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Revealing dipolar coupling with NQR off-resonant pulsed spin locking
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Unexpectedly, we observe a strong Gaussian decay in the nuclear quadrupole resonance signal obtained from
a powder sample of spin-1 nuclei under perturbation by off-resonant radio frequency pulses. Using a model
composed of just pairs of nuclei, we theoretically determine that the decay is due to the homonuclear dipolar
coupling being selectively unrefocused by the pulses. We find that the decay rate measures the dipolar coupling’s
strength and permits us to determine how much of the sample’s linewidth is due to homonuclear dipolar coupling
versus electric-field gradient inhomogeneity. Furthermore, knowing the strength, shape, frequency, and timing
of the pulses that lead to this rapid decay is critical for the purposes of illicit substance detection since it reduces
the signal and can lead to a false negative. We find that the experimental parameters that lead to this Gaussian
decay are explained well by this simple model, which leads to a method for suppressing or revealing the decay.
We confirm our theoretical understanding using two samples of sodium nitrite that vary in their broadening due
to electric-field gradient inhomogeneity by as much as a factor of 3.
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I. INTRODUCTION

Nuclear quadrupole resonance (NQR) spectroscopy is a
promising approach for the detection of quadrupole nuclei
within crystalline and semicrystalline samples since it can be
performed without the complexity of static external electric
or magnetic fields. Useful for relatively low cost and simple
substance detection, e.g., the detection of explosives and
narcotics, NQR is constrained by its characteristically low
frequencies and correspondingly weak signals. One way of
compensating for this poor sensitivity is to apply not just
a single radio-frequency (rf) excitation pulse but a rapid
series of such pulses in order to lock the signal in time.1–5

The idea behind this pulsed spin locking is to continually
refocus the decoherence caused by the various line-broadening
mechanisms. Pulsed spin locking was applied to NQR by
Marino and Klainer6 in the form known as a spin-locked
spin-echo (SLSE) sequence, following the initial successful
application of this sequence to nuclear magnetic resonance
(NMR).7 A SLSE begins with an excitation pulse θ0 to create
the initial signal, followed by a series of refocusing pulses
θ , shifted in phase by 90◦ from the first pulse, which serve
to continually rephase the signal. The sequence is written,
for N refocusing pulses, as θ0x − (τ − θy − τ )N , where 2τ

is the time between the refocusing pulses. The NQR signal
peaks at a time τ after each refocusing pulse to create
an echo train whose behavior varies due to the timing, rf,
strength, and shape of the refocusing pulses, as well as the
broadening mechanisms responsible for the sample’s natural
linewidth. The dominant broadening mechanisms are assumed
to be homonuclear dipolar coupling and electric-field gradient
(EFG) inhomogeneity; the second-order broadening effect of
heteronuclear dipolar coupling,8 which can be significant for
organic compounds, is neglected.

Previous analyses of the signal’s decay focus on its
exponential behavior.6,9,10 However, we unexpectedly found
that, under certain off-resonant conditions, the signal detected
with a SLSE sequence for a powder of spin-1 nuclei begins
with a strong fast Gaussian decay. The conditions under which
this decay appears, as well as its initial intensity, are explained

well with the theoretical argument presented in Sec. II. The
decay is due to the homonuclear dipolar coupling not being
rephased by the refocusing pulses, while EFG inhomogeneity
is rephased. This causes the envelope of the echo train to
behave as though the signal decay was due entirely to the
unrefocused dipolar coupling, an observation similar to that
observed in NMR.11–13 Therefore, the width of this Gaussian
component in time is a measurement of the dipolar coupling
of the sample. To observe the homonuclear dipolar coupling in
NMR requires pulses that give a nutation angle exactly equal to
π or complicated excitation sequences to simulate the same. In
NQR, however, the effective nutation angle of a pulse depends
on the orientation of an individual crystallite with respect to
the direction of the applied rf pulse and, therefore, is not at all
homogeneous across the sample. It is not surprising, therefore,
that although the NMR experiments revealing homonuclear
dipolar coupling are performed with resonant pulses, the
same resonant experiment in NQR does not reveal a similar
result. However, we find, for certain off-resonant pulses, that
the combined nutation angle of the pulse and off-resonance
evolution does give an effective π pulse over the sample.
These conditions allow a robust and direct measurement of
homonuclear dipolar coupling in a powder sample at zero
field.

The ability to measure the homonuclear dipolar coupling
is very valuable for substance detection since its relative
contribution to the linewidth determines the off-resonant
behavior of the signal as discussed in Sec. IV. Due to
temperature variations of the target substance, the NQR
resonance frequencies may only be known to within a certain
range. Therefore, knowing the behavior of the signal as a
function of off-resonance allows for the optimization of the
detection sequence to ensure working in a region of strong
signal for the target substance.

II. THEORY

Building upon a previous framework,14,15 a theoretical
derivation of the signal detected from spin-1 nuclei due to
the time-varying SLSE Hamiltonian is given by examining
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the evolution of the density matrix for a system composed of
two such nuclei: spin a and spin b. Neglecting the degenerate
case, there are three eigenenergies corresponding to the three
eigenstates (|x〉,|y〉,|z〉) of the quadrupole Hamiltonian HQ

for a single spin-1 nucleus. Using the x̂,ŷ,ẑ coordinate axes
defined by the principal axes frame (PAF) of the EFG at
the nucleus,16 with |Vzz| > |Vyy | > |Vxx |, these eigenstates
correspond to the axis of symmetry of the distribution of the
nucleus’s protons. This is shown by calculating the expectation
value, when in an eigenstate of the quadrupole Hamiltonian, of
the quadrupole operator Q

(op)
xixi

∝ 3xixi − r2, which measures
the deviation of the charge distribution from a sphere17

about each axis xi . For example, because 〈x|Q(op)
yy |x〉 =

〈x|Q(op)
zz |x〉 = − 1

2 〈x|Q(op)
xx |x〉 and the off-diagonal terms are

zero, the proton distribution must be symmetric about the x̂

axis since the distributions about ŷ and ẑ are equal. Similar
results can be derived for |y〉 and |z〉.

For the two-spin model, there are nine permutations of
the system’s eigenstate |ab〉, shown in Fig. 1, where a is
the quadrupole eigenstate of spin a and likewise for b. The
quadrupole Hamiltonian can be expressed as

HQ = 2εz|1〉〈1| + (εz + εx)(|2〉〈2| + |3〉〈3|) + 2εx |4〉〈4|
+(εz + εy)(|5〉〈5| + |6〉〈6|) + (εx + εy)(|7〉〈7|
+|8〉〈8|) + 2εy |9〉〈9|, (1)

with εy ≡ [Vzz+(Vxx − Vyy)] eQ

4 , εx ≡ [Vzz−(Vxx−Vyy)] eQ

4 ,

εz ≡ −εx − εy , and Q is the nuclear quadrupole moment. For
simplicity, we assume the PAFs of the two spins are aligned
with each other.

FIG. 1. (Color online) The eigenenergies are shown for spin
a and spin b where |x〉,|y〉,|z〉 correspond to the eigenstates of
the quadrupole Hamiltonian. The allowed transitions due to the
rf Hamiltonian under the secular approximation in the interaction
representation are given for ωrf = ωy . Similarly, the transitions
allowed by the dipolar coupling are highlighted by separating the
degenerate states. No transitions between the sets of gray and black
levels, the V and W levels, respectively, are possible under these
assumptions. Additionally, no transitions involving the single green
level are possible.

Perturbations from the dipolar coupling Hd and rf Hrf

Hamiltonians during the SLSE sequence will govern the
transitions between levels. Hd is expressed as

Hd = μ0

4π

γ 2h̄2

r3
[Ia · Ib − 3(Ia · r̂)(Ib · r̂)], (2)

where μ0 is the permeability of free space, γ is the gyromag-
netic ratio of the nucleus, r = rr̂ is the displacement vector of
the two nuclei, Ia is the angular momentum operator for spin
a with magnetic moment �μ = γh̄Ia and similarly for spin b.
Hrf for a pulse of magnitude B, direction B̂, and phase φ is
given by

Hrf = −γh̄ cos(ωrf t − φ)[B · (Ia + Ib)], (3)

where we assume ωrf is close to ωy ≡ εz−εx

h̄
. While we have

singled out one of the three characteristic NQR frequencies
for specificity, the conclusions are extended easily to the other
frequencies.

The total Hamiltonian Htotal governs the time evolution of
the density matrix 	(t) by the Liouville equation,

	̇ = i

h̄
[	,Htotal], (4)

where Htotal can be rewritten as

Htotal = H0 + U + Hrf + Hd. (5)

Note that the quadrupole Hamiltonian has been split into
two components HQ = H0 + U with H0 ≡ ωrf

ωy
HQ, U ≡

−
ω
ωy

HQ, and 
ω ≡ ωrf − ωy = 2π 
f . This will simplify
the derivation by removing the time dependency of Hrf in the
interaction representation of the dominant Hamiltonian H0.
We add that the dominant effect of the EFG inhomogeneity is
to create a distribution in the operator U among pairs of nuclei.

Entering the interaction representation of H0, Eq. (4)
becomes

˙̃	 = i

h̄
[	̃, U + H̃rf + H̃d ], (6)

where the interaction representation of the density matrix 	̃ ≡
e(i/h̄)H0t 	e(−i/h̄)H0t and H̃ ≡ e(i/h̄)H0tHe(−i/h̄)H0t . As shown in
Fig. 1, transitions are only possible within two sets of four
levels, the W and V levels, under the secular approximation.
Since the set of W levels does not interact with the set of V

levels, only 4 × 4 matrices are needed to represent the action
of an operator on each set of levels. Working in the fictitious
spin-1/2 space (î,ĵ ,k̂), Dirac matrices are used to rewrite
Hrf and HQ, shown in Table I, because of their convenient
commutation relationships. With this notation, HQ becomes

HQ = h̄ωy

(
IW

3 + IV
3

) + εy

2
(4|9〉〈9| + 1W + 1V ), (7)

with a similar expression for Ũ = U . Recognizing Iy = Iya +
Iyb = 2(IV

2 + IW
2 ), and under the secular approximation, it can

be shown that H̃rf is time independent,15

H̃rf = −γh̄B cos ψ
(

cos φ
[
IW

2 + IV
2

] + sin φ
[
IW

1 + IV
1

])
.

(8)

Here, the cos ψ ≡ B̂ · ŷ term is the reduction in the effective
strength of the rf due to its random orientation with the y axis
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TABLE I. The relationship between Hrf and HQ suggests the def-
inition of two fictitious spin-1/2 angular momentum operators IW =
(IW

1 î,IW
2 ĵ ,IW

3 k̂) and IV = (IV
1 î,I V

2 ĵ ,I V
3 k̂), which are expressed in

terms of the Dirac matrices.18 The superscripts indicate the set
of levels the operator acts on, e.g., IW

1 = ∑4
p=1

∑4
q=1[ρ1(p,q) +

σ1(p,q)]|p〉〈q| and IV
1 = ∑8

p=5

∑8
q=5[ρ1(p − 4,q − 4) + σ1(p −

4,q − 4)]|p〉〈q|.

I i
1 I i

2 I i
3

IW ≡ (ρ1 + σ1)/2 (ρ2 + σ2)/2 (ρ3 + σ3)/2
IV ≡ ρ1/2 ρ2/2 ρ3/2

of the PAF of the nucleus’s EFG: a consequence of a powder
sample. For an excitation pulse with phase φ0, the refocusing
pulses will have a phase φ = φ0 ± π

2 in order to lock the signal
created by the excitation pulse.

H̃d under the secular approximation can be expressed as

H̃d/h̄ ≈ αy(|2〉〈3| + |3〉〈2|) + αx(|5〉〈6| + |6〉〈5|)
+αz(|7〉〈8| + |8〉〈7|), (9)

with the coefficients given as αy = μ0

4π

γ 2h̄

r3 [1 − 3(ŷ · r̂)2] and
similarly for αx,αz. While H̃d can also be written in terms of
Dirac matrices, it is not illuminating to the discussion. In its
present form, however, it is easy to see both the flip-flop terms
that drive the interaction and that H̃d commutes with HQ and
U .

The SLSE begins with an excitation pulse, assumed for
simplicity to be a δ-function pulse, to create the initial signal
and is followed by a string of refocusing pulses. During the
delays of duration τ between pulses, H̃total consists of just H̃d

and U . During a pulse, it is assumed that H̃rf is so much
greater than H̃d that the dipolar coupling’s contribution can
be dropped and H̃total ≈ H̃rf + U . As confirmation of the
validity of this approximation for our experiments, we also
numerically solved for the evolution of the signal incorporating
the dipolar coupling during the pulse and found that the
two results were indistinguishable within computational error.
Recognizing that H̃rf and H̃d are independent of time under the
secular approximation, the evolution of 	̃, after N refocusing
pulses of length tp, is

	̃(t = 2Nτ + tpN ) = (DPD)N	̃(t = 0+)(DPD)†N. (10)

Here, we distinguish evolution due to the dipolar coupling,

D ≡ e(−i/h̄)H̃d τ , (11)

from evolution due to the pulse and the free evolution,

P ≡ e(−i/h̄)Uτ e(−i/h̄)(H̃rf +U )tp e(−i/h̄)Uτ , (12)

and define 	(t = 0+) as the density matrix after the excitation
pulse.

The initial density matrix is found using the equipartition
theorem in the high-temperature limit 	0 = 1

9 (1W + 1V +
|9〉〈9| − HQ

kT
). The behavior of the magnetic moments in the

laboratory frame produces the signal given by

〈Iy〉 = Tr[	Iy] = Tr[	̃Ĩy], (13)

with

Ĩy = 2
(
IV

2 + IW
2

)
cos ωrf t + 2

(
IV

1 + IW
1

)
sin ωrf t. (14)

Since the identity matrices and the |9〉〈9| term commute with
P and D and since their trace with IV and IW is zero, those
terms can be ignored in 	0. By a similar argument, they can
also be dropped from U . This allows 	0 to be reduced to

	0 = − h̄ωy

9kT

(
IW

3 + IV
3

)
. (15)

After the initial pulse of duration tp0 and phase φ0, the density
matrix becomes15

	(t = 0+) = 	̃(t = 0+) = h̄ωy

9kT
sin θ ′

0(IW + IV ) · î, (16)

where the nutation angle θ0 = γBtp0 is reduced by the
directional cosine to give the effective nutation angle for a
given crystallite θ ′

0 = θ0 cos ψ . Experimentally, we choose
θ0 = 2.077 since it provides the greatest signal for a powder.19

The components of IW and IV in the k̂ direction have
been dropped from 	(t = 0+) since we subtract subsequent
experiments with φ0 = 0 and φ0 = π to eliminate any signals
that might arise from either the k̂ component or probe ringing
due to the refocusing pulses.

While Eqs. (10) and (16) give the complete solution to the
evolution of the signal, it is instructive to look for symmetries
in the solution, particularly with regard to the frequency and
strength of the refocusing pulse. We, therefore, turn to examine
the operator P of Eq. (12) more closely to note that the
relevant operators within it consist exclusively of the fictitious
spin-1/2 operators given in Table I. This allows P to be
treated as the sum of three rotations where the first and the
third rotations are determined by off-resonance alone and the
middle or second rotation by the effects of the refocusing
pulse and the off-resonance condition. The refocusing pulse
is characterized by the nutation angle θ = γBtp, which for a
given crystallite is reduced by the directional cosine to give
the effective nutation angle θ ′ = θ cos ψ . Therefore, we can
write the three rotations as θ1n̂1 = θ3n̂3 = 2π 
f τ k̂ for the
delays of duration τ ; and θ2n̂2 = θ ′ î + θ1

tp
τ
k̂ (φ = π

2 ) during
the pulse. For a given crystallite orientation, the net rotation
θtotn̂tot is the same for both the W and the V levels and can be
found using quaternions. P becomes

P = eiθtotIW ·n̂toteiθtotIV ·n̂tot , (17)

where

cos
θtot

2
= cos θ1 cos

θ2

2
− sin θ1 sin

θ2

2
n̂1 · n̂2, (18)

and

sin
θtot

2
n̂tot = sin

θ2

2
n̂2 + sin θ1 cos

θ2

2
n̂1

+(cos θ1 − 1) sin
θ2

2
n̂1(n̂1 · n̂2). (19)

The operator P is clearly periodic in θ1 and θ2
2 , so the signal

will be periodic in these as well. In the limit of δ-function
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pulses, where n̂1 · n̂2 = 0 and n̂2 = î, θtot is insensitive to
the sign of the off-resonance, while the k̂ component of
n̂tot flips sign. Due to both the phase cycling of the pulse
sequence and the idealized pulse shape, this flip will not
impact the signal, which will be symmetrical as a function
of off-resonance. In the same δ-function limit, an increase
in θ1 by π should produce the same signal, so the signal
repeats off-resonance with a period of 1

2τ
, which is a periodicity

seen for various sequences.9,10,15,20 Within this periodicity, we
observe extremes in the signal behavior at 
f = m

2τ
, for integer

m, corresponding to θtotn̂tot = θ2 î and at 
f = 1
4τ

+ m
2τ

,
corresponding to θtotn̂tot = π (sin θ2

2 î + cos θ2
2 k̂). Note that,

if θ2 = π , then n̂tot = î, regardless of 
f . This means 	̃,
starting from Eq. (16), is locked along î, making the evolution
due to EFG inhomogeneity refocus under this condition.
However, for θ2 = π

2 , θtotn̂tot varies from π
2 î for 
f = m

2τ

to π ( î√
2

+ k̂√
2
) for 
f = 1

4τ
+ m

2τ
. The latter results in 	̃

experiencing antiresonant kicking as it alternates between the
ij plane and the k axis between echoes. This can produce a
rapidly oscillating initial signal, such as that shown in Fig. 2,
since Tr[IW,V

3 I
W,V
1,2 ] = 0.

The evolution of the signal under D and P for a given net ro-
tation is performed numerically, but under certain conditions,
namely, n̂tot = î, an analytical solution readily is available.14

We briefly review this solution here and characterize the
average echo response for a large number of echoes.

The signal for the nth echo, detected by the same coil that
provided the excitation pulses, is

〈I〉 · B̂ = ŷ · B̂〈Iy〉

= 2h̄ωy

3kT
cos ψ sin ωrf t sin θ0

[
2

3
gW + 1

3
gV

]
, (20)

FIG. 2. (Color online) The signal from a 90-90 SLSE sequence
is shown for both on-resonance (
f = 0) and off-resonance (
f =

1
4τ+2tp

) conditions. The heavy oscillations in the off-resonance signal

are due to the large k̂ component of n̂tot causing 	̃ to oscillate between
the ij plane and the k axis. Data were taken at ωy with τ = 335 μs
and tp = 100 μs with the narrow sample described in Sec. III. Data
here and elsewhere have been normalized to the amplitude of the

f = 0 signal at t = 0.

where

gi = 1 − 2F i sin2 nxi, (21)

xi = cos−1[cos θ i cos di], F i = cos2 θ i sin2 di

1−cos2 θ i cos2 di , and θ i for the

W and V levels is θW = θtot and θV = θtot
2 . Likewise, di , the

angle of the rotation due to dipolar coupling evolution, varies
between the W and the V levels dW = αyτ and dV = (αz −
αx)τ . Focusing on the W levels that provide two thirds of the
signal, we can drop the superscripts. Using the standard sum
for sin2 nx,21 the average signal over a number of echoes N is
proportional to the average value of g,

ḡ = 1 −
(

1 − cos[(N + 1)x] sin Nx

N sin x

)
F, (22)

which reduces to

ḡ ≈ 1 − F (23)

for large N and d � 1. The restriction on the size of d follows
from the need to keep τ small enough for the signal to be well
refocused. For θtot = mπ, F = 1 and the average signal will
disappear. However, for θtot = (2m + 1)π

2 , the average signal
will go to a maximum as ḡ = 1. This corresponds to the full
refocusing of the dipolar coupling evolution. We note that, for
the V levels, the signal disappears for θtot = 2mπ and goes to
a maximum for θtot = (2m + 1)π . Therefore, for θtot = π , the
signal from the V levels will be refocused, while the signal
from the W levels will decay.

The sensitivity of the loss of signal for θtot = π is found
by expanding θtot as π + 
θ where 
θ is considered a
perturbation. This allows F to be approximated as

F ≈ d2


θ2 + d2
, (24)

which provides a simple relationship relating the expected size
of the signal due to the dipolar coupling decay to 
θ and the
size of d,


θ2 =
(

ḡ

1 − ḡ

)
d2. (25)

This says that, for the signal to be half the maximum, 
θ and
d should be equal.

We conclude that the dipolar coupling decay in the W levels
should clearly be observable in two thirds of the signal when

θtot = π ± d and n̂tot = î. (26)

These requirements define the 180◦ condition. While this is
impossible to achieve for all crystallites in the powder, under
certain conditions, namely, 
f = 1

4τ
± m

2τ
, the constraint on

θtot can be met. We previously found, for this off-resonant
condition with δ-function pulses, that θtotn̂tot = π (sin θ2

2 î +
cos θ2

2 k̂). Therefore, the net rotation will be π for the entire
powder sample. The direction of n̂tot can be brought close to
î by choosing the pulse strength such that a large portion of
the signal producing spins experiences a θ2 close to π . This
corresponds to θ = 2 × 2.077. Under these conditions, we can
expect to see a large decay. For those crystallites experiencing
θ2 �= π so that n̂tot �= î, the effect is to reduce the decay rate by
sin2( θ2

2 ) as determined by numerical simulations. This effect
is understood by looking at θ2 = π

2 where the signal only is
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TABLE II. The predicted value of 
ωW , from Eq. (28), and also
Td = 1√

〈
ω2〉W
for both a single crystal and a powder under a 90-180

sequence. In calculating the second moment, all nitrogen within a
sphere of radius 4d , where d is the largest length of the unit cell, were
considered.15

Predicted values of Td (ms)

fNQR (MHz)
√

〈
ω2〉W
2π

(Hz) Single crystal Powder

ωx

2π
= 4.64 21 7.5 8.7

ωy

2π
= 3.60 35 4.5 5.2

ωz

2π
= 1.04 21 7.5 8.7

apparent every other echo because of the antiresonant kicking
as demonstrated in Fig. 2. Since there is no evolution of the
signal absent an echo, the decay rate is decreased by a factor
of 1

2 . Looking at a powder, the apparent decay rate is predicted
to be 86% of the value for the single-crystal result.

For nuclei a, the contribution to the second moment of its
NQR signal due to each neighbor b comes from Vega,8

〈
ω2〉 =
∑

b

1

3

(
dV

ab

)2

τ 2
+ 2

3

(
dW

ab

)2

τ 2
. (27)

Since our sequence refocuses the signal from the V levels, the
observed decay in time is determined by the contribution of
the W levels to the second moment,

〈
ω2〉W =
∑

b

2

3

(
dW

ab

)2

τ 2
, (28)

where

∑
b

(
dW

ab

)2

τ 2
=

∑
b

α2
yab

≡ α2
yeff

. (29)

The last line defines an effective dipolar coupling frequency
αyeff that takes the multispin nature of the system into account.
Using calculations performed by Sauer and Klug for sodium
nitrite,15 the predicted width of the Gaussian component of the
echo train Td follows, with the results shown in Table II for
both a single crystal and a powder.

III. EXPERIMENTAL PROCEDURE

Experiments were performed on two powder samples of
sodium nitrite NaNO2 encased in wax to reduce piezoelectric
effects: a 32-g sample (97.1% purity) manufactured by Fisher

Scientific in 1979 and a 27-g sample (99.5% purity, superfree
flowing) manufactured by Sigma-Aldrich in 2005. Despite
having a lower purity, the quarter century older sample
had a narrower linewidth, measured with a free-induction
decay (FID) signal obtained after a single-excitation pulse
due to a smaller EFG inhomogeneity. This was because of
the considerably larger crystallites of the sample as was
demonstrated by grinding the narrow sample with a mortar
and pestle and finding the linewidth was now comparable
to the broader linewidth of the Sigma-Aldrich sample. We,
therefore, call the Fisher Scientific sample the narrow sample
and the Sigma-Aldrich sample the broad sample with their
linewidths given in Table III. This variation in linewidth
due to crystallite size explains, at least in part, the variation
in linewidths reported in the literature for sodium nitrite at
room temperature.22–25 Another group has demonstrated a
similar dependency of NQR linewidth on crystal size for other
substances.26

All experiments were carried out at room temperature
using a Tecmag-based spectrometer (Tecmag, Houston, TX).
A homebuilt probe with a coil that encased the sample was
used and was tuned to the various NQR frequencies. Unless
stated otherwise, the quality factor Q was typically 20 or less,
and the rf input power was 1000 W or less. As discussed in
more detail in Sec. III B, the low-quality factor was chosen to
create pulses that approached an idealized square pulse.

The experiments consisted of performing pulse sequences
on each sample at various off-resonances. A typical trial
consisted of �64 scans at a given off-resonance in order to
provide a useful signal-to-noise ratio (SNR). Before a trial, it
was necessary to measure the exact NQR frequency with an
FID to ensure that the correct off-resonance was used. After the
NQR frequency was found, another FID was taken at 
f = 0,
and the signal was backprojected to find its magnitude at t = 0.
This value provided the normalization coefficients of the SLSE
signals that were used in the figures.

Two types of pulse sequences were used. The 90-90
SLSEs consisted of an optimal excitation pulse θ0 = 2.077
corresponding to a π

2 pulse for a powder and refocusing pulses
of the same strength. The second sequence, the 90-180, had the
same excitation pulse as the 90-90, but with a refocusing pulse
that produced twice the rotation θ = 4.154 corresponding to a
π pulse for a powder. Both the excitation and the refocusing
pulses for all 90-90 sequences used pulse lengths of 100 μs
with the same rf amplitude. For the 90-180 sequences, a fixed
rf amplitude was used for each pulse, but the refocusing pulse
was twice as long as the excitation pulse. For ωx and ωy , the
excitation pulse was 50-μs long, while the ωz experiments

TABLE III. The observed full width at half maximum linewidths for both samples at the three NQR transition frequencies show that the
broad sample has a larger linewidth for all three frequencies. The EFG component is found by decomposing the linewidth’s Voigt profile into
the predicted Gaussian (dipolar coupling) and Lorentzian (EFG) components. Measurements for all linewidths are accurate to within 20 Hz.

Narrow sample Broad sample

fNQR Total width (Hz) EFG component (Hz) Total width (Hz) EFG component (Hz)

ωx 185 125 390 361
ωy 154 97 309 280
ωz 143 67 215 163
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used 100-μs pulses due to limitations in the amplifier that
required weaker pulses at the lower frequency. For δ-function
pulses, the signal’s off-resonance behavior is predicted to have
a period of 1

2τ
as discussed above. For finite pulses, we observe

experimentally that this periodicity is close to 1
2τ+tp

≡ 1
2τ ′ ,

particularly for the 90-90 sequences. For this reason, our
experimental graphs, where the rf frequency is varied, are
expressed in terms of 
f τ ′. For the ωx and ωy transitions, data
were taken between ± 2

τ ′ . Due to the low SNR and electronics
limitations, data for ωz were only taken on-resonance and at

f = ± 1

4τ ′ .

A. Experimentally achieving the 180◦ condition for finite pulses

All observed echo trains were fit to the function

S(t) = A

{
pg exp

[
−1

2

(
t

Td

τ

τ ′

)2 ]
+ [1−pg] exp

[ −t

T2e

] }
,

(30)

where A is amplitude at t = 0, T2e is the long-term decay con-
stant, pg is the percent of the signal due to the Gaussian decay,
and Td is the width of the Gaussian decay associated with the
strength of the dipolar coupling. The addition of the τ

τ ′ term to
the Gaussian component is because there is no evolution due
to the dipolar coupling during the finite pulse lengths.

The experimental conditions, with finite pulses, that lead to
a strong Gaussian component were found using Eq. (18) and
the limit θtot = π ± d of the 180◦ condition. This led to the
constraint that∣∣∣∣cos θ1 cos

θ2

2
− sin θ1 sin

θ2

2
n̂2 · k̂

∣∣∣∣ � d

2
. (31)

This equation must be satisfied for a large portion of the
sample in order to see the rapid decay in the signal due to the
dipolar coupling. But θ1,θ2, and n̂2 · k̂ = θ1

θ2

tp
τ

all vary among

nuclei due to the EFG inhomogeneity, while θ2 and n̂2 · k̂ also
vary with the random alignment of the rf with respect to the
crystallite’s orientation. In order to satisfy the inequality, it is
necessary to keep both the cosine (cos θ1 cos θ2

2 ) and the sine
(sin θ1 sin θ2

2 n̂2 · k̂) terms small. The conditions that make this
possible for a large portion of the sample determine the pulse
and sample characteristics necessary to observe the decay due
to dipolar coupling.

The sine term is small for all crystallites when

|n̂2 · k̂| � d

2
, (32)

which is easily met when the value of tp
τ

� 1. The cosine term
is small for all crystallites when | cos θ1| � d

2 . If 
f represents
the average off-resonance, then θ1 = 2π (
f + δfEFG)τ where
δfEFG is a nuclei’s additional off-resonance due to EFG
inhomogeneity. The cosine inequality fully is satisfied when

f = 1

4τ
+ m

2τ
and 2π δfEFG � αyeff

2 . This shows that the 180◦
condition is met for a majority of the sample when the
linewidth broadening due to EFG inhomogeneity is less than
or equal to that due to W -level dipolar coupling. This condition
is unnecessarily strict for pulse strengths where θ2 ≈ π ,
corresponding to a 90-180 sequence as shown experimentally

with a sample where the linewidth broadening clearly is
dominated by EFG inhomogeneity.

In addition to the requirement that θtot be close to π , the
direction of the net rotation must be close to î in order to
both avoid heavy oscillations and to accurately measure the
dipolar coupling. Examining Eq. (19) under the assumption
θtot = π reveals that n̂tot ≈ î when θ2 ≈ π and n̂2 ≈ î. The
latter condition can only be met when the rotation due to
off-resonance during the pulse is kept small. This requires

f = ± 1

4τ
when τ is small, but allows 
f = 1

4τ
+ m

2τ
as τ

increases. Together, these constraints define the experimental
conditions under which the strongest decay due to the dipolar
coupling should appear, a 90-180 sequence and 
f = ± 1

4τ
. In

addition to the frequency and strength of the pulse, the timing
of the pulses must be chosen with respect to the duration in
time of the pulses. Since the finite-pulse lengths can inhibit
the decay, the minimum τ to operate at is derived from the
requirement that |n̂2 · k̂| � d

2 . This leads to the relation τ 2
min �

|θ1|
θ2

2tp
αyeff

≈ tp
αyeff

for the 90-180, which is in good agreement with
the experimental results shown in Sec. IV.

B. Effect of nonideal pulses

While the previous derivation would suggest covering all of
the experimental parameters under which the 180◦ condition
is met for a large portion of a sample, some preliminary
experimental work suggests a more complex picture. When
performing 90-180 sequences with a high Q(180) probe, we
obtained asymmetric average signals, such as those shown
in Fig. 3, most noticeably at the 
f = ± 1

4τ ′ conditions and
for short values of τ . This asymmetry was never observed
for any 90-90 sequence. Since achieving the 180◦ condition
leads to a rapid decay in signal strength for the echo train,
the asymmetric data imply that the percentage of signal from
spins experiencing the 180◦ condition varies with the sign of
the off-resonance.

To understand the asymmetry’s source, the shapes of the
actual refocusing pulses were used to model the behavior

f

FIG. 3. (Color online) A plot of the average signal over 125 ms
versus 
f τ ′ for fixed τ (335 μs) shows that the asymmetry between

f = ± 1

4τ ′ was reduced by lowering the Q of the probe. Data were
taken with a 90-180 sequence at ωy with the broad linewidth sample
and tp = 100 μs.
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FIG. 4. (Color online) For 
f = 0, the (a) echo trains with high Q (QH , hollow red squares) and low Q (QL, black circles) are similar,
despite their respective pulse shapes, (b) and (c), having very different real (dashed lines) and imaginary (green solid lines) components. This
is understandable in view of the similarities of the calculated distributions of the initial signal as a function of θtot given in (d) and (e) for the
pulse shapes to their left. The dashed black vertical lines correspond to the boundaries for θtot = π ± d that determine the percentage pth of the
echo train due to a Gaussian component. This and the following data in this section are from a 90-180 sequence applied to the narrow sample
at ωy, τ = 335 μs, and tp = 100 μs.

of a powder during a SLSE sequence. The pulse shapes
were obtained by measuring the strength of the magnetic
field in the main coil with the voltage induced in a sniffer
coil located several centimeters away. Using the model of
Sec. II, the percent of the initial signal due to the spins
experiencing an effective 180◦ rotation pth was calculated with

examples shown in Figs. 4 and 5. We found pth perfectly rank
ordered the normalized average signal size at the 
f = ± 1

4τ ′
condition across multiple configurations of the probe as shown
in Fig. 6(a). Additionally, fitting the echo train revealed pth

roughly predicted the Gaussian contribution associated with
the percentage of spins experiencing a 180◦ rotation as shown

FIG. 5. (Color online) (Left) The (a) echo trains show that, for a high Q (QH) probe, a strong Gaussian component appears at 
f = + 1
4τ ′

(blue squares) whose width is somewhat below the prediction from Table II. This requires further investigation. This component was absent
for 
f = − 1

4τ ′ (hollow red squares) and for both low Q (QL) trains at 
f = + 1
4τ ′ (solid black circles) and 
f = − 1

4τ ′ (hollow black circles).
(Middle) Comparing pulse shapes, the (c) QL configuration has a different real (dashed lines) component compared to the QH configurations
for both (b) 
f = − 1

4τ ′ and (d) 
f = + 1
4τ ′ . Additionally, its small imaginary component (green solid lines) is less pronounced than both

the QH 
f = − 1
4τ ′ pulse and the QH 
f = + 1

4τ ′ pulse, which has a large imaginary component. (Right) Corresponding to each pulse, the
distribution of the initial signal as a function of θtot was calculated. For the QL pulses, the distribution does not depend on the sign of 
f , which
is why the echo trains for 
f = − 1

4τ ′ and 
f = + 1
4τ ′ are very similar. In comparison, for the QH pulses, the combination of the off-resonance

and the nonzero imaginary component works to reduce the distribution near θtot = 180◦ for 
f = − 1
4τ ′ while substantially increasing it for

the 
f = + 1
4τ ′ pulse distribution. For the former, the result is to reduce the strength of the observed Gaussian component compared to the QL

trains. In the latter, the combination leads to the very strong decay.
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FIG. 6. (Color online) (a) Average signal and strength of the Gaussian contribution of the (b) echo train versuspth, the calculated percent
of the initial signal due to spins experiencing a 180◦ net rotation. For both values, pth does an excellent job rank ordering, validating the
significance of the 180◦ condition to the behavior of the echo train. The data come from several probe configurations. With a high Q (180),
the probe was tuned to fNQR (red), fNQR + 1

4τ ′ (cyan), and fNQR − 1
4τ ′ (black). The hollow black data are at low Q (8) with the probe tuned to

fNQR. Data taken at 
f = 1
4τ ′ are indicated by the upward triangles; 
f = − 1

4τ ′ , downward triangles. Data were taken over 125 ms.

in Fig. 6(b). These results confirmed that the asymmetry of
the average signal was due to variations in the distribution of
spins experiencing the 180◦ rotation as a function of the pulse
shape.

By setting the imaginary component of the actual pulses
to 0, the model produced symmetrical distributions of θtot for
the high Q pulses at 
f = ± 1

4τ ′ ; these also conformed to the
distributions from the low Q pulses at 
f = ± 1

4τ ′ . To see
how the presence of a nonzero imaginary component could
produce the asymmetric distributions, a fake pulse, shown in
Fig. 7, was created that roughly mimicked the real pulse.

The net rotation due to this fake pulse at 
f = ± 1
4τ ′ , i.e.,

the point of the major asymmetry in the data, was found by
breaking the pulse into two nearly identical rotations, θan̂a and
θbn̂b differing only in the sign of their imaginary components,

n̂a = Rî − I ĵ + F k̂

θa

, n̂b = Rî + I ĵ + F k̂

θa

, (33)

θa = θb =
√

R2 + I 2 + F 2, (34)

FIG. 7. (Color online) The real (black) and imaginary (red)
components of an actual (dashed lines) and simplified (solid lines)
refocusing pulse shape. The latter is useful for understanding
the significance of the imaginary component to achieve the 180◦

condition.

where F = θ1
tp
τ

. Using quaternions to combine θan̂a and θbn̂b

as a single rotation θ2n̂2 (Refs. 27 and 28) reveals n̂2 · k̂ = 0,
making θtot = π via Eq. (18), when

F cos
θa

2
= RI

θa

sin
θa

2
. (35)

With a nonzero imaginary component, Eq. (35) can only
be satisfied for one sign of the off-resonance. This explains
many observed phenomena. It explains the origin of the
asymmetry, because the 180◦ condition now depends on
the sign of the off-resonance. It explains why dropping the
Q reduced the asymmetry because it forced the imaginary
component to zero. And finally, it explains why the asym-
metry was reduced with τ : as τ increases, F approaches
0, and Eq. (35) no longer is satisfied for either sign of off-
resonance.

IV. EXPERIMENTAL RESULTS

Examples of theoretical and actual signal behavior for
various experimental parameters are shown in Fig. 8 for the
narrow sample at frequencies close to ωy . Since the model does
not include the long-term T2e effects, its accuracy is limited
in the long-term behavior for both sequences. For this reason,
we compare the initial signal to theoretical calculations that
have been scaled to match the data. The rapidly alternating
initial signal near 
f = 1

4τ ′ + m
2τ ′ for the 90-90’s due to the

antiresonant kicking is captured by the model. Additionally,
the conditions where dipolar coupling is not refocused for a
large portion of the sample are seen in the undulating signal
of the 90-180’s near the 
f = 1

4τ ′ + m
2τ ′ locations. The period

of the undulations depends on the second moment in Table II
and is given as 2π

αyeff

τ ′
τ

. For small τ , these undulations are weak
as the finite pulses prevent a large portion of the sample from
experiencing the 180◦ condition. For larger τ , as the ratio
of tp to τ makes the pulses appear more like δ-functions,
the oscillations become more apparent as expected. These
undulations are not observed in the corresponding actual
signals since they manifest themselves as a Gaussian decay
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FIG. 8. (Color online) The (a)–(c) theoretical and (d)–(f) experimental data are compared with off-resonance for both 90-90 and 90-180
sequences, the left and right halves of each image, respectively, for three values of τ . The model for a powder with finite pulses is from Sec. II.
The fit parameters A (green squares) and pg (blue triangles) of the observed signal, the average echo (red circles) over the 2π

αyeff

τ ′
τ

period of the

dipolar coupling for ωy , and the predicted average echo (red lines) are given in (g)–(i). The fit parameters T2e (gray diamonds) and Td (blue
circles) are given in (j)–(l).

in the signal due to the variations in the phasing of the signals
from the interaction of a large number of nuclei, as opposed
to just a pair, as is modeled.

While not shown in Fig. 8, all of the experimental data were
symmetrical as a function of off-resonance as predicted for a
low Q probe. The 90-90 signals were periodic as a function
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of off-resonance in excellent agreement with the model. The
peaks correspond to 
f = m

2τ ′ where the magnetization is
locked along the î direction and the troughs to 
f = 1

4τ ′ + m
2τ ′

where the signal is lost due to the antiresonant kicking. By
increasing τ , the sharpness of the oscillations is reduced
since the linewidth of the sample begins to approach 1

4τ ′ . As
this condition is met, the signal is no longer dominated by
either the on- or the off-resonance effects but by a mixture
of the two. Similarly, the larger EFG component of the broad
sample reduces the variation in signal behavior with frequency
compared to the narrow sample for the same experiments.

The 90-180 data, again agreeing well with the model,
show a similar periodicity as the 90-90 data in off-resonant
behavior but with notable differences. For instance, while
having roughly the same period, the local maxima and minima
are not all at the 
f = m

4τ ′ conditions. This is because strong
dips in the average signal are not primarily due to signal lost to
antiresonant kicking but to achieving the 180◦ condition. For
low τ and small 
f , the dips are fairly small because the 180◦
condition is hard to achieve at low τ with finite pulses. But as τ

is increased, a strong decay is observed first at the 
f = ± 1
4τ ′

condition and then later at 
f = 1
4τ ′ + m

2τ ′ as expected.
Fitting the data to Eq. (30), it was found that A roughly

tracked the average signal for all 90-90’s. This was because
there was no rapid decay in the echo train due to nuclei
achieving the 180◦ condition. For the 90-180’s, however, A

tracked the average signal well for short τ but diverged for
larger τ as the Gaussian component of the decay rapidly drove
the average signal down. This is apparent at 
f = ± 1

4τ ′ for
τ = 827 μs. As τ increased, the separation between A and the
average echo became noticeable across all off-resonances as

more of the signal experienced the 180◦ condition. This same
explanation is used for the behavior of pg for 90-180’s. For
low τ, pg is close to zero since the 180◦ condition is met for
only a small subset of spins. Then, as shown in Fig. 9, near the
predicted value of τmin at 
f = ± 1

4τ ′ , pg becomes substantial
as the 180◦ condition is met for a larger percentage of the
sample, approaching the two-thirds value predicted by Eq.
(20). As pg plateaus for large τ , it becomes significant across
the entire range of off-resonances as the EFG inhomogeneity
ensures a significant fraction of the spins experience the 180◦
condition, regardless of the off-resonance of the pulses.

While Fig. 8 focuses on the narrow sample at ωy , in Fig. 9,
it is shown that similar behaviors for 90-180 sequences at
|
f | = 1

4τ ′ appear across all three NQR frequencies, even
for a sample with a much larger EFG contribution to its
linewidth. In particular, the values of pg for |
f | = 1

4τ ′ are
consistently higher than for 
f = 0 since more of the sample
experiences the 180◦ condition. This also explains why the
narrow sample consistently has a larger pg for |
f | = 1

4τ ′ than
the broad sample but a smaller value for 
f = 0. Additionally,
regardless of the contribution of the linewidth due to EFG
inhomogeneity, pg approaches a constant value for |
f | = 1

4τ ′
as τ increases. The value of τmin, where this plateau is
expected to arise, comes from the argument in Sec. III A and
is marked by a vertical black line in Fig. 9. Beyond τmin,
the measurements of Td converged, as shown in Figs. 8 and 9,
regardless of the sample or the off-resonance of the pulses. For
ωx and ωy , the converged values agree well with the theoretical
values, after accounting for the effects of a powder sample.
However, for both ωy and ωz, the converged value was slightly
higher than expected. It is known that the NO2 ion in sodium

FIG. 9. (Color online) The percent of the decay in the echo train due to the (a)–(c) Gaussian component pg and (d)–(f) width of the Gaussian
contribution Td as a function of τ for 90-180 sequences applied at the three transition frequencies. Values were obtained by fitting the echo
trains of 90-180 sequences with Eq. (30). Measurements were made for both the narrow (black triangles) and the broad (red squares) samples
for |
f | = 1

4τ ′ (solid lines, symbols) and 
f = 0 (dashed lines, hollow symbols). The vertical line marks τmin, the theoretical minimum τ to
observe a strong decay due to the dipolar coupling at |
f | = 1

4τ ′ . This prediction does not depend on EFG inhomogeneity, as is experimentally
validated, since the plateau for the narrow sample matches that of the broad sample. Additionally, the predicted value accurately accounts for
the impact of doubling the refocusing pulse length needed to perform the ωz experiments. The measurements of Td converge, regardless of the
EFG inhomogeneity of the sample, close to the predicted values (gray lines). The average Td , for τ > τmin and 
f = 0, ± 1

4τ ′ , is given at the
top of (d)–(f).
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nitrite exhibits rapid torsional oscillation about the x axis of the
PAF.29 This would result in a reduction in the dipolar coupling
strength for the ωy and ωz transitions.

As shown in Fig. 8, for the 90-90’s, there were very few off-
resonance conditions at low τ that led to a significant Gaussian
contribution to the echo train since only a small portion of the
nuclei experience the 180◦ condition. As τ increased and the
behavior of the signal became more uniform with frequency,
Td converged to a fixed value that was three times longer than
the single crystal’s value. A naive theoretical adjustment that
ignores both the EFG inhomogeneity and the powder average
also predicts a lengthening of Td but only by a factor of 2.

For a given τ , the measurements of T2e varied by a factor of 3
within the range of off-resonances tested, a result comparable
to the variations observed by Gregorovic et al. using PNT.9

However, in general we observed longer T2e’s for 
f = m
2τ ′

than for 
f = 1
4τ ′ + m

2τ ′ , in contrast to Gregorovic et al.,
perhaps due to their focus on the long-time echo data and short
τ . Our general trend in T2e, as a function of τ , was the same for
all transition frequencies and is shown for ωy in Fig. 10. While
our simple model does not predict the long-time behavior, T2e

does seem correlated with the short-time behavior caused by
the 180◦ condition and antiresonant kicking. For example, the
90-90 sequence at 
f = 0 predominantly produced a longer
T2e than the other sequences for the same τ in correspondence
with the refocusing the W levels. This is in contrast to the 90-
180 sequence where the W levels are not refocused and there is
less signal due to achieving the 180◦ condition, particularly for
|
f | = 1

4τ ′ and the narrow sample. Additionally, for the 90-90
at |
f | = 1

4τ ′ , the antiresonant kicking causes a reduction in
the initial signal.

The dependency of T2e on τ was found by fitting the T2e

values for each sequence to the equation,

T2e(τ ) = T2e(τ = 400 μs)

(
τ

400 μs

)−x

. (36)

The fit parameters of Table IV show that T2e ∝ τ−x with
0.18 � x � 0.61. While this is in contrast to the τ−5 depen-
dency observed by Marino and Klainer,6 who operated at 77 K,
a weaker dependency has been observed by Mikhaltsevitch
and Rudakov at room temperature.10 Additional work with
sodium nitrite at 77 K suggests a more complex dependency
between T2e and τ .2 Interestingly, it was found that the
values of T2e(τ = 400 μs) decreased linearly with fNQR for
the on-resonant sequences.

For the real-world detection of illicit substances using NQR,
the exact resonance frequency of the sample may only be
known to within a certain range. This is due to the variation

FIG. 10. (Color online) The value of T2e for 90-180 (black
squares) and 90-90 (red triangles) sequences is consistently greater
when 
f = 0 (solid line and symbols) than for |
f | = 1

4τ ′ (dashed
line and hollow symbols). The 90-90’s consistently produce longer
T2e’s than 90-180’s at the same off-resonance condition. For long τ ,
both sequences on- and off-resonance measurements converge as the
distinction between on- and off-resonance signals disappears due to
the EFG inhomogeneity. This also explains why the data for the broad
sample show less variation between 
f = 0 and |
f | = 1

4τ ′ . Data
are from the ωy transition.

of the NQR frequencies with temperature, which can be
several hundred hertz per degree for a substance such as RDX
(cyclotrimethylenetrinitramine).30 To prevent false negatives,
a detector operator would want to know that a useful signal can
be detected at all frequencies within that range. To compare
the sequences as functions of off-resonance, an optimal SNR
was calculated by integrating Eq. (30) over the time found to
maximize the SNR with the results shown in Fig. 11. This
allows us to define a useful signal as one achieving some
minimum SNR. For short τ , the minimum possible SNR for
the 90-90 sequence, over the given off-resonance domain, is
considerably less than the minimum possible SNR of the 90-
180 sequence, for both the narrow and the broad samples. This
is because the 90-90 sequence triggers a larger loss of signal
due to antiresonant kicking compared to that lost due to the
180◦ condition, which is inhibited at low τ due to finite pulses
for the 90-180. For the intermediate τ , the two sequences
share the same minimum SNR for the narrow sample, as the
signal lost to the 180◦ condition and the antiresonant kicking
become comparable between sequences. However, the 90-90
sequence is now slightly preferable for the broad sample at this
intermediate τ . This shows that the optimal detection sequence
for a given τ is a function of the relative strengths of the two
dominant line-broadening mechanisms. Finally, we note that,
at high τ , the 90-90 sequence is stronger for both samples with
considerably less variation in amplitude with frequency for the
broad sample due to its larger EFG inhomogeneity.

TABLE IV. The τ dependency of T2e was found by fitting the observed values of T2e at each τ value to Eq. (36) for 
f = 0 for both
90-180 and 90-90 SLSEs with the narrow sample.

Narrow sample 90-180 Narrow sample 90-90

T2e(τ = 400 μs) ms x T2e(τ = 400 μs) ms x

ωx 83.3 ± 1.9 0.19 ± 0.03 96.5 ± 2.3 0.18 ± 0.03
ωy 121.4 ± 9.4 0.61 ± 0.11 128.8 ± 8.3 0.37 ± 0.08
ωz 206.5 ± 9.1 0.30 ± 0.07 218.1 ± 8.4 0.33 ± 0.05
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f f f

FIG. 11. (Color online) The optimal SNR calculated by integrating Eq. (30) for both 90-90 (red) and 90-180 (black) sequences with the
experimentally derived fit parameters at ωy for both the narrow (top row) and the broad (bottom row) samples. The integration was performed
from t = 0 to the time that maximized the SNR. While finite pulses would reduce the amount of time that signal could be acquired, this
adjustment is small and is not included. SNRs are normalized to the 90-90, 
f = 0, τ = 335 μs, and tp = 100 μs signals for each sample.
The increased EFG inhomogeneity of the broad sample averages the variation between the maxima and the minima.

V. CONCLUSION

Despite the naive simplicity of the two-spin model, we have
shown that it still qualitatively predicts the short-time behavior
of the spin-locked signal as a function of off-resonance.
Furthermore, the model permits us to identify the conditions
under which we would expect a significant fraction of the
signal to exhibit decay due to dipolar coupling alone. Namely,
when the 180◦ condition is met for a large portion of the
sample, the NQR signal experiences a rapid initial decay. To
achieve this for a powder sample, one should operate with a
90-180 sequence, with an off-resonance 
f = ± 1

4τ ′ , and with

pulse spacing governed by τ �
√

tp
αyeff

. We have shown that

operating with these conditions initially produces a Gaussian
decay whose width measures the dipolar coupling between
the nitrogen nuclei as shown in NaNO2. Our measurements
agree within 15% of the theoretical prediction after accounting
for the powder nature of the sodium nitrite samples, and we
believe that motion may account for part of the deviations in the
experimental values from the theoretical values. Successfully
performed for the three transition frequencies, this is a robust
measurement that does not vary with the EFG inhomogeneity
of our samples, nor does it require an exact π pulse across the
sample as required in NMR.

For the purposes of substance detection, achieving the
180◦ condition for a large portion of the sample is to be
avoided since it reduces the observed signal. However, the

same conditions that can trigger the Gaussian decay also can
trigger a loss of signal due to the antiresonant kicking with
a 90-90 sequence. By knowing the strength of the dipolar
coupling relative to the measured linewidth, it is possible to
choose between these sequences to minimize the losses from
their off-resonance effects. For substances where the dipolar
coupling is unknown, this is not a problem. By simply running
90-180 sequences at 
f = ± 1

4τ ′ with ever increasing τ , the
dipolar coupling eventually should reveal itself, allowing an
accurate measurement to be made.

For short τ , the 180◦ condition is suppressed for 90-180
sequences at 
f = ± 1

4τ ′ due to the large value of the ratio
of the pulse length to τ . This is beneficial for substance
detection. However, we found that refocusing pulses with a
definite imaginary component can overcome this constraint.
The sensitivity of the signal to the sign of the imaginary
component also allows the 180◦ condition to be suppressed for
these sequences. This suggests further work with composite
pulses designed to control off-resonant behavior by either
suppressing or revealing evolution due to homonuclear dipolar
coupling.
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