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Geometrical effect on the non-Abelian spin-orbital gauge field of a curved surface
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The geometrical effect of a two-dimensional electron gas system with the Rashba and Dresselhaus spin-orbital
interactions on a curved surface is studied; it corresponds to a non-Abelian gauge field and a scalar field. The
behavior of electrons with spin on a curved space can be transformed into that of a simple system of an electron
with spin on a flat surface with a geometrical metric tensor. In addition to the dynamic phase of traveling
electrons on a flat surface, a geometrical phase induced by curved space is also observed, and this phase can be
demonstrated by use of the path integral. Therefore, the spin-rotation operator and quantum loop of electrons
with spin on a curved space are obtained. The induced phases on three curved spaces with flat, cylindrical, and
spherical geometry are calculated, and the roles of space curvature in spin precession are also analyzed.

DOI: 10.1103/PhysRevB.84.214423 PACS number(s): 72.25.Dc, 71.70.Ej, 73.23.−b

I. INTRODUCTION

The spin-orbital (SO) interaction in a two-dimensional
electron gas (2DEG) has attracted great interest not only
for its profound fundamental spin physics but also for its
wide applications in spintronic devices.1,2 The dominant SO
couplings in planar semiconductor heterostructures are the
Rashba and Dresselhaus effects, and they offer possibilities
of controlling the spin without an external magnetic field. The
former is due to structure inversion asymmetry,3,4 which can
be adjusted by the gate voltage,5–8 while the latter is due to
bulk inversion asymmetry9 with its strength being material
specific.

Earlier studies10,11 showed that SO coupling including
the Rashba and Dresselhaus terms can be regarded as a
non-Abelian gauge field SU(2), or the Yang-Mills field.12 The
SU(2) gauge field is due to the spin-dependent phase of the
traversing electrons. The spin-dependent phase depends only
on the track of the path and is independent of the traveling
speed of the electrons. Therefore it is usually called the
geometrical phase or Berry phase.13 The linkage of the SO
interaction and the non-Abelian SU(2) gauge offers an elegant
method to study a lot of interesting physical phenomena in
2DEGs, such as the persistent spin helix and spin filter.10,14,15

Complicated spin dynamics due to the spin-orbit coupling
can then be easily understood in terms of a theory where
the coupling is treated as a non-Abelian gauge field, and the
corresponding formalism can be used to study the single-
electron spin transport in 2DEGs and spin manipulation in
quantum dot systems.15–24

When applied to the 2DEG, the approach based on a formal
SU(2) gauge invariance of the spin-orbit Hamiltonian proved
that the equilibrium spin current can be gauged away if the
spin-orbital field is a pure gauge.25 Until now, most studies
of the spin electrons have been concentrated on planar 2D
systems.26 However, there are also a number of studies on
the behavior of electrons on a specific shape of 2D surface,

such as cylindrical27–29 and spherical30,31 surfaces. Curved
2D systems have attracted a lot of recent interest,27–31 and
the Rashba spin-orbital interaction (RSI) and Dresselhause
spin-orbital interaction (DSI) have been used to study electrons
on a cylindrical surface.32 Even though a lot of experiments on
spin transport in nanotubes and nanopillars have been carried
out, only a few theoretical studies on the Hamiltonian with
RSI and DSI on a curved surface have been presented.33

The reported results indicate that the geometrical effects on
spin-polarized electrons in a curved space cannot be neglected,
and the exact analysis of electrons with spin on a curved
surface deserves further studies. In particular, it remains to
be clarified whether or not the spin-orbit field can still be
completely removed by a gauge transformation on a curved
surface.25 To fully understand the behavior of electrons with
spin in a 2DEG with a curved space, the geometrical effect
on spin-polarized electrons on a curved surface is another
important effect of spin-polarized electrons to be clarified,
besides the spin-dependent geometrical phase on a flat
surface.

Here we take into account a curved surface which is
endowed with a metric tensor, and we can explicitly study
the non-Abelian spin-orbital gauge field on all kinds of
two-dimensional topological surfaces. In other words, the
travel of electrons with spin on any curved surfaces can
be mapped into a flat planar structure with the help of the
geometrical metric tensor. This paper is organized as follows.
In Sec. II we construct the non-Abelian spin-orbital gauge field
on curved surfaces. Based on the Hamiltonian with Rashba and
Dresselhaus spin-orbital interactions on a curved surface, the
spin-rotation operator and quantum loop are derived by use of
the path integral. A linear approximation of space curvature
is used in Sec. III, and the geometrical effect of curvature
can be rigorously treated as a weak-field correction on a flat
surface. In Sec. IV we study the behavior of spin precession
on curved surfaces, and two examples are explicitly examined.
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As the curvature of the curved space increases, the precession
period of spin-polarized electrons varies, suggesting that the
spin-polarized electrons experienced an additional effective
geometric field due to the surface curvature. Also, the
different behavior of electrons with spin traveling on flat,
cylindrical, and spherical surfaces clearly shows the role of
the space curvature. Finally, the conclusions are given in
Sec. V.

II. FORMALISM ON A CURVED SPACE

The Hamiltonian of an electron with the RSI (Refs. 5 and
34) and DSI (Refs. 35 and 36) in three dimensions is given by

H = p2

2m
+ α

h̄
(�σ × �p) · n̂ − β

h̄
�σ · �χ (1)

with

�χ =

⎛⎜⎝ 2nx(nypy − nzpz) + (
n2

y − n2
z

)
px

2ny(nzpz − nxpx) + (
n2

z − n2
x

)
py

2nz(nxpx − nypy) + (
n2

x − n2
y

)
pz

⎞⎟⎠ (2)

(see Appendix A).
In order to study the geometrical effect induced by a

curved surface, we assume that the spin-polarized electron is
constrained on a 2D curved surface with normal unit vector. For
the general case with the curved surface given by z = (x,y),
we substitute z = (x,y) into Eq. (1), and the Hamiltonian can
be generalized into a curved surface of the form

H = 1

2m
pμpμ − e

mc
{Aμ,pμ}H . (3)

Here we use the Einstein summation and metric tensor to
define Eq. (3) (see Appendix B). Furthermore, Eq. (3) can be
expressed in the quadratic form

H = 1

2m

(
p − e

c
A
)

μ

(
p − e

c
A
)μ

+ e�, (4)

where Aμ and � are function of position and � is defined by

� = − e

2mc2
Ai

μAiμ. (5)

The Hamiltonian of the curved surface can be transformed
into a generalized Hamiltonian describing a particle subjected
to an SU(2) gauge field Aμ and a scalar field � on a plane,
as shown in Fig. 1. Hereafter, the generalized Hamiltonian is
considered throughout this paper.

By applying the path-integral method, the wave function
can be obtained:

ψ
(
r

μ

f ,tf
) = N

(∫
DxUDUG

)
ψ

(
r

μ

i ,ti
)
. (6)

N is a normalization factor. The integration represents the
sum of contributions over all paths that connect the initial
wave function ψ(rμ

i ,ti) and the final wave function ψ(rμ

f ,tf ),
weighted by UD and UG. UD is the usual dynamical phase
given by

UD = exp

(
− i

h̄

∫
m

2
vμvμ − e�dt

)
, (7)
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FIG. 1. (Color online) A curved space in x-y-z coordinates and
the contour on curved space projected on the x-y plane. An electron
with SO interaction on a curved surface can be described with an
SU(2) gauge field and a scalar field on the x-y plane.

and UG is the geometrical phase,

UG = P exp

(
ie

h̄c

∫
Aμdrμ

)
. (8)

P stands for the path order, because the integral depends
entirely on the path taken from the initial position r

μ

i to the final
position r

μ

f . Here we derived the non-Abelian geometric phase
by gauge transformation and the path integral. The exact same
results can also be obtained by the adiabatic approximation37

for our system. In other cases, the identical results derived by
adiabatic approximation and the path integral for both the non-
Abelian37 and Abelian38 geometric phases have been reported.
In addition, UG can be regarded as a gauge transformation of

UGHU+
G = HD (9)

which maps H to HD . HD is given by

HD = 1

2m
pμpμ + e�. (10)

By comparison with the rotation operator for a two-
component spinor, UG can be regarded as a series of infinites-
imal rotations (see Appendix C) such as

UG = P

∞∏
k

exp

(
− i

2
σjn

jdϕ

)
k

, (11)

which rotate about

ni = ±Ai
μ

drμ

ds

(
Aj

ρA
j
σ

drρ

ds

drσ

ds

)− 1
2

(12)

with the angle

dϕ = ±2e

h̄c

(
Aj

μAj
ν

drμ

ds

drν

ds

) 1
2

ds. (13)
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With the same product of ni and dϕ in Eq. (11), the same sign
in Eqs. (12) and (13) should be chosen.

In order to study the spin motion of traveling electrons, we
seek for the spin evolution after a distance on curved surfaces.
The expectation value of the spin can be obtained by a series
of infinitesimal rotations as

〈S(xμ)〉i = R
j

i

〈
S
(
x

μ

0

)〉
j
. (14)

The rotation matrix for the spin components is

R
j

i = P

∞∏
k

(1 + Jdϕ)k (15)

where the J generator is given by

J =
⎛⎝ 0 −nz ny

nz 0 −nx

−ny nx 0

⎞⎠ . (16)

Note that the path-order product reduces to the ordinary
product as long as all gauge fields Aμ on the traversing path

satisfy the commutation relation(
Aμ

drμ

ds
,A′

ν

dr ′ν

ds

)
= 0. (17)

Thus, the rotation operator reduces to the ordinary exponential
form as

UG = exp

(
− i

2
σjn

j�ϕ

)
, (18)

which rotates about the direction

ni = ±
(∫

Ai
μ

drμ

ds
ds

)(∫
Aj

μ

drμ

ds
ds

∫
Aj

ν

drν

ds
ds

)− 1
2

(19)

with angle

�ϕ = ±2e

h̄c

(∫
Ai

μ

drμ

ds
ds

∫
Ai

ν

drν

ds
ds

) 1
2

. (20)

The rotation matrix for the spin components can then be
simplified into

R
j

i =

⎛⎜⎝ n2
x + (

1 − n2
x

)
cos ϕ nxny(1 − cos ϕ) − nz sin ϕ nxnz(1 − cos ϕ) + ny sin ϕ

nxny(1 − cos ϕ) + nz sin ϕ n2
y + (

1 − n2
y

)
cos ϕ nynz(1 − cos ϕ) − nx sin ϕ

nxnz(1 − cos ϕ) − ny sin ϕ nynz(1 − cos ϕ) + nx sin ϕ n2
z + (

1 − n2
z

)
cos ϕ

⎞⎟⎠ . (21)

The spin-orbit interaction can be regarded as a non-Abelian
gauge field and therefore the quantum square ring11,39 can be
derived as in the standard process of the Wilson loop41 (see
Appendix D).

III. EFFECTIVE GEOMETRIC FIELD

In general relativity, the curved space and gravitational field
are equivalent from the equivalence principle.42 Similarly, the
spin-orbital coupling on a slightly curved space can also be
treated as a geometric field. When the curvature radius of the
curved space is much larger than the electron wavelength,
a semiclassical approximation with the Taylor expansion
of the Hamiltonian only to the first order in ∂xz and ∂yz

can be justified. For a GaAs/AlGaAs system,43 the electron
wavelength is about 10−8 m, and the curvature radius of
the reported43 cylindrical GaAs/AlGaAs is around 10−6 m;
therefore, the semiclassical approximation in this section is
valid. H can be decomposed into a combination of two
effective Hamiltonians and the higher-order corrections

H = H0 + HG1 + O(2). (22)

H0 is the spin-orbital Hamiltonian on a flat surface,

H0 = 1

2m

(
p2

x + p2
y

) + α

h̄
(σxpy − σypx)

+ β

h̄
(σxpx + σypy), (23)

and HG1 is the first-order geometrical correction written as

HG1 = σz

h̄
(−α∂yz + 2β∂xz)px + (α∂xz − 2β∂yz)py,

(24)

which can be regarded as coming from an effective geometric
field. In general, the effective geometric field on a slightly
curved space cannot be removed through a particular gauge;
instead, it can be expressed as a geometrical induced field,

BG1 = 2mc

eh̄2 (0,0,α(−∂yzpx + ∂xzpy)

+ 2β(∂xzpx − ∂yzpy)). (25)

It is interesting to notice that the geometrical induced field
will be only perpendicular to the x-y plane. This geometrical
induced field is very different from the effective B0 field
induced from RSI and DSI in U(1),where

B0 = 2mc

eh̄2 (αpy + βpx, − αpx + βpy,0). (26)

BG1 is only along the z axis and also linearly depends on
the curvature of the surface, while B0 is always in plane. It
should be noted that the eigenspinor will gradually switch out
of the in-plane direction for the geometrical induced field BG1.

The Hamiltonian can be rewritten as a free electron
experiencing two gauge fields and one scalar field:

H = 1

2m

[
p − e

c
(A0 + AG1)

]
μ

[
p − e

c
(A0 + AG1)

]μ

+ e� + O(2). (27)
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One of the non-Abelian gauges is the conventional spin-orbital
Aμ0 in flat space15 given by

A0μ = σiA
i
0μ, (28)

where

A1
0μ = mc

eh̄
(−β, − α),

A2
0μ = mc

eh̄
(α,β), (29)

A3
0μ = 0,

and the other is AG1μ, which is a new non-Abelian gauge
induced by the curved surface and is given by

AG1μ = σiA
i
G1μ, (30)

where

A1
G1μ = A2

G2μ = 0,
(31)

A3
G1μ = mc

eh̄
(α∂yz − 2β∂xz, − α∂xz + 2β∂yz).

� is a field given by

� = m

h̄
(α2 + β2), (32)

which is a constant field when α and β are position indepen-
dent. The two non-Abelian gauge fields are not scalar fields
and their components do not commute. The noncommutability
makes the usual scalar gauge formalism inapplicable and com-
plicates the problem. However, as an interesting exceptional
case with equal strengths of the RSO and the DSO couplings
on a flat surface,15 there also exist some special pure gauge
couplings in slightly curved space discussed here. Two gauge
fields can be simultaneously removed when (a) α = β and
∂xz = ∂yz or (b) α = −β and ∂xz = −∂yz, and the spin-orbital
coupling system can then be transformed into a free-electron
system.The commutator also vanishes for a one-dimensional
system.15

The rotation operator for a two-component spinor can be
divided into two kinds of rotation:

UG = P

∞∏
k

exp

(
− i

2
σjn

j

0dϕ0

)
k

exp

(
− i

2
σln

l
G1dϕG1

)
k

.

(33)

One of the rotation operations is in flat space with the rotation
axis

ni
0 = ±

(
β

dx

ds
+ α

dy

ds
, − α

dx

ds
− β

dy

ds
,0

)

×
{

(α2 + β2)

[(
dx

ds

)2

+
(

dy

ds

)2
]

+ αβ
dx

ds

dy

ds

}− 1
2

(34)
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FIG. 2. (Color online) Spin precession with longitudinal slope
and pure Rashba coupling. (a) The unit vector along the rotation
axis is a function of slope ∂xz. (b) ∂xφ depends on ∂xz and �α =
2mα/h̄2. (c) Rashba spin precession is along the x direction with
∂xz = −2,−1,0,1,2, and the other parameters are fixed, i.e., β =
0, ∂yz = 0, and Rα = πh̄2/mα.

and the rate of change of the precession angle with respect to
the displacement

dϕ0

ds
= ±2m

h̄2

{
(α2+β2)

[(
dx

ds

)2

+
(

dy

ds

)2
]

+αβ
dx

ds

dy

ds

} 1
2

.

(35)

The other rotation operation from the geometrical correction
is along the rotation axis,

ni
G1 = ±(0,0,1), (36)

and the rate of change of the precession angle is

dϕG1

ds
= ±2m

h̄2

[(
(α∂yz − 2β∂xz)

dx

ds

)2

+
(

(−α∂xz + 2β∂yz)
dx

ds

)2
] 1

2

. (37)
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FIG. 3. (Color online) Spin precession with longitudinal slope
and pure Dresselhaus coupling. (a) The unit vector along the rotation
axis is a function of slope ∂xz. (b) ∂xφ/�β as a function of ∂xz

and �β = 2mβ/h̄2. (c) Dresselhaus spin precession is along the x

direction with ∂xz = −2,−1,0,1,2, and the other parameters are fixed
as ∂yz = 0 and Rβ = πh̄2/mβ.

The rotation matrix for spin components becomes

R
j

i = P

∞∏
k

[1 + (J0 + JG1) dϕ]k . (38)

J0 is the generator in flat space given by

J0 =
{

(α2 + β2)

[(
dx

ds

)2

+
(

dy

ds

)2
]

+ αβ
dx

ds

dy

ds

}− 1
2

×
⎛⎝ 0 0 −α dx

ds
− β

dy

ds

0 0 −β dx
ds

− α
dy

ds

α dx
ds

+ β
dy

ds
β dx

ds
+ α

dy

ds
0

⎞⎠ (39)

and the geometrical correction is

JG1 =
⎛⎝ 0 1 0

−1 0 0
0 0 0

⎞⎠ . (40)

IV. SPIN PRECESSIONS ON CURVED SPACES

We now consider the spin precession for spin-polarized
electrons with Rashba and Dresselhaus interactions on curved
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FIG. 4. (Color online) Spin precession with transverse slope and
pure Rashba coupling. (a) The unit vector along the rotation axis is
a function of slope ∂yz. (b) ∂xφ/�α as a function of ∂yz and �α =
2mα/h̄2. (c) Rashba spin precession is along the x direction with
∂yz = −2,−1,0,1,2, and the other parameters are fixed as ∂xz = 0
and Rα = πh̄2/mα.

surfaces. Note that all geometrical information about the two-
dimensional space is contained in the metric tensor. The metric
tensor is dominated only by ∂xz and ∂yz [see Appendix A,
Eq. (A2)]. Therefore, we can analyze the geometrical effect
on spin precession due to ∂xz and ∂yz. Now, we consider only
the spin precession along the x axis (where we denote by x and
y the longitudinal and transverse directions, respectively) and
analyze its rotation angle ϕ and unit vector along the rotation
axis under the following two conditions.

A. Longitudinal slope

In the special case with the influences of only the slope ∂xz

and RSI, considering the electron with spin polarized along
the z axis (z polarized) and propagating along the x axis
with different slopes ∂xz = −2,−1,0,1,2, the spin precession
projected on the x-y plane is shown in Fig. 2. The spin
precession can be realized by considering the rotation axis
and angle. The rotation axis is along the unit vector

n = ±(0,−1,0), (41)
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which is independent of slope. The + sign is arbitrarily chosen
and shown in Fig. 2(a). The rate of change of the precession
angle with respect to x is given by

dϕ

dx
= ±2mα

h̄2 [1 + (∂xz)2]
1
2 , (42)

which increases as the slope ∂xz becomes steeper. The + sign
is also chosen and shown in Fig. 2(b). Alternatively, we can
simplify the equation by substituting ds = (dx2 + dy2)1/2 into
Eq. (42); thus the change of angle with the displacement
is independent of the slope, but proportional to the travel
distance. The spin orientation depends only on the magnitude

of the slope and is symmetric with respect to the slope. The
smallest rate of change of the precession angle is for the flat
surface and is 2mα

h̄2 . From Fig. 2(c), the larger the absolute value
of the slope, the shorter the precession period of the spinning
electrons, and this suggested that a larger effective Rashba
field is applied on the spinning electrons under a large slope
of the curved surface.

In a case with influences of only the slope ∂xz and DSI, also
considering a z-polarized electron propagating along the x axis
with different slopes ∂xz = −2,−1,0,1,2, the spin procession
projected on the x-y plane is shown in Fig. 3. The unit vector
of the spin-rotation axis is

n = ±
(

1 − 2(∂xz)2

{[1 − 2(∂xz)2]2 + [2∂xz − (∂xz)3]2} 1
2

,0,
2∂xz − (∂xz)3

{[1 − 2(∂xz)2]2 + [2∂xz − (∂xz)3]2} 1
2

)
. (43)

The + sign is chosen and shown in Fig. 3(a). Instead of the
constant vector in the RSI, the spin-orientation axis varies with
the increasing slope.

The rate of change of the precession angle with respect to
x is

dϕ

dx
= ±2mβ

h̄2

{[1 − 2(∂xz)2]2 + [2∂xz − (∂xz)3]2} 1
2

1 + (∂xz)2 .

(44)

The + sign is chosen and shown in Fig. 3(b). Note that there is
one local maximum at ∂xz = 0 and two minima at ∂xz = ±1.
Therefore, the precession varies more slowly when the slope
equals ±1 as shown in Fig. 3(c). It is noted that on a flat surface
the rate of change of the precession angle is 2mβ/h̄2 and is
comparatively larger than that on a slightly curved surface.
The rate of change of the precession angle reaches a minimal
value of

√
2mβ/h̄2 at ∂xz = ±1; this indicates that in the DSI

contribution the effective field induced by the curved space is
smaller than that from the flat surface. The spin-rotation axis
also changes from the (1,0,0) direction of the flat surface to
π/2 at the curved surface when ∂xz = ±1.

B. Transverse slope

In a case with only the slope ∂yz and RSI, considering a
z-polarized electron propagating along the x axis with different
slopes ∂yz = −2,−1,0,1,2, the spin procession projected on
the x-y plane is shown in Fig. 4. The rotation axis is along the
unit vector

n = ±
(

0,
−1

[1 + (∂yz)2]
1
2

,
−∂yz

[1 + (∂yz)2]
1
2

)
. (45)

The + sign is chosen and shown in Fig. 4(a). The rate of change
of the precession angle with respect to x is constant and given
by

dφ

dx
= ±2mα

h̄2 ; (46)

the + sign is chosen and shown in Fig. 4(b).

The rate of change of the precession angle is always
constant, whether the 2DEG surface is flat or not. This suggests
that the rate of precession along the x direction in RSI
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FIG. 5. (Color online) Spin precession with transverse slope and
pure Dresselhaus coupling. (a) The unit vector along the rotation
axis is a function of slope ∂yz. (b) ∂xφ/�β as a function of ∂yz

and �β = 2mβ/h̄2. (c) Dresselhaus spin precession is along the x

direction with ∂yz = −2, − 1,0,1,2, and the other parameters are
fixed as ∂xz = 0 and Rβ = πh̄2/mβ.
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FIG. 6. (Color online) Precession along a curved path z(x) =
A sin(πx/L). (a) is pure Rashba and (b) is pure Dresselhaus spin-
orbital coupling, and Rα = πh̄2/mα,Rβ = πh̄2/mβ, respectively.

depends only on the x slope on a curved space. However, the
spin-rotation axis varies only as the slope changes along the y

direction. This suggested that if only RSI exists within a 2DEG

system, the curvature along the y direction does not modify
the effective strength of the geometric field; instead, it changes
only the direction of the geometrical field. The spin-rotation
angle approaches the z axis as the slope increases.

In a case with only the slope ∂yz and DSI, considering a
z-polarized electron propagating along the x axis with different
slopes ∂yz = −2,−1,0,1,2, the spin precession projected on
the x-y plane is shown in Fig. 5(c). The unit vector of the
spin-rotation axis is

n = ±(1,0,0). (47)

The + sign is chosen and shown in Fig. 5(a). The rate of change
of the precession angle with respect to x is

dϕ

dx
= ±2mβ

h̄2

1 − (∂yz)2

1 + (∂yz)2
. (48)

The + sign is chosen and shown in Fig. 5(b). Note that the
precession is frozen when ∂yz = ±1 and this means that one
can make a curved surface without the spin precession of the
transport electrons. Similar frozen behavior of spin electrons
was reported in spin transport wires.39

C. Two examples

Based on the previous discussion, the slopes ∂xz and
∂yz affect the precession, including the rotational axis and
precession angle. Now, we try to study two interesting

1
0.5

0
0.5

1

x R
1

0.5

0

0.5

1

y R0

0.5

1
z R

1
0.5

0
0.5

1
x R 1

0.5

0.5

1

y R
0

0.5

1 z R

1
0.5

0
0.5

1

x R

1

0.5

0

0.5
1

y R

0.1

0.2
z Rα

0 π 2 π

   θ

P
la

ne
C

yl
in

de
r

S
ph

er
e

α
αα

α

α

α

α

α

(b)

(a)

(c)

(d)

FIG. 7. (Color online) Preces-
sion with pure Rashba coupling on
three types of surface, i.e., sphere
(a), cylinder (b), and flat plane(c).
The injected z-polarized electron
moves along a closed loop with
the same projective radius r =
0.3Rα ,0.6Rα ,0.9Rα . The preces-
sion loops with r = 0.6Rα for the
three different surfaces are given
in (d) to clearly show the role of
the space curvature.
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FIG. 8. (Color online) Precession with pure Dresselhaus coupling on three types of surface, i.e., sphere (a), cylinder (b), and flat plane (c).
The injected z-polarized electron moves along a closed loop with the same projective radius r = 0.3Rβ ,0.6Rβ ,0.9Rβ . The precession loops
with r = 0.6Rβ for three different surfaces are given in (d) to clearly show the role of the space curvature.

examples: precession along a curved path and a closed loop
on a 3D curved surface.

In several papers11,14,39,41 spin precession was studied along
many kinds of paths, such as straight wire, half ring, and square
on a 2D x-y plane. In the first example, we generalize the
precession path on a 3D curved surface. We study the spin
precession along a curved path given by z (x) = A sin(π

L
x);

for simplicity but without loss of generality, the y direction
is not included in the formula. With fixed initial and final
positions and a constant L, by varying the parameter A,
the curvature of the path can be easily changed. Injecting
the z-polarized electron from the left, we can obtain the
spin pattern and the final state along the different paths
shown in Fig. 6. The unit vectors of the expection value
of the spin 〈s〉

|〈s〉| at the end of path are (0.56,0,−0.83),
(0.99,0,−0.16), (0,0,1), (0.99,0,−0.16), and (0.56,0,−0.83)
in Fig. 6(a) and (0.25,0.92,−0.32), (0.61,−0.59,0.54),
(0,0,1), (−0.25,0.92,−0.32), and (−0.61,−0.59,0.54) in
Fig. 6(b), corresponding to A = 2,1,0,−1,−2, respectively.
This case depends only on the longitudinal slope, and can
be compared with previous cases in Sec. IV A . For a pure

RSI (β = 0) [Fig. 6(a)], we know that the spin-rotation axis is
independent of the path from Eq. (41), and is along the −y di-
rection. We also know that the change of precession angle with
respect to x will increase as the slope increases from Eq. (42),
namely, it is proportional to the travel distance. The case with
pure DSI (α = 0) is more complicated, and the precession
axis changes with x on the x-z plane according to Eq. (44)
[Fig. 6(b)]. From Fig. 6, even with the same initial condition
of the injected electrons at the initial points, the spin orientation
is quite different at the end points with different curvature. It
is obvious that an extra phase is induced from the curvature of
the curved space on the traveling electrons in addition to the
spin-orbital interactions applicable on the flat space.

In the second example, we consider spin precession
around a closed loop on a 3D curved surface. In the case
with only RSI, the injected z-polarized electron moves
around circles on the hemisphere, hemicyclinder, and plane
with projective radius r . It starts from the position x = Rα ,
y = 0, z = z(x = Rα,y = 0), and after rotating through
2π , returns to its original position. Thus, we can obtain
the spin pattern along the path and the final state shown in
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Fig. 7. The expectation values of the spin 〈s〉
|〈s〉| at the end of

the path are [Fig. 7(a)] for the sphere (0.57,−0.61,0.56),
(0.18,0.65,−0.74), and (−0.23,−0.55,0.80), [Fig. 7(b)] for
the cylinder (−0.07,−0.94,−0.32), (−0.63,−0.73,−0.26),
and (0.02,0.70,0.71), and [Fig. 7(c)] for the flat
plane (−0.18,−0.65,0.74), (−0.03,0.57,0.82), and
(−0.16,0.99,−0.02) with projective radius r = 0.3Rα ,
0.6Rα , and 0.9Rα , respectively. Similarly, as shown in Fig. 8
with only DSI, the expectation values of the spin 〈s〉

|〈s〉| at the end
of the path are [Fig. 8(a)] for the sphere (0.30,−0.06,0.96),
(−0.82,−0.14,0.56), and (−0.74,0.68,0.00), [Fig. 8(b)]
for the cylinder (0.04,0.99,0.11), (0.25,−0.29,0.92),
and (−0.04,−0.04,0.99) and [Fig. 8(c)] for the flat
plane (−0.65,−0.18,0.74), (0.57,−0.03,0.82), and
(0.99,−0.16,−0.02) with the projective radius r = 0.3Rα ,
0.6Rα , and 0.9Rα , respectively.

V. CONCLUSIONS

We have studied the curved-space-induced geometrical
effect on spin-polarized electrons, and a general formalism of a
single-particle Hamiltonian with the RSI and DSI on a curved
surface is derived. We performed a gauge transformation to
derive the spin-rotation operator and the analytical expression
for the spin precession for ideally injected electrons with
arbitrary spin polarization under both RSI and the DSI on
a curved space. All geometric influences from curved space
can be absorbed into a geometric tensor which induces an
extra geometric phase on the spin-polarized electrons in
addition to the conventional dynamic phase on a flat surface.
Nevertheless, the spin-rotation axes of the geometric phase
and dynamic phase are different. In particular, unique features
of the spin-precession patterns, precession angles, and cone
angles can be easily identified with the help of the spin-rotation
operator. In general, the correction term from curved space
cannot be removed from a particular gauge, but it can be
effectively represented as an induced field BG1. This curved-
space-induced field is very different from the induced field
from RSI and DSI and it will push the eigenspinor away from
the x-y plane.

Our calculations explicitly demonstrate that the spin-orbital
interaction in curved space can induce a geometrical field
which will definitely affect the behavior of electrons with
spin. Here we consider only the linear term in the momentum
in RSI and DSI; in other words, the curved thin film is still
assumed to be a 2D system and thus the cubic term in the
momentum was neglected.35,36 We only study the response
of spin precession with an extra induced geometrical field
as an example. The influences of the induced geometrical
field on other physical properties of electrons with spin
deserve further studies. Nevertheless, we have successfully
shown that the curved-space-induced geometrical field is
significant and cannot be neglected. The variation of the
slope will usually affect both the rate of spin precession
and the orientation axis. Closed loops on three types of
geometry clearly show the difference of dynamics of the spin
component along the conserving axis under a pure gauge
SO coupling. Our qualitative analysis also indicates that
variation of the curvature is a possible way to manipulate

the spin motion. Therefore, in addition to use of magnetic
and time-dependent electric fields to manipulate the spin
electrons, the time dependence of space curvature can also be
another easy tool of spin manipulation. Of course, our simple
approach does not include some other deformation-related
effects, but at least clearly shows the role of the space curvature
based on the present Hamiltonian and thus the spin-orbital
interaction.

Even though our analysis here considers only the single-
particle picture, the interference of electrons along different
paths will still be observed.39,40 A possible experiment to
test the validity of the geometrical effect of a curved space
would involve an effect similar to the Aharonov-Bohm effect.
For two half-ring-shaped stripes with different curvature of
each half ring, interference will be observed for electrons
with spin traveling along different paths. In addition to the
normal Aharonov-Bohm effect, an extra phase shift should
result from the difference of curvatures of the two half
rings. In conclusion, we have derived an effective spin-orbit
Hamiltonian for electrons in curved space. The curvature-
induced effective geometrical field is determined by simple
expressions, containing surface curvatures and the coupling
constants α and β from Eqs. (22), (23), and (24). We believe
that a geometric effective field would help to elucidate the
profound physics of spin transport in spintronic devices with
curved spaces, such as nanotubes and nanopillars.
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APPENDIX A: DRESSELHAUS HAMILTONIAN ON A
REDUCED TWO-DIMENSIONAL SURFACE

For a 3D Dresselhaus SO term,

HD = 1
2 �σ · ��, (A1)

where

��(k) = ηh̄2

(2m3Eg)
1
2

�κ (A2)

and

�k =

⎛⎜⎝ kx

(
k2
y − k2

z

)
ky

(
k2
z − k2

x

)
kz

(
k2
x − k2

y

)
⎞⎟⎠ , (A3)

when an electron is within a thin film whose surface is �r =
(x,y,z(x,y)). The unit vector along the normal to the surface
is

n̂ = (nx,ny,nz) = (−∂xz,∂yz,1)

[(∂xz)2 + (∂yz)2 + 1]−
1
2

. (A4)

The momentum �k of the electron can be written as �k =
�p + �q where �p is the tangent to the surface; �q is normal to the
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surface. The electron is confined in the direction normal to the
surface; the expection values in n̂ satisfy

〈qi〉 = 〈qiqjqk〉 = 0, 〈qiqj 〉 = 〈q2〉ninj (A5)

and the thickness of the surface is small. We have 〈q2〉 � k2

and set

k3 ≈ 0 (A6)

within this paper. With the help of Eqs. (A5) and (A6),36

the expectation value of the Hamiltonian in Eq. (A1) can be
reduced to

HD = β

h̄
�σ · �χ, (A7)

where

�χ =

⎛⎜⎝ 2nx(nypy − nzpz) + (
n2

y − n2
z

)
px

2ny(nzpz − nxpx) + (
n2

z − n2
x

)
py

2nz(nxpx − nypy) + (
n2

x − n2
y

)
pz

⎞⎟⎠ . (A8)

APPENDIX B: A GENERALIZED HAMILTONIAN IN
CURVED SPACE

The Hamiltonian of Eq. (1) can be generalized into a curved
surface of the form in Eq. (3). Einstein’s summation and metric
tensor are used in Eq. (3), and

gμν =
(

1 + (∂xz)2 ∂xz∂yz

∂xz∂yz 1 + (∂yz)2

)
, (B1)

which contains all the information about the geometry and is
related to contravariant and covariant vectors, for example

pμ = gμνpν. (B2)

The notation { }H is defined as{
Aμ,pμ

}
H

= 1
2Aμpμ + 1

2pμAμ. (B3)

Aμ is given by

Aμ = σiA
i
μ, (B4)

where

A1
μ = mc

eh̄
{α(−∂xz∂yz)[(∂xz)2 + (∂yz)2 + 1]−

1
2 + β[−1 + 2(∂xz)2 + (∂yz)2][(∂xz)2 + (∂yz)2 + 1]−1,

α[−1 − (∂yz)2][(∂xz)2 + (∂yz)2 + 1]−
1
2 + β[4∂xz∂yz][(∂xz)2 + (∂yz)2 + 1]−1},

A2
μ = mc

eh̄
{α[1 + (∂xz)2][(∂xz)2 + (∂yz)2 + 1]−

1
2 + β[−4∂xz∂yz][(∂xz)2 + (∂yz)2 + 1]−1,

α(∂xz∂yz)[(∂xz)2 + (∂yz)2 + 1]−
1
2 + β[1 − 2(∂yz)2 − (∂xz)2][(∂xz)2 + (∂yz)2 + 1]−1},

A3
μ = mc

eh̄
{α(∂yz)[(∂xz)2 + (∂yz)2 + 1]−

1
2 + β[−2∂xz + (∂xz)3 − ∂xz(∂yz)2][(∂xz)2 + (∂yz)2+1]−1,

α(−∂xz)[(∂xz)2+(∂yz)2 + 1]−
1
2 + β[2∂yz − (∂yz)3 + ∂yz(∂xz)2][(∂xz)2 + (∂yz)2 + 1]−1}.

APPENDIX C: DISCRETE EVOLUTION OPERATOR
FOR THE WAVE FUNCTION

The general solution of the differential equation

d

ds
ϕ(s) = iO(s)ϕ(s) (C1)

is

ϕ(s) = P exp

(
i

∫ s

0
O(s ′)ds ′

)
ϕ(0). (C2)

Here the symbol P indicates the path order, and we discretized
the path into N steps. We can obtain the discrete solution

ϕ(s) = P

N∏
i

[1 + iO(si) �s]ϕ(0). (C3)

Therefore, as long as N is large enough, we can obtain the
approximate solution of ϕ(s).

APPENDIX D: WILSON LOOP IN CURVED SPACE

Considering parallel transport around a closed path C, we
choose C to be a parallelogram with one corner at rμ and two
sides drμ and δrμ. The Wilson loop Uw is the product of four
transports around the loop:44

Uw = UG(rμ,rμ + drμ)UG(rμ + drμ,rμ + drμ + δrμ)

×UG(rμ + drμ + δrμ,rμ + δrμ)UG(rμ + δrμ,rμ).

(D1)

Straightforward mathematics yields

Uw = exp

(
ie

h̄c
Fμνdrμδrν

)
(D2)

with field strength tensor

Fμν = DμAν − DνAμ − ie

h̄c
[Aμ,Aν], (D3)

where Dμ is the covariant derivative. Thus, the results for
the quantum ring11,39 are special cases and can be derived
easily.
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In the case of slightly curved space, the Wilson loop turns
out to be

Uw = exp

[
ie

h̄c
(F0μν + FG1μν)dxμδxν

]
, (D4)

where F0μν is the field strength tensor on flat space given by
F0μν = σiF

i
0μν,

F 1
0μν = F 2

0μν = 0,
(D5)

F 3
0μν = 2m2c

eh̄3 (α2 − β2)εμν,

and FG1μν is the geometric contribution given by

FG1μν = σiF
i
G1μν,

F 1
G1μν = 2m2c

eh̄3 [(−α2 + 2β2)∂xz + αβ∂yz]εμν,

(D6)

F 2
G1μν = 2m2c

eh̄3 [αβ∂xz + (−α2 + 2β2)∂yz]εμν,

F 3
G1μν = 2m2c

eh̄3

[−α
(
∂2
x z + ∂2

y z
) + 2β∂x∂yz

]
εμν.
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