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A theoretical model of the coherent precession of magnetization excited by a picosecond acoustic pulse
in a ferromagnetic semiconductor layer of (Ga,Mn)As is developed. The short strain pulse injected into the
ferromagnetic layer modifies the magnetocrystalline anisotropy resulting in a tilt of the equilibrium orientation
of magnetization and subsequent magnetization precession. We derive a quantitative model of this effect using
the Landau-Lifshitz equation for the magnetization that is precessing in the time-dependent effective magnetic
field. After developing the general formalism, we then provide a numerical analysis for a certain structure and
two typical experimental geometries in which an external magnetic field is applied either along the hard or the
easy magnetization axis. As a result we identify three main factors, which determine the precession amplitude:
the magnetocrystalline anisotropy of the ferromagnetic layer, its thickness, and the strain pulse parameters.
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I. INTRODUCTION

Ultrafast control of magnetic order is one of the key
problems of modern magnetism. This problem arises due to
the huge gap between the exponentially increasing capacities
of magnetic storage devices over the last decade and their
performance, which progresses much slower. During the last
decade various concepts to manipulate magnetization on a
short time scale using picosecond magnetic field pulses1,2

or femtosecond optical excitation3 have been explored for
magnetic materials. In materials with strong magnetocrys-
talline anisotropy (MCA), acoustic pulses may be also an
effective tool to manipulate magnetization on ultrashort time
scales.4,5 The methods of picosecond laser ultrasonics allow
the generation of ultrashort strain pulses in solids.6 These
strain pulses have picosecond duration and amplitude up to
10−3. They have a fast and local impact, which may lead to a
considerable response of the material’s magnetization, whose
magnetic properties are sensitive to strain.

Ferromagnetic semiconductors (FMSs), like (Ga,Mn)As,
belong to the class of ferromagnets with strong MCA due
to the hole-mediated origin of ferromagnetism.7,8 The low
Curie temperature of 190 K9 limits the perspectives of FMSs
for real applications, but they are still under active studies
as a unique model material combining semiconductor and
ferromagnetic properties.10 In FMS epitaxial layers mainly
strain determines the directions of the easy magnetization
axes. The compressive (tensile) epitaxial strain from lattice
mismatch between buffer and FMS layers results in in-plane
(out-of-plane) orientation of the easy axes of magnetization for
a wide range of FMS parameters.11–13 Several ways to control
the magnetization in FMS by strain have been developed
recently: (i) the desired direction of the easy magnetization axis
may be achieved by adjusting the composition of a buffer layer
during growth;11 (ii) after-growth patterning allows directing
the in-plane magnetization;14 and (iii) in layered multiferroic
structures with the FMS layer grown on piezoelectric material,

an electric field applied to the piezoelectric layer governs the
in-plane unidirectional strain and allows manipulation of the
magnetization direction.15–17

Until very recently the strain control of magnetization in
FMSs has remained static. First time-resolved experiments
with strain pulses in FMS epitaxial layers were reported
by Thevenard et al.18 and Scherbakov et al.5 in 2010. The
studies in Ref. 18 focused on elasto-optical effects induced
by the strain pulse propagating in a magnetized FMS layer,
while the effect of the strain pulse on the magnetization
and the strain-induced temporal evolution of magnetization
were studied in Ref. 5. It was demonstrated that at external
magnetic field applied normal to the ferromagnetic layer
the strain pulse induces a pronounced tilt of magnetization
out of its equilibrium orientation and subsequently coher-
ent magnetization precession. In Ref. 5, for describing the
experimental results, the authors considered the simplest
model of magnetocrystalline anisotropy of a FMS layer.
The proposed model cannot explain a number of effects
observed in the later experiments, such as strain-pulse-induced
magnetization precession also for in-plane magnetic fields and
even without external field.19 This observation has stimulated
the present theoretical studies, which are aimed at carrying out
a comprehensive analysis of the effect of strain pulses on the
magnetization in ferromagnetic (Ga,Mn)As. The main goal
is to examine how the amplitude of the strain-pulse-induced
precession depends on the parameters of the FMS structure,
the magnetic field direction and strength, and the parameters
of the strain pulse. We examine the cases of magnetic field
direction normal to the ferromagnetic layer as in Ref. 5 and
also parallel to it as well as without magnetic field. The
underlying anisotropy parameters of the FMS structure have
been obtained using the microscopic model for hole-mediated
ferromagnetism proposed by Dietl et al.20

The paper is organized as follows. In Sec. II we briefly
describe the considered experiments with picosecond strain
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pulses hitting FMS layers, introduce the parameters of the
strain pulse, and qualitatively discuss the effect of the strain
pulse on the magnetization. Sec. III describes the formalism,
which is used later to calculate quantitatively the effect of the
strain pulse. In Sec. IV we present the results of numerical
calculations for a particular FMS structure subject to two
different orientations of external magnetic field. Finally, we
summarize and conclude the obtained results and discuss
the perspectives for controlling magnetization by picosecond
acoustics.

II. EXPERIMENTS WITH PICOSECOND STRAIN PULSES
IN EPITAXIAL (Ga,Mn)As LAYERS

Figure 1(a) shows the schematic of experiments with
picosecond strain pulses applied to a FMS layer. The sample
consists of a single Ga1−xMn

MnxMn As FMS layer grown on a
semi-insulating GaAs substrate.5 The typical content of Mn
atoms in the FMS layer is xMn = 0.01 ÷ 0.1. A thin metal
film deposited on the back side of the GaAs substrates serves
as an optoelastic transducer, which rapidly expands due to
the heating under femtosecond laser excitation.6 Figure 1(b)
demonstrates the bipolar strain pulse δεzz(t) injected into the
substrate as a result of the thermal expansion of the metal
film.21,22 Pulse duration τ and amplitude εmax

zz depend on the
transducer material and the parameters of optical excitation
and have typical values of ∼10 ps and ∼10−4 ÷ 10−3,
respectively. It is important to note that in high symmetry
GaAs substrates [typically (001) oriented] the strain pulse
contains only longitudinal components for lattice distortions
along the propagation direction perpendicular to the substrate
interface. At liquid helium temperatures such a strain pulse
propagates through GaAs over millimeter distances without
scattering.23

In order to describe the response of the magnetization M of
the FMS layer on the strain pulse, we use the standard Landau-
Lifshitz approach in which the magnetization is precessing
about the time-dependent effective magnetic field Beff .24 This
effective field is the sum of the external magnetic field B and
the intrinsic magnetic anisotropy field, which is determined
by the parameters of the FMS layer. In equilibrium the
magnetization M is parallel to Beff . As an example, Fig. 2(a)
shows the experimental geometry reported in Ref. 5 when B
is applied normal to the (Ga,Mn)As layer with in-plane easy
axes. In such a layer the anisotropy field holds M in the layer
plane, while the external magnetic field turns M out of the
layer so that the resulting field Beff has a tilted orientation
between in-plane and normal-to-it. When reaching the FMS
layer, the strain pulse changes the layer properties, namely the
εzz static strain component, modifies the magnetic anisotropy
field, and tilts Beff , which is then no longer parallel to M.
As a result M starts to precess around Beff . After the strain
pulse has left the FMS layer, Beff returns to its equilibrium
orientation, while M remains at some angle relative to Beff .
Thus, the precession continues until relaxation drives M back
to equilibrium [Fig. 2(b)]. In the Landau-Lifshitz approach,
value and direction of Beff are determined by the free-energy
density.25 The free-energy density includes magnetoelastic
terms, which provide the direct relation between the strain
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FIG. 1. (Color online) (a) Schematic of experiments with picosec-
ond acoustic pulses in ferromagnetic epitaxial layers. (b) Temporal
profile of the strain pulse injected into the GaAs substrate from the
metal film.

components and the orientation of Beff . Thus, one can model
the response of Beff and the magnetization on the strain pulse,
as shown in the next section.

III. MAGNETIZATION PRECESSION INDUCED BY A
STRAIN PULSE

In our theoretical analysis we consider a thin FMS
(Ga,Mn)As layer with a typical Mn ion content that is
epitaxially strained at liquid helium temperatures. Figure 2(a)
shows the assumed coordinate system in which the x and y axes
lie in the layer plane along the [100] and [010] crystallographic
directions, respectively, and the z-axis is perpendicular to the
layer, which is the [001] crystallographic direction. Far below
the Curie temperature, the magnetization of the FMS layer
is close to the saturation value M0 = gμBNMnSmax, where
g = 2 is the Mn Lande factor,26 μB is the Bohr magneton,
Smax = 5/2 is the maximal total spin of the Mn atom, and
NMn = 4xMn/a

3
0 is the concentration of Mn atoms (a0 is the

lattice constant). Assuming that the perturbation induced by
the strain pulse is weak and does not affect the absolute value
of M and neglecting also damping, we may use the Landau-
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FIG. 2. (Color online) (a) Equilibrium orientation of the effective
field Beff and the magnetization M in perpendicular external magnetic
field B and coordinate system orientations used in the article. (b)
Magnetization precession after the strain pulse has left the FMS
layer.

Lifshitz equation to describe the dynamics of magnetization
in the time-dependent effective field Beff(t):24

dm
dt

= −γ · m × Beff(m,t), Beff(m,t) =−∇mFM (m,t),

(1)

where m = M/M0 is the normalized magnetization and γ =
gμB/h̄ is the gyromagnetic ratio. The effective field Beff acting
on m is determined by the gradient of the normalized free-
energy density of the FMS layer FM = F/M0.

Generally, the free-energy density FM consists of isotropic
and anisotropic parts. The isotropic part does not depend
on the direction of m and does not contribute to the vector
product in Eq. (1). Therefore, we have to consider only the
anisotropic part of FM , which includes the Zeeman term,
the demagnetization energy, and the MCA terms related to
the crystal symmetry. In a thin (Ga,Mn)As layer grown by
low-temperature molecular beam epitaxy, the cubic symmetry
is tetragonally distorted by the epitaxial strain originating from
the lattice mismatch between the buffer and the (Ga,Mn)As
layers. Most of experiments also indicate the presence of an
in-plane uniaxial anisotropy in the (Ga,Mn)As films.12,13,27

The origin of this anisotropy is still under discussion, but
phenomenologically it can be modeled by a weak shear strain
εxy.

27 Thus, we write the general expression for the anisotropic

part of the free-energy density of a thin cubic FMS layer
distorted by strain25,28,29 in the form:

FM (m) = −(m · B) + Bdm
2
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(
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(2)

where mx , my , and mz are the projections of m onto the
coordinate axes and εij (i,j = x,y,z) are the strain com-
ponents. The first term in Eq. (2) is the Zeeman energy
of m in the external magnetic field B, the second term
is the demagnetization energy of the thin ferromagnetic
film with Bd = μoM0/2,30,31 and the five following terms
describe the MCA of the strained cubic FMS layer. The
cubic anisotropy field Bc and the magnetoelastic coefficients
A2ε,A

(1)
4ε ,A

(2)
4ε , and A2xy are parameters of the FMS film, which

depend on lattice temperature, hole concentration p, and Mn
content xMn.

11–13,20,27,32 The equilibrium orientation of m is
given by the minimum of FM and depends on the balance
between Zeeman, demagnetization, and MCA energies.

In the unstrained FMS layer, the MCA part of FM in
Eq. (2) consists of the cubic term proportional to Bc only.
For the experimentally relevant ranges of p and xMn at
low temperatures, the value of Bc may be both negative
or positive.20,32 We consider the case Bc<0 when the six
equivalent easy magnetization axes lie along the [100], [010],
and [001] crystallographic directions. This equivalence is
destroyed by the static epitaxial strain with components:

εxx = εyy = (a0 − a)/a, εzz = −2εxx · C12/C11, (3)

where a0 and a are the nondistorted lattice constants of the
(Ga,Mn)As and GaAs layers, respectively. C11 and C12 are
the elastic modules of (Ga,Mn)As. As a result the in-plane
[100] and [010] and the out of plane [001] orientations of m
become nonequivalent. At low temperatures for sufficiently
high hole concentrations, in-plane compressive strain εxx =
εyy < 0 is found to lead to in-plane orientation of the
easy axes in (Ga,Mn)As layers grown on GaAs.12,13,20,32

Further, the in-plane uniaxial anisotropy determined by the
last term of Eq. (2) leads to a tilt of the easy magnetization
axis from the [100]/[010] crystallographic directions toward
[110]/[110] for positive εxy . This means that the coefficients
A2xy and A2ε must be positive. The cubic magnetoelastic
coefficients A

(1)
4ε and A

(2)
4ε are one order of magnitude smaller

than A2ε and, consequently, do not affect the orientation of the
easy magnetization axis. Finally, the demagnetization energy
supports the in-plane orientation of m.

In the microscopic model used for calculation of the
anisotropy coefficients, the relation A

(1)
4ε = A

(2)
4ε is fulfilled (see

Appendix) so that we will apply this approximation throughout
the rest of the paper using the notation A

(1)
4ε ≡ A4ε. Also

because εxx = εyy for epitaxial strain, we may simplify Eq. (2)
and rewrite it in spherical coordinates:

FM (θ,ϕ) = [Bd + (A2ε − 2A4ε)(εzz − εxx)] cos2 θ

+ [Bc + 2A4ε(εzz − εxx)] cos4 θ
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+ [Bc − A4ε(εzz − εxx)] sin4 θ · 1
4 (3 + cos 4ϕ)

+ 1
2A2xyεxy sin2 θ sin 2ϕ − Bx sin θ cos ϕ

−By sin θ sin ϕ − Bz cos θ, (4)

where Bx,By,Bz are the projections of magnetic field onto the
coordinate axes. This expression provides a direct relation be-
tween the magnetic anisotropy fields, which are typically used
to describe MCA in most publications on FMS (Ga,Mn)As
and the strain components. The values (A2ε − 2A4ε)(εzz −
εxx), Bc + 2A4ε(εzz − εxx), Bc − A4ε(εzz − εxx), and A2xyεxy

are usually defined as perpendicular uniaxial, perpendicular
cubic, in-plane cubic, and in-plane uniaxial anisotropy fields,
respectively.

In the frame of the single-domain model with constant
magnetization, it is convenient to rewrite also Eq.(1) in
spherical coordinates:33

∂ϕ

∂t
= γ

sin θ

∂FM

∂θ
,

∂θ

∂t
= − γ

sin θ

∂FM

∂ϕ
. (5)

Assuming that the changes δϕ and δθ of the angles ϕ and
θ induced by the strain pulse δεzz are small, we can write in
linear approximation:

∂ϕ

∂t
= γ

sin θo

[Fθθδθ + Fθϕδϕ + Fθεzz
δεzz(t,z)],

(6)
∂θ

∂t
= − γ

sin θo

[Fϕϕδϕ + Fϕθδθ + Fϕεzz
δεzz(t,z)],

where the Fij = ∂2FM

∂i∂j
(i,j = ϕ,θ ,εzz) are calculated at

equilibrium orientation θ0(B),ϕ0(B), corresponding to the
static orientation of m at a given B.

Here we introduce the effective rates of strain-induced
precession:

fϕ = γ

sin θo

Fθεzz

= −γ cos θ0 · (2A2ε + A4ε sin2 θ0(cos 4ϕ0 − 1)

+ 4A4ε cos2 θ0),

fθ = − γ

sin θ0
Fϕεzz

= −γA4ε sin3 θ0 sin 4ϕ0. (7)

The values of fθ and fϕ determine the amplitude and the
direction of the tilt of Beff induced by δεzz(t,z) for a specific
static orientation of m. If both rates are zero, the strain pulse
does not tilt Beff and, thus, does not induce any magnetization
dynamics. One sees that if m lies in the layer plane, fϕ = 0. In
addition, there are specific in-plane directions corresponding
to the crystallographic directions [100] and [010] and the
diagonals, where fθ = 0, and a tilt of Beff by δεzz(t,z) is
impossible. This means that in a FMS layer with no shear strain
(εxy = 0) the strain pulse δεzz(t,z) may induce a magnetization
precession only at external magnetic field, which turns m out
of the easy magnetization axis. However, the presence of shear
strain (εxy �= 0) allows launching of a magnetization precession
by δεzz(t,z), even at zero B. So the presence of at least one of
these factors, either an external magnetic field or an in-plane
shear strain, is crucially necessary to induce a magnetization
precession by δεzz(t,z).

The precession frequency ω0 is determined by the standard
expression for the ferromagnetic resonance frequency and
depends on the static orientation of m:33–35

ω0 = γ

sin θ0

√
FθθFϕϕ − F 2

θϕ. (8)

It is worth noting that Eqs. (5)–(8) cannot be applied,
when the equilibrium m is parallel to the [001] axis, where
a mathematical singularity appears.33,34 However, it is easy to
see that for this orientation of m any perturbation δεzz(t,z)
cannot turn the magnetization out of the equilibrium direction.
Thus this orientation is not of our interest, and we use
Eqs (5)–(8) throughout the rest of the paper.

The developed formalism is well suited for strain pulses
of arbitrary shape, but we restrict the numerical calculations
to spatial and temporal dependencies of δεzz(t,z) typical for
ultrafast acoustic experiments. In the (Ga,Mn)As film, the
strain has a complex shape compared to the one injected
into the substrate, as result of interference of the incident
and reflected components of the pulse. The spatial-temporal
evolution of the strain pulse, which propagates with the
longitudinal sound velocity νl along the z-axis through the
FMS layer with thickness d can be modeled as21,22

δεzz(t,z) =
√

eεmax
zz

τ

(
(t − z/vl) exp

(
− (t − z/vl)2

2τ 2

)

− (t + (z − 2d)/vl) exp

(
− (t + (z − 2d)/vl)2

2τ 2

))
, (9)

where e is the base of the natural logarithm. Time t = 0 in
Eq. (9) corresponds to the moment, when the center of the
bipolar strain pulse reaches the GaAs/(Ga,Mn)As interface
(z = 0). The first term in Eq. (9) describes the evolution of the
strain pulse propagating toward the open surface of the FMS
layer, and the second term describes the strain pulse reflected
at the open surface with a π -phase shift and subsequently
propagating back toward the substrate. The parameters of the
strain pulse that we use for the further calculations are as
follows: εmax

zz = 10−4, τ = 7 ps, and νl = 5 km/s. These values
are typical for ultrafast acoustic experiments and correspond
to the values reported in Ref. 5. Here we do not take into
account nonlinear effects, which modify the shape of the strain
pulse during its propagation through the GaAs substrate. These
effects are insignificant for the chosen strain pulse amplitude.

Figure 3(a) shows the time evolutions δεzz(t,z) for three dif-
ferent positions inside the 200-nm-thick magnetic layer: z = 0,
100 and 190 nm, which correspond to the GaAs/(Ga,Mn)As
interface, the center of the FMS layer, and the coordinate 10 nm
before the open surface, respectively. It is clearly seen that the
δεzz(t,z) are not the same for the different coordinates. Thus,
the strain-induced perturbation of FM is spatially nonuniform,
and Eq. (6) must be solved at each coordinate z inside the
FMS layer. Because of this nonuniformity of the perturbation,
one also should add the exchange term to the expression for
Beff in Eq. (1).24,28 This gives rise to a frequency splitting of
the magnon modes in a finite-width film.36 This splitting can
manifest itself by a beating due to interference of the split
modes which contribute to the strain-induced magnetization
precession.19 For realistic (Ga,Mn)As parameters, however,
the mentioned splitting is relatively small.37,38 It is worth
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FIG. 3. (Color online) (a) Temporal evolution of the strain pulse
δεzz(t,z) at three positions in the FMS layer (thin black lines) and
the relative modulation of the layer thickness δε(t) (thick red line).
(b) Strain-pulse-induced temporal evolutions of the magnetization
projection δmz(t,z) at three positions in the FMS layer (thin black
lines) and the value averaged across the layer δmz(t) (thick red lines).
The evolutions are calculated at B = 40 mT applied perpendicular to
the layer plane under static strain εzz = 2 × 10−3 and εxy = 2 × 10−4.
Time t = 0 corresponds to the moment when the center of the incident
strain pulse crosses the GaAs/(Ga,Mn)As interface. The vertical dot-
dashed line shows the time moment at which the strain pulse leaves
the FMS layer.

mentioning also that because the exchange terms are pro-
portional to the spatial derivatives of magnetization, proper
boundary conditions must be introduced for the magnetization
at the ferromagnetic film interfaces. It is known, however,
that this mainly affects the magnetization in the quite thin
regions near the interfaces.36 Leaving these specific effects
for further studies, we proceed with the analysis of the case
without exchange.

In the actual experiment probing of the magnetization
at a certain coordinate z is impossible. The experimental
signal (i.e., the magneto-optical Kerr rotation) reflects the
time evolution of the magnetization averaged over the layer
thickness. Thus, we introduce the mean angles:

δθ (t) = 1

d

∫ d

0
δθ (t,z)dz, δϕ(t) = 1

d

∫ d

0
δϕ(t,z)dz. (10)

Then, Eq. (6) may be rewritten for relating δϕ(t) and δθ (t) with
the averaged strain-induced temporal perturbation, shown by
the thick red line in Fig. 3(a):

δε(t) =
∫ d

0
δεzz(t,z)dz. (11)

In the next section we solve Eq. (6) numerically for both
the averaged magnetization and the magnetization as function
of coordinate z.

IV. NUMERICAL ANALYSIS OF STRAIN-INDUCED
PRECESSION

We examine two characteristic orientations of the external
magnetic field: perpendicular to the layer plane, B = (0,0,B),
and in the layer plane along the [100] crystallographic direction
B = (B,0,0). We present the results of a numerical analysis
for certain parameters of the FMS layer. First, we analyze
the static orientation of magnetization as a function of the
external magnetic field, calculate the field dependencies of
the effective precession rates fϕ(θ)(B) and the precession
frequency ω0(B), and then model the time evolution of the
magnetization induced by the strain pulse of the chosen shape.
We use the following parameters for the structure, which are
typical for a thin (Ga,Mn)As layer: d = 200 nm, xMn = 0.045,
p = 4 × 1020 cm−3, and μ0M0 = 60 mT. The corresponding
values of Bc = −35 mT, A2ε = 25 T, A2xy = 152 T, and
A4ε = −0.5 T were calculated in the frame of the Dietl model;
for details see Appendix. The calculations are limited to the
case of compressive epitaxial strain: εxx = εyy < 0; εzz > 0 and,
thus, in-plane orientation of the easy magnetization axes. The
factor 2C12/C11 = 0.89 in Eq. (3) is taken from Ref. 39. The
calculations are carried out for several values of the static strain
components: εzz = (1÷3) × 10−3 and εxy = (0÷2) × 10−4.
In the frame of the single domain model, we assume that at
zero external magnetic field m lies along the [100] direction, if
εxy = 0, and along the easy magnetization axis that is closest
to the [100] direction if εxy > 0.

A. Perpendicular magnetic field

An external magnetic field applied perpendicular to the
FMS layer rotates the magnetization out of the layer plane
toward the z-axis. In this case the strain pulse induces a
magnetization precession even at εxy = 0. Also because εxy

is typically at least one order of magnitude smaller then the
epitaxial strain, we first restrict our consideration to the case of
zero shear strain and thereafter numerically analyze the effect
of nonzero εxy .

For zero shear strain (εxy = 0), the orientation of m is
characterized by ϕ0 = 0 for any value of B, and we may
simplify the expression (4) for FM to

FM (θ ) = −B cos θ + [Bd + (A2ε − 2A4ε)(εzz − εxx)] cos2 θ

+ [Bc + 2A4ε(εzz − εxx)] cos4 θ

+ [Bc − A4ε(εzz − εxx)] sin4 θ. (12)

Figure 4(a) shows the angle dependence FM (θ ) calculated
for εzz = 2 × 10−3 at different B. With B increasing from
zero, the minimum of the free-energy density shifts from
θ0 = π/2 toward smaller values, and m gradually turns toward
the field direction as Fig. 4(b) shows. At some magnetic field
a second minimum at θ = 0 appears so that FM has two
minima separated by a barrier. With further increasing B, the
first minimum close to π/2 becomes more shallow, while the
second minimum becomes deeper. Finally, at B = B∗ the first
minimum disappears, and the magnetization rapidly changes
its direction, becoming parallel to B [see Fig. 4(b)]. In realistic
structures the switching between the two minima occurs at
lower B values smaller than B∗ due to the finite temperature
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and the presence of fluctuations,40 but in the present analysis,
we consider that the orientation of m corresponds to the
first minimum of FM until B = B∗. This corresponds to an
experiment at zero temperature with a gradual magnetic field
increase starting from zero.

The equilibrium orientation of magnetization determines
the response of Beff on the strain pulse. As one sees from
Eq. (7), at zero shear strain when ϕ0 = 0, the rate fθ = 0
and the tilt of Beff are determined by the value of fϕ .
Figure 5(a) shows the field dependence of the absolute value
|fϕ(B)| for εzz = 1 × 10−3, 2 × 10−3, and 3 × 10−3. Be-
cause A4ε � A2ε, the following approximation can be made
|fϕ(B)| ≈ 2γA2ε cos θ0, which follows the field dependence
of mz(B). Therefore |fϕ(B)| almost linearly increases with
B until the jump at B = B∗, as clearly seen from the
comparison of Figs. 4(b) and 5(a). The switching field B∗ is an
increasing function of εzz and equals to 117 mT, 180 mT, and
243 mT (shown by the vertical dashed lines) for εzz =
1 × 10−3, 2 × 10−3, and 3 × 10−3, respectively. Thus, the
stronger the magnetization is turned away from the in-plane
easy axis by the external magnetic field, the larger |fϕ| is and
the stronger the response of Beff is on the perturbation induced
by the strain pulse δεzz.
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FIG. 5. Magnetic field dependencies of the absolute value of the
effective precession rate |fϕ | (a), the precession frequency ω0/2π (b),
and the averaged precession amplitude δmmax

z (c) for B perpendicular
to the layer plane, calculated for different values of the static strain
components εzz and εxy .

While fϕ determines the tilt of Beff , the subsequent
time evolution of m depends significantly on the precession
frequency. Figure 5(b) shows the field dependence of ω0(B) for
several values of static strain components εzz. The value of ω0

decreases with increasing B until it becomes zero at B = B∗.
The stronger the static epitaxial strain εzz is, the larger ω0 is.

The precession rate fϕ and the precession frequency ω0 at a
certain external magnetic field are the parameters of the FMS
layer, which do not depend on the shape of the strain pulse.
However the spatial-temporal evolution of the magnetization is
induced by δεzz(t,z). We calculate the magnetization evolution
at three coordinates in the FMS layer: z = 0, 100, and
190 nm. Figure 3(b) shows the corresponding numerical
solution for the component δmz(t) = δθ (t)sinθ0. We see that
the precession starts upon arrival of the strain pulse at the
corresponding coordinate in the FMS layer. While the strain
pulse propagates forwards and backwards, the precession
trajectory is complicated. When the reflected strain pulse
completely has left the layer (t = 110 ps shown by the vertical
line), the magnetization continues to precess without decay as
long as damping does not occur.

In the considered case of zero shear strain, the simple
analytical solutions of Eq. (6) for the after-pulse, free mag-
netization precession can be written as harmonic oscillations
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with frequency ω0, which are shifted in phase by π/2 relative
to each other:

δϕ(t,z) = 2fϕSω sin

(
ω0�t

2

)
cos ω0(t − td ),

(13)

δθ (t,z) = −2a⊥fϕSω sin

(
ω0�t

2

)
sin ω0(t − td ),

where �t = 2(d-z)/vl is the travel time of the strain pulse from
the coordinate z toward the surface and back; td = d/vl is the
travel time of the strain pulse through the magnetic layer, and

Sω = εmax
zz ω0τ

2
√

2πe exp
( − ω2

0τ
2/2

)
(14)

is the absolute value of the spectral density of the incident
strain pulse at frequency ω0. For the chosen parameters of
the strain pulse, Sω is an increasing function of frequency in
the considered range of ω0. The parameter a⊥ = −4 γ

ω0
(Bc −

A4ε(εzz − εxx)) sin3 θ0 depends on the magnetic field and has
values between 0.5 and 1, increasing with increasing magnetic
field. The presence of this parameter shows that the precession
trajectory of m is elliptical with one main axis parallel to the
layer plane.

To summarize this part of analysis, the amplitude of
precession is determined by three main factors. The first one
is the precession rate fϕ , which describes how sensitive the
tilt of effective magnetic field Beff to the strain-pulse-induced
modulation is. The second one is the spectral density of
the incident strain pulse at the precession frequency ω0.
The third one is the oscillating factor sin(ω0�t/2), which
describes the efficiency of interference between incident and
reflected parts of the strain pulse at a given coordinate z. The
maximum amplitude is obtained at a coordinate, where �t is
equal to half of the precession period. For B = 40 mT and
εzz = 2 × 10−3 shown in Fig. 3(b), ω0/2π = 6.2 GHz, and
maximum amplitude is reached at �t = 80ps corresponding
to z = 0. The dependence of the components δmy = δϕ cos θ0,
which are almost twice larger than δmz and δmx = δθ cos θ0,
are very similar to δmz, and therefore, we do not plot them
separately.

We also solve the dynamical equations for the averaged
values δϕ(t) and δθ (t), which are harmonic oscillations as
well shifted by π/2 relative to each other:

δϕ(t) = 4fϕSω

sin2(ω0td/2)

ω0td
cos ω0(t − td ),

(15)

δθ (t) = −4a⊥fϕSω

sin2(ω0td/2)

ω0td
sin ω0(t − td ).

The precession amplitude of the averaged magnetization is also
proportional to fϕ and Sω but depends on the layer thickness
through the oscillating factor sin2(ω0td/2)/ω0td with the first
maximum at ω0/2π ≈ 10 GHz. The thick red line in Figs. 3(a)
and 3(b) shows the evolution of the averaged functions δε(t)
and δmz(t).

Figure 5(c) shows the field dependence of δmmax
z (B) which

is the amplitude of the after-pulse oscillations δmz(t). δmmax
z

was calculated for several values of epitaxial strain εzz =
1 × 10−3, 2 × 10−3, and 3 × 10−3. These dependences reflect
the competition between the sensitivity of Beff to the strain
pulse that increases with magnetic field and the response of m

that becomes slower with the increase of B due to the decrease
of ω0. As a result δmmax

z (B) has a pronounced maximum
δmmax

z ≈ 10−3 at an optimal intermediate magnetic field. A
stronger static epitaxial strain shifts the maximum of δmmax

z (B)
to higher magnetic fields. In general, the field dependence of
the precession amplitude, as well as its maximum value of
10−3, is in good agreement with the experimental results.5

We also numerically analyze the influence of nonzero
positive shear strain εxy . At finite εxy the precession rate fθ is
nonzero even at B = 0, but it rapidly decreases and becomes
negligible with increasing B; see Eq. (7). As a result, for almost
the whole range of B, the response of Beff on the strain-induced
perturbation is determined mainly by fϕ and is not affected
substantially by the presence of shear strain. In Figs. 5(b) and
5(c), we see the decrease of the precession frequency and the
precession amplitude over the whole range of B in presence
of shear strain. The calculated field dependencies δmmax

z (B)
for εxy = 2 × 10−4 are shown in Fig. 5(c) by the dash-dotted
lines.

B. In-plane magnetic field

If an external magnetic field is applied along the [100]
crystallographic direction and the shear strain is zero, m
is oriented along the [100] axis for any value of B, and
strain-pulse-induced magnetization precession is impossible.
Therefore, the presence of shear strain is a key requirement
for this geometry. Below we examine the case of nonzero, but
small positive εxy , for which m is slightly turned in the film
plane toward the [11̄0] direction. In this case the free-energy
density depends only on ϕ, and we may simplify expression
(4) for FM to

FM (ϕ) = 1
4 [Bc − A4ε(εzz − εxx)](3 + cos 4ϕ)

+ 1
2A2xyεxy sin 2ϕ − B cos ϕ. (16)

Figure 6(a) shows the dependence FM (ϕ) for εxy = 2 × 10−4

for different B. At zero magnetic field FM has the minimum at
finite ϕ0 < 0. With increasing B, the minimum gradually shifts
toward the [100] axis. Figure 6(b) shows the field dependence
of the projection mx = cosϕ0 for two values of εxy . In contrast
to the case of perpendicular magnetic field, where we observe
a rapid steplike turn of m toward the field direction at some
threshold, here m is continuously rotated with increasing
magnetic field.

For this geometry the tilt of Beff is determined only by
fθ , because fϕ = 0. So the strain pulse δεzz(t,z) tilts Beff

maintaining, however, its in-plane orientation. Figure 7(a)
shows the field dependence of |fθ | for two values of εxy =
1 × 10−4 and 2 × 10−4. The value of |fθ | = −γA4ε sin 4ϕ0

decreases with increasing B because m is tilted closer to the
[100] crystallographic direction. The larger εxy is the stronger
is the response of Beff on δεzz, while the static epitaxial strain
εzz does not influence the value of fθ substantially. One sees
that fθ is two orders of magnitude smaller than fϕ due to
the significant difference in the values of the magnetoelastic
coefficients A4ε and A2ε. Obviously, the strain pulse δεzz(t,z)
affects the in-plane orientation of Beff much weaker.

Figure 7(b) shows the field dependencies of the precession
frequency ω0(B) for several values of εzz and εxy. Contrary
to the case of a perpendicular magnetic field, here ω0
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FIG. 6. (a) Normalized free-energy density �FM = FM (m) −
FM (mx) as function of the equilibrium angle ϕ for different values of
B applied along the [100] direction in the presence of shear strain. (b)
Field dependence of the magnetization projection mx = cos ϕ0 onto
the direction of the magnetic field for two values of shear strain εxy .

continuously increases with increasing B. However, the
dependence of ω0 on the static strain components is the same:
ω0 is larger for stronger epitaxial strain εzz and becomes
smaller with increasing εxy .

We also give simple analytical expressions for the after-
pulse free precession of m:

δϕ(t,z) = 2

a||
fθSω sin

(
ω0�t

2

)
sin ω0(t − td ),

(17)

δθ (t,z) = 2fθSω sin

(
ω0�t

2

)
cos ω0(t − td ),

and for the corresponding averaged values,

δϕ(t) = 4

a||
fθSω

sin2(ω0td/2)

ω0td
sin ω0(t − td ),

(18)

δθ (t) = 4fθSω

sin2(ω0td/2)

ω0td
cos ω0(t − td ),

where a|| = − γ

ω0
[4(Bc − A4ε(εzz − εxx)) cos 4ϕ0 + 2A2xyεxy

sin 2ϕ0 − B cos ϕ0] has a value between 0.5 and 1 and
increases with external magnetic field.

Figure 7(c) demonstrates the field dependence of δmmax
z (B),

which looks similar to the preceding geometry. The main
differences are (i) the smaller value of δmmax

z (B) due to the
significantly smaller value of fθ and (ii) a different dependence
of the precession amplitude on the static strain component
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FIG. 7. Magnetic field dependencies of the absolute value of the
effective precession rate |fθ | (a), the precession frequency ω0/2π

(b), and the averaged precession amplitude δmmax
z (c) for B ‖[100]

calculated for different values of the static strain components εzz

and εxy . The dashed lines show the frequency (horizontal) and the
corresponding value of magnetic field (vertical) demarking the field-
frequency range in which a higher precession frequency results in a
larger precession amplitude.

εzz. For this magnetic field direction, the shear strain affects
the precession rate fθ significantly, which increases with
increasing εxy , but changes only slightly the precession
frequency. As a result δmmax

z is much larger for stronger shear
strain. In contrast, the static epitaxial strain εzz does not change
the precession rate fθ substantially, but ω0 is still higher for
larger εzz. As a result, at low magnetic fields this leads to an
increase of δmmax

z and to a shift of the maximum to lower B

with increasing εzz. At high magnetic fields, however, δmmax
z

is reduced for stronger epitaxial strain εzz. The crossing occurs
at a magnetic field [shown by the dashed line in Fig. 7(c)] at
which ω0/2π = 12 GHz, corresponding to the maximum of
the function Sω sin2(ω0td/2)/ω0td . Thus, at stronger magnetic
fields the increase of the precession frequency leads to a
decrease of the precession amplitude, as seen in Fig. 7(c).

V. SUMMARY

To summarize the developed analysis, we have elaborated
three important factors that determine the efficiency of the
strain pulse-induced magnetization precession. The first one
is how strong the distraction of the magnetization direction
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from equilibrium by the dynamical strain is for a given
orientation and strength of the external magnetic field. The
distraction is determined by the magnetocrystalline anisotropy
of the FMS layer, which depends on a number of parameters,
including the holes and magnetic spins concentrations, the
lattice temperature, the growth direction, as well as the
presence of a shear static deformation. The MCA charac-
terizes the sensitivity of the magnetic system to the strain
pulse.

The second factor arises from the spectral properties of the
strain pulse. The cumulative effect of the pulse is the excitation
of precession at the frequency of the ferromagnetic resonance.
Naturally, the amplitude of precession is proportional to
the spectral density of the strain pulse components at this
frequency. For the assumed pulse shape, it is determined by
the value of Sω. It is worth mentioning here that for typical
strain pulses the spectrum is quite broad, being extended up to
a few hundred gigahertz.

Finally, the third factor appears because of the interference
of the incident and reflected parts of the strain pulse. As
a result, the precession amplitude averaged over the layer
thickness is given by the oscillating function of the ratio
of the travel time of the strain pulse through the film and
the period of the magnetization precession. Thus for a given
ferromagnetic resonance frequency, it is possible to predict
at which film thickness the excitation of precession is most
efficient.

The maximal amplitude achieved for perpendicular orien-
tation of the external magnetic field is 10−3 and depends on the
three factors summarized above. Experimentally strain pulses
with 10 times larger amplitudes may be injected into the FMS
layer. If, in addition, the pulse duration, the layer thickness, and
the precession frequency are perfectly adjusted to each other,
the maximal estimated amplitude of precession is 5 × 10−2.
For in-plane orientation of the magnetic field, the effect of the
strain pulse is much weaker due to the much smaller anisotropy
coefficients. However, in recent experiments on a variety of
(Ga,Mn)As layers, the precession amplitude was just twice
less for this experimental geometry compared to the case of
a perpendicular magnetic field.19 The difference between the
experimental observation and the results of our analysis may
arise from the uncertainty of the value of A4ε, which is hard to
obtain by steady-state measurements or to calculate accurately
in the frame of a microscopic model. For a larger value of the
cubic magnetoelastic coefficient A4ε than assumed here, we
estimate comparable maximal precession amplitudes for the
in-plane field geometry and most importantly for the case of a
zero magnetic field.

Nevertheless, this value is not enough for strain-induced
switching of magnetization between the in-plane easy axes.
A much stronger effect may be achieved for a shear strain
pulse due to the much larger value of the in-plane uniax-
ial magnetoelastic coefficient A2xy . A strain pulse δεxy of
amplitude 4 × 10−4 may rotate Beff completely toward the
[11̄0] direction for the chosen FMS layer parameters. In this
case the magnetization will precess between the [100] and
[010] directions, and if the strain pulse is properly shaped,
precessional switching of the magnetization in analogy to the
experiments with pulsed magnetic fields2 becomes possible.
The idea of precessional switching by modulating the MCA

of a (Ga,Mn)As layer has been discussed recently41 and has
also been demonstrated,4 although in another material and at
lower frequencies. The analysis of the strain-pulse-induced
magnetization precession for a shear strain pulse may be done
in the same way.

To conclude, we have carried out a comprehensive analysis
of the magnetization precession induced by a strain pulse in
a thin FMS layer. We have chosen a strain pulse shape that
is typical for ultrafast acoustic experiments and numerically
modeled the strain-pulse-induced spatial-temporal evolution
of magnetization. Solution of the Landau-Lifshitz equation in
linear approximation has lead to simple analytical expressions
for the amplitude of the strain-pulse-induced precession both
for any point in the FMS layer as well as averaged over the layer
thickness. We have found that strain-pulse-induced precession
becomes possible when in equilibrium the magnetization is
not parallel to the main crystallographic axes and in-plane
diagonals. This condition is fulfilled in the presence of
shear strain or at external magnetic field, which turns the
magnetization out of these directions. We have numerically
examined two alternative directions of the magnetic field
and analyzed the dependence of the precession amplitude
on the field strength and the static strain components. The
epitaxial strain mainly influences the precession frequency
and in that way slightly affects the precession amplitude. The
shear strain becomes crucially important for in-plane magnetic
fields and mainly determines the precession amplitude in this
geometry.
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APPENDIX : ANISOTROPY COEFFICIENTS
CALCULATION

The anisotropy coefficients Bc,A2ε,A
(1)
4ε ,A

(2)
4ε , and A2xy

for a particular structure, which determine the response of
the MCA to the strain pulse, can be obtained experimen-
tally, e.g., from ferromagnetic resonance or magnetotransport
measurements or calculated using a microscopic theory. A
thorough comparison of experimental and theoretical data
may be found in Ref. 32. Theoretical approaches to the
ferromagnetism of (Ga,Mn)As are largely based on the Zener
mechanism originally proposed for metals42,43 and assume that
the ferromagnetic coupling between the Mn spins is mediated
by free holes.7,8,20 The free-energy density can be calculated
using the effective mass Hamiltonian, which, in addition
to the six-band k · p Luttinger-Kohn and the strain terms,
includes the p-d exchange interaction of the holes and the
Mn spins in the molecular-field approximation.20 According
to this model, the mechanism of the strain-pulse-induced
precession is that the pulse changes the hole spectrum, giving
rise to a hole redistribution among the energy bands. This,
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in turn, results in a change of the magnetization orientation
according to the minimum of the free energy. Using this
model, we calculate the intrinsic anisotropy parameters. The
hole spectrum calculations are done in the limits of T = 0
and B = 0 in accordance with Refs. 11, 20, and 32. The
parameters of the Hamiltonian are chosen as in Ref. 20
with the only difference that the shear deformation compo-
nent is taken into account according to Refs. 44 and 45.
Because the hydrostatic strain (εxx = εyy = εzz) does not
affect the magnetic anisotropy in this model, the additional
relation A

(1)
4ε = A

(2)
4ε between the magnetoelastic constants is

fulfilled.
The p-d exchange interaction is described in Ref. 20 by

the parameter that is proportional to the number of Mn
spins NMn. Because the presence of Mn interstitial defects
reduces the number of active Mn spins, the real number of
Mn spins interacting with the holes is smaller than the one

introduced by the nominal doping xMn = 0.05.7,8 To account
for that, we calculate the anisotropy parameters as a function
of saturation magnetization μ0M0 for a range of Mn ion
concentrations xMn = 0.03 ÷ 0.05 and for a range of hole
concentrations p = (1 ÷ 5) × 1020 cm−3. The best agreement
with the experiment reported in Ref. 5 has been obtained for the
following parameters: xMn = 0.045; p = 4 × 1020 cm−3, and
μ0M0 = 60 mT. The cubic anisotropy field and magnetoelastic
coefficients obtained for these parameters are Bc = −35 mT,
A2ε = 25 T, and A2xy = 152 T. It is difficult to determine
reliably the coefficient A4ε because of its negligibly small
value compared to the other coefficients. For this reason it is
usually taken as zero.11,20,32 It follows from the experimental
data and the dependence of Bc on the lattice-mismatch strain
εzz that A4ε is negative and the value of A4εεzz is an order
of magnitude smaller than Bc.

11,29,40 Therefore, we take
A4ε = −0.5 T for the calculations.
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