces
a finite uniform magnetization M = χH. In its presence, the
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FIG. 3. (Color online) Spin waves in a helical state. Left: a helix in equilibrium. The helix wavevector k0 is vertical. Solid red and dashed
green lines are planes of constant phase k0z = 2πn and k0z = 2π (n + 1/2). Center: a spin wave with the propagation vector q parallel to k0.
Right: a spin wave with the propagation vector q perpendicular to k0. Planes of constant phase have a vertical displacement given by Eq. (20).

quartic term in the free energy [Eq. (5)] generates an effective
cubic term

U3 = 4c (M · M)(M · M), (22)

where the order parameter M contains only soft modes with
wavenumbers near k0 and excludes the uniform component
of magnetization. By the standard argument,5,16,20 the cubic
term favors a magnetic state that is a superposition of three
helices [Eq. (8)] whose wavevectors k0a , k0b, and k0c form
an equilateral triangle orthogonal to the applied field H. (It
should be noted that the helix amplitude M0 need not be the
same as in the case of a single helix. Here we treat M0 as a
phenomenological parameter that determines the energetics of
the soft modes.) The cubic term couples the phases of the three
helices, thereby generating an effective coupling between their
soft modes α0a , α0b, and α0c:

Ulock = −σ cos (α0a + α0b + α0c)

≈ −σ + σ (α0a + α0b + α0c)2

2
, (23)

where

σ = 8cMM3
0

AM2
0 k2

0

= 4M

M0k
2
0ξ

2
l

(24)

is a dimensionless phase-locking coupling and ξl =√
A/(ac − a) is the longitudinal correlation length of

magnetization.21

At the harmonic level, the three soft modes have the
following Lagrangian:

L = −σ (α0a + α0b + α0c)2

2

+
∑

i=a,b,c

(
α̇2

0i

4
− (∇||i a0i)

2 −
(∇2

⊥i a0i

)2

2

)
, (25)

where ∇||i = k0i · ∇ and ∇⊥i = k0i × ∇. Thanks to the phase-
locking coupling σ , one of the modes acquires a finite
frequency ω0 = √

6σ . The two remaining Goldstone modes
are translations u in the plane of the SkX. (Translations
normal to the plane do not alter the state of the system.) For

convenience, we direct the z axis along the applied field H and
choose the x and y axes in such a way that

k0a = (1,0,0), k0b = (−1/2,
√

3/2,0),
(26)

k0c = (−1/2,−
√

3/2,0).

As in the case of a single helix, Eq. (20), a translation u yields
a phase shift α0i = −k0i · u for helix i = a,b,c. The resulting
Lagrangian for the Goldstone modes ux and uy describes a
solid

L = ρ(u̇)2

2
−

∑
i=x,y

∑
j=x,y

(
λ

2
uiiujj + μuijuij

)
− B

(
∂2
z u

)2

2
,

(27)

where uij = (∂iuj + ∂jui)/2 are components of strain in the
xy plane, ρ = 3/4 is the density, B = 3/2 is the bending
modulus, and λ = μ = 3/4 are the Lamé parameters. Note that
the phase-locking coupling σ does not enter the Lagrangian
(27). Instead, it sets the range of frequencies,

ω �
√

6σ , (28)

in which the texture behaves as a two-dimensional solid.
At higher frequencies, the three helices decouple from one
another.

Eigenmodes of the Lagrangian (27) come in two flavors:
longitudinal waves, in which the displacement of the SkX
u = (ux,uy,0) is parallel to the in-plane component of the
wavevector qin = (qx,qy,0), and transverse waves with u along
ẑ × qin = (−qy,qx,0). With the physical units restored, the
dispersions are

ωl = (
AM2

0 /J
)√

3k2
0q

2
in + 2q4

out,
(29)

ωt = (
AM2

0 /J
)√

k2
0q

2
in + 2q4

out,

Here qout = qz is the out-of-plane component of the wavevec-
tor. This dispersion was obtained recently by Kirkpatrick,
Belitz, and collaborators,22,23 who treated the SkX as a
two-dimensional solid [Eq. (27)]. The first term in the effective
Lagrangian (27) is proportional to the square of the velocity
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u̇ and thus can be viewed as kinetic energy of the SkX.
As a result of that, waves propagating in the plane of the
crystal have a linear dispersion ω = sq with the speed sl =
AM2

0 k0

√
3/J = γM0D

√
3/2 for longitudinal waves and st =

sl/
√

3 for transverse ones.

B. Berry phase

The low-frequency dispersions will be modified if the
effective Lagrangian (27) acquires a Berry-phase term Bu̇xuy .
Being linear in the velocity, this term dominates over kinetic
energy in the limit ω → 0. The effective Lagrangian then
becomes

L = Bu̇xuy + ρ(u̇)2

2
−

∑
i=x,y

∑
j=x,y

(
λ

2
uiiujj + μuijuij

)

− B
(
∂2
z u

)2

2
. (30)

We focus on waves propagating in the plane of the crystal,
so that ∂zu = 0. The Berry-phase term acts like an effective
magnetic field hybridizing longitudinal and transverse waves.
One of the resulting modes has a finite frequency

ωc = B/ρ (31)

in the q → 0 limit. It is the cyclotron mode that reflects the
interplay of inertia and the Lorentz force acting on a charged
particle in a magnetic field. The other mode has a quadratic
dispersion

ω = ωlωt/B = (
q2

in/B
)√

μ(λ + 2μ). (32)

This result holds for sufficiently small in-plane wavenumbers,
qin � B. In the opposite limit, qin � B, the motion becomes
sufficiently fast for the Berry phase to be negligible relative to
kinetic energy, and the eigenmodes become longitudinal and
transverse sound waves.

The Berry-phase coupling B can be computed by moving
the SkX along an infinitesimal contour of area �X�Y :

u �→ u + (�X,0,0) �→ u + (�X,�Y,0)

�→ u + (0,�Y,0) �→ u. (33)

In the process, the magnetization vector at a given point traces
out a closed path on a sphere:

M �→ M − ∂M
∂x

�X �→ M − ∂M
∂x

�X − ∂M
∂y

�Y

�→ M − ∂M
∂y

�Y �→ M. (34)

If magnetization is not confined to a single plane, then the
path on the sphere has a nonzero area and the spins acquire a
Berry phase SB proportional to the area on the sphere and spin
length. In this way, we obtain

B = −
∫

�

dx dy

�

M

γ
m̂ · (

∂xm̂ × ∂ym̂
)
, (35)

where m̂ = M/M is the unit vector parallel to magnetization
and the integration is done over a unit cell of area � =
8π2

√
3/k2

0.

Deep in the ordered phase, the magnetization length M is
fixed and Eq. (35) reduces to

B = −4πnM

γ�
, (36)

where

n =
∫

�

dx dy
m̂ · (∂xm̂ × ∂ym̂)

4π
(37)

is a topological charge of the unit cell known as the skyrmion
number. In an SkX, n = ±1. In natural units,

B = nM

2πM0

√
3
. (38)

Closer to the critical point, an SkX is a superposition of three
phase-locked helices on top of uniform magnetization. In such
a texture, magnetization length varies in space.24 Then nM in
Eqs. (36) and (38) should be understood as the average length
of magnetization weighted with skyrmion density m̂ · (∂xm̂ ×
∂ym̂)/(4π ).

IV. DISCUSSION

We have derived a low-energy description of a skyrmion
crystal viewed as a superposition of three phase-locked
helices.5 This approach is justified because skyrmion crystals
are typically observed near the critical point, where soft com-
ponents of magnetization have characteristic wavenumbers
k0. In this limit, the extent of a skyrmion is comparable to
the interskyrmion separation, which means that these solitons
cannot be treated as point particles. Viewing this magnetic
texture as a superposition of three helical waves is a better
starting point.

Our main result is the Lagrangian for low-energy excita-
tions of the skyrmion crystal, Eq. (30). It is expressed in terms
of the Goldstone modes of a two-dimensional (columnar)
solid in three dimensions, deformations parametrized by
a two-component displacement field u(r) = (ux,uy,0). The
description is valid at sufficiently low frequencies, when the
three helices behave as a cohesive solid. The upper limit
is set by the strength of the anharmonic coupling constant
[Eq. (24)] locking the phases of the helices. At intermediate
frequencies, the dynamics is dominated by the inertia of the
crystal, parametrized by the kinetic energy in Eq. (30). In this
regime, excitations are transverse and longitudinal vibrations
with a linear dispersion ω ∼ sq for waves propagating in the
plane of the crystal.

At the lowest frequencies, the Berry-phase coupling mixes
longitudinal and transverse waves. One of the mixed modes
acquires a quadratic dispersion ω ∼ q2/2m [Eq. (32)], as
proposed by Zang et al.10 The other mode has a finite frequency
[Eq. (31)] in the q → 0 limit. This mode corresponds to
cyclotron motion of skyrmions: the Lagrangian (30) indicates
that skyrmions behave as massive particles with density ρ

in an effective magnetic field of strength B. The skyrmion
mass density in standard units is ρ = 3J 2/(4AM2

0 ). The
mass of a skyrmion ms can be compared to the mass of a
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magnon mm in the same ferromagnetic material (without the
Dzyaloshinskii-Moriya coupling):

ms

mm

≈ �

a

1

(k0a)2
, (39)

where � is the length of the skyrmion line (in a three-
dimensional crystal) and a is the lattice spacing of the material.

The observability of the skyrmion cyclotron mode depends
on the strength of the skyrmion crystal measured by the phase-
locking coupling σ [Eq. (24)]. The cyclotron should be in
the range of frequencies [Eq. (28)], where the texture behaves
as a two-dimensional crystal, rather than three independent
helices. If the crystal is too weak, σ � B2/6, the Lagrangian
(30) only applies in the limit of slow motion, where inertia of
the skyrmion crystal can be neglected. In that case, the density
term may be entirely omitted.

It is interesting to compare the spectra of low-energy ex-
citations of skyrmion crystals in ferromagnets and in systems
exhibiting the quantum Hall effect (QHE).25 In QHE systems,
the Coulomb interaction between charged skyrmions in two
dimensions causes the Lamé parameter λ to diverge as q−1 at
low wavenumbers, which leads to the q3/2 magnetophonon
dispersion.26,27 The cyclotron mode [Eq. (31)] is absent
because the mass density ρ is small.26 This is similar to our

case when a small ρ pushes the cyclotron frequency outside
the frequency range [Eq. (28)] in which the texture can be
thought of as a skyrmion crystal. In the absence of spin-orbital
coupling, QHE skyrmion crystals get an additional Goldstone
mode with a linear dispersion, associated with the spontaneous
breaking of the global SO(2) symmetry of spin rotations.27,28

In our system, such spin waves are coupled to translations
of the skyrmions and are therefore gapped via the Higgs
mechanism.18

Although in this paper we have focused on a three-
dimensional ferromagnet,5,6 these results can be readily ex-
tended to thin films,7,8 in which long-range dipolar interactions
make the SkX phase particularly stable.

Note added in proof. A recent numerical study by
Mochizuki29 provides evidence for two branches of spin waves
in a skyrmion crystal.
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F. Jonietz, R. Georgii, P. Böni, B. Pedersen, M. Schmidt et al.,
Phys. Rev. B 81, 041203 (2010).

7X. Z. Yu, Y. Onose, N. Kanazawa, J. H. Park, J. H. Han, Y. Matsui,
N. Nagaosa, and Y. Tokura, Nature (London) 465, 901 (2010).

8X. Z. Yu, N. Kanazawa, Y. Onose, K. Kimoto, W. Z. Zhang,
S. Ishiwata, Y. Matsui, and Y. Tokura, Nat. Mater. 10, 106 (2011).

9T. Garel and S. Doniach, Phys. Rev. B 26, 325 (1982).
10J. Zang, M. Mostovoy, J. H. Han, and N. Nagaosa, Phys. Rev. Lett.

107, 136804 (2011).
11S.-B. Choe, Y. Acremann, A. Scholl, A. Bauer, A. Doran, J. Stöhr,
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arXiv:1001.1292.
25S. L. Sondhi, A. Karlhede, S. A. Kivelson, and E. H. Rezayi, Phys.

Rev. B 47, 16419 (1993).
26A. G. Green, I. I. Kogan, and A. M. Tsvelik, Phys. Rev. B 54, 16838

(1996).
27C. Timm, S. M. Girvin, and H. A. Fertig, Phys. Rev. B 58, 10634

(1998).
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