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Exchange interactions in α- and γ -Fe are investigated within an ab initio spin spiral approach. We have
performed total-energy calculations for different magnetic structures as a function of lattice distortions, related to
various cell volumes and the Bain tetragonal deformations. The effective exchange parameters in γ -Fe are very
sensitive to the lattice distortions, leading to the ferromagnetic ground state for the tetragonal deformation or
increase of the volume cell. At the same time, the magnetic-structure-independent part of the total energy changes
very slowly with the tetragonal deformations. The computational results demonstrate a strong mutual dependence
of crystal and magnetic structures in Fe and explain the observable “anti-Invar” behavior of thermal-expansion
coefficient in γ -Fe.
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I. INTRODUCTION

Iron-based alloys are still among the most important indus-
trial materials. The thermodynamic properties and mechanism
of phase transformations in these materials have been dis-
cussed intensively last years.1 Nevertheless, the fundamental
properties of iron have not been completely understood up to
now. Main difficulties are related to a nontrivial combination of
the itinerant and localized behavior and correlation effects of
3d electrons determining electronic, magnetic, and structural
properties of iron.2–6 It is commonly accepted now that
magnetic degrees of freedom play a crucial role in the stability
of different iron phases,7–10 which makes the situation even
more complicated. Interplay between magnetic and lattice
degrees of freedom in different crystallographic phases of iron
remains a still unresolved problem.

One of the most complicated examples related the γ

phase of iron with highly frustrated magnetic structure. There
are many magnetic configurations of γ -Fe with almost the
same total energies and the ground state crucially depends on
the value of lattice parameters.11–13 The sensitivity to dilatation
has been studied in detail by many groups14–16 in the context
of a so-called moment-volume instability.17 At the same time,
the energy dependence on the tetragonal deformation, which
is closely related to the Bain deformation path of α-γ phase
transformation, also deserves serious attention. We discussed
this issue in our previous work18 and found that the transition
of γ -Fe to the ferromagnetic state can trigger the martensitic
transformation without noticeable energy barriers. In more
detail, the effect of tetragonal deformations on magnetism, and
vice versa, was discussed in relation with the Invar behavior
observed in Fi–Ni alloys.17,19 A magnetoelastic spin-lattice
coupling plays also an important role in structural phase

transitions in γ -Mn (Ref. 20) and Cr-based alloys,21 as well as
in the magnetic shape-memory alloy Ni2MnGa.22 A soft-mode
phonon behavior, as a precursor of the γ → α transformation,
was recently observed in Fe-Ni alloys.23

In contrast with Fe-Ni alloys, the equilibrium γ phase in
pure Fe exists only at high temperatures T > 1200 K, where
thermal fluctuations are very strong and magnetic moments are
disordered. Observation of the so-called “anti-Invar” behavior
of γ -Fe (Ref. 24) can be related to the fact that the spin-
lattice coupling is strong enough to affect the thermodynamic
properties up to very high temperatures.

In this paper we investigate quantitatively a variation of the
exchange parameters in α- and γ -Fe as functions of tetragonal
Bain deformations and dilatation. Whereas the sensitivity of
the exchange parameters to the dilatation has been studied
previously,14–16 information about the tetragonal deformations
has been missing until now. Based on the calculated magnetic
exchange data we discuss the origin of the anti-Invar behavior
of γ -Fe.

II. COMPUTATIONAL APPROACH

The magnetic properties of itinerant-electron transition-
metal systems are normally studied by mapping of their
density-functional total energies on the effective Heisenberg
model,

Hex = −
∑
i<j

Ji,j eiej , (1)

where ei is the unit vector in the direction of the magnetic
moment at site i.25,26 In this notation the value of on-site
atomic magnetic moments Mi is included into the exchange
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parameters Ji,j . Therefore the total energy of the system is
a sum of a magnetic-structure independent contribution E0

and the “Heisenberg-exchange” part: E = E0 + Hex , where
E0 is a function of deformations and the magnitude of local
moments: E0(�,c/a,M). A similar decomposition was used
earlier in Ref. 27. One should stress that E0 is dependent on the
values of magnetic moments Mi and is therefore essentially
different from the energy of a non-spin-polarized state, which
attributes to zero values of all magnetic moments: Mi = 0.

There are two main approaches to the mapping onto the
magnetic Hamiltonian. An analytical scheme is based on
the use of the so-called “magnetic force theorem,”25,26 when
the exchange interactions are obtained from variations of the
total energy with respect to infinitesimal deviations of the
magnetic moments from a collinear state. In this paper we
use more accurate numerical method based on the density-
functional calculations of the spin spiral magnetic structures,
where the neighboring magnetic moments are rotated relative
to each other by a finite angle (for review, see Ref. 28). This
scheme includes a spin- and charge-density relaxation for large
moment fluctuations. The energy per atom of the spin spiral
with the wave vector Q can be presented as

E(Q) = E0 − 1

N

∑
i<j

Ji,j exp(iQ · Ri,j )

= E0 −
∑

n

ZnJn exp(iQ · Rn), (2)

where N is the number of magnetic atoms, Zn is the number
of the nth nearest-neighbor atoms, E0 is a magnetic-structure-
independent contribution to the total energy of the system, Ri,j

is the vector connecting sites i and j , n labels the coordination
shell. The exchange parameters Jn can be found from Eq. (2)
by using the discrete Fourier transformation:

Jn = − 1

K

∑
k

E(Qk) exp(iQk · Rn), (3)

where the summation runs over a regular Q-vector mesh in the
Brillouin zone with the total number of points K . As follows
from Eq. (3) the value E0 is the average value of spin spiral
energies over all Qk ,

E0 = 1

K

∑
k

E(Qk). (4)

In principle, one can find the dependence of total energy
on magnitude of M within a constrained moment spin-spiral
calculation, but this lies beyond the scope of the present paper.
A parameter of total exchange energy

J0 =
∑

n

ZnJn (5)

characterizes a ferromagnetic contribution to the total energy.
Note that the decomposition of the total energy used in Ref. 27
differs from that used in this work by a shift by J0.

In general, the exchange parameters found from the planar
spin spiral calculations and from the magnetic force theorem
are different and only the value of a spin stiffness constant
should be the same.29 Note that parameters obtained by the use
of infinitesimal spin deviations25,26 give a correct description

of a magnon spectra, while parameters found from a direct
calculation of the spin spiral total energies are supposed to be
more accurate for descriptions of thermodynamic properties.29

The difference of Jn obtained within these two approaches
characterizes a non-Heisenberg character of magnetic interac-
tions, which is expected for itinerant magnets such as iron.30

Another manifestation of the non-Heisenberg behavior relates
with the fact that the magnitude of the magnetic moments
is dependent on the spin spiral wave vector Q. Therefore the
values Jn obtained in the framework of the spin spiral approach
are considered as effective exchange parameters.

The total-energy calculations of Fe with spin spiral mag-
netic structure is performed using VASP (Vienna Ab-initio
Simulation Package)31–33 with first-principles pseudopoten-
tials constructed by the projected augmented wave method
(PAW).34 Following an experience on noncollinear magnetic
investigation,13 we employed the generalized gradient approx-
imation (GGA) for the density functional in a form by Perdew
and Wang (1991)35 with the spin interpolation.36 The PAW
potential without core states and with energy mesh cutoff
530 eV and the uniform k-point 12×12×12 mesh in the
Monkhorst-Park scheme37 with 1728 k points are used. The
calculations are done for a single-atom unit cell subjected to
two types of homogeneous deformations, namely, dilatation
(a change of the volume for a fixed c/a ratio) and tetragonal
ones (a change of c/a ratio at a fixed volume). For given lattice
parameters, the energy set E(Qk) is calculated on a uniform
16×16×16 mesh and the Fourier transformation [Eq. (3)] is
used to determine the exchange parameters Jn.

III. COMPUTATIONAL RESULTS

The local magnetic moments M(Q) and total energies for
the spin spiral states E(Q), calculated for different values of
volume and tetragonal deformations are presented in Figs. 1
and 2, respectively. We show the results only for the symmetric
directions of the wave vector �-Z-W (U ) in the Brillouin zone
parallel to 〈001〉 and 〈012〉 in lattice with cubic (tetragonal)
symmetry.13

The magnetic moments depend strongly on the spin spiral
wave vector Q, as one can see from Fig. 1. This fact confirms
the non-Heisenberg character of magnetic interactions in iron.
The magnitude of magnetic moments gradually decrease by
about 30% along the �-Z direction for all considered structures
except for fcc iron at small volume � = 11.0 Å3. A large
difference of magnetic moments for fcc Fe at the �-point at a
small volume (� = 11.0 Å3) and bigger ones (� � 11.44 Å3)
results from a well-known magnetovolume instability, which
was discussed in the context of the Invar problem.17

According to our results (Fig. 2) the ground state of
fcc iron is spin spiral with Q varying nearly 0.5〈001〉 (in
2π/c units) with volume and c/a ratio for a broad interval
10.5 < � < 12.0 Å3. The magnetic ground state of fcc iron
has been a controversial issue up to now. The antiferromagnetic
double layer structure (AFMD), equivalent the spin spiral with
0.5〈001〉 has been discussed in a series of papers.11,38,39 The
later publications13,14,40 show rather incommensurate ground
states with the Q vector depending on lattice parameters. Our
results are in agreement with the recent calculations.13,14,40–43
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FIG. 1. (Color online) The magnetic moment of iron as function
of the spin spiral vector Q and the lattice deformations.

An increase of iron volume, � > 12.0 Å3, further results in
the transition from spin spiral to ferromagnetic (FM) structure
[Fig. 2(a)]. The energy difference �EM between FM and
antiferromagnetic (AFM) states (or spin spiral structure with
Q = 〈001〉) gives a scale of the exchange interaction energy,
which decreases monotonously with increasing the volume and
finally changes the sign near �exp = 11.44 Å3. This volume
corresponds to an experimental value for precipitates of γ -Fe
in Cu at low temperatures.44

Our results demonstrate that the magnetic structure of fcc
iron is strongly dependent on the lattice deformations (Fig. 2).
This conclusion agrees well with the previous investigations of
iron.13,18,40 In particular, the spin spiral ground state is changed
to the ferromagnetic one within the tetragonal deformation
region along the Bain path from the fcc (c/a = 1) to bcc
iron (c/a = 1/

√
2). A magnetic transition to the FM state and

its role in the martensitic transformation have been discussed
earlier in Ref. 18. In the opposite case, when c/a > 1, the
tetragonal deformation leads to a weaker dependence of E(Q).
The spin spiral structure represents a ground state at c/a ≈ 1.1
and a transition to the ferromagnetic ground state appeared at
c/a � 1.2. These magnetic transformations are in agreement
with a previously obtained phase diagram.40

The results for exchange parameters Jn(c/a,�) as a
function of lattice distortions are presented in Fig. 3. Positive
values indicate that the ferromagnetic type of ordering is
preferable. The dependence E(Q) determined by Eq. (2) with
obtained exchange parameters Jn give a perfect interpolation
to the calculated spin spiral energies (lines and symbols in
Fig. 2). A striking feature of this curve is that the total exchange
energy J0 behaves similarly to Z1J1 (Zi corresponds to number
of ith neighbors) for all deformations considered. This means
that the contributions of longer-range exchange interactions
(n > 1) are canceled out. Similar results have been obtained
by analytical calculations of exchange parameters16 for the
volume variation of fcc iron.
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FIG. 2. (Color online) Dependence of the total energy of fcc
Fe on the the spin spiral wave vector E(Q) for different volumes
(upper panel, c/a = 1) and for different c/a ratios (lower panel, � =
11.44 Å3). The deformations c/a = 1/

√
2 and c/a = 1 correspond

to the bcc (α-Fe) and fcc (γ -Fe) structures, respectively. Symbols
mark the results of the density-functional calculations whereas the
lines correspond to Eq. (2) with obtained exchange parameters Jn.

Effects of volume variation on the exchange parameters in
fcc structure is very noticeable and J1 demonstrates that there
is a nonmonotonous behavior [Fig. 3(a)]. At low volumes (� <

�exp) total exchange parameters J0 become negative showing
the tendency to antiferromagnetic-type coupling. For atomic
volumes near �exp the parameter J1 is close to zero and the
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FIG. 3. (Color online) Exchange parameters Jn for n = 1,2,3,4,5 for different lattice parameters: dependence Jn on a volume of fcc
(a) and bcc (b) Fe; dependence Jn on (c/a) at fixed volumes � = 11.44 Å3 (c) and � = 12.0Å3 (d), respectively.

exchange energy J0 is small and negative. In this case the value
J0 is determined by all exchange parameters Jn with n > 1.
Therefore computational results for � ≈ �exp appear to be
quite sensitive to the details of the approximation used14 (e.g.,
the exchange-correlation functional, energy cutoff, number of
k points, etc.). Such behavior of exchange parameters can
likely be related to a complex magnetic structure discussed in
the experimental work by Tsunoda and co-workers.44

Parameter J0 changes sign at a volume that is just
slightly above the �exp and grows rapidly, therefore the
ferromagnetic order becomes more stable for higher volumes
[Fig. 3(a)]. The behavior of J0 (Fig. 2) agree well with previous
calculations15,16 and reproduces the transition from spin spiral
to ferromagnetic state discussed above.

In the bcc Fe exchange parameters demonstrate a rather
weak sensitivity to the volume variation and the nearest-
neighbor contribution J1 is large, positive, and dominant in
a broad interval of � [Fig. 3(b)]. As a result, the ferromagnetic
ground state has an essential preference in bcc Fe in com-
parison with the AFM and noncollinear magnetic structures.
Results of previous calculations26,42,45–51 give slightly lower
values J0 and J1 in bcc Fe than obtained here but also
reproduce a dominant contribution of J1 to the exchange
energy.

A dependence of exchange parameters on the tetragonal
deformation c/a is presented in Figs. 3(c) and 3(d). A
symmetry break caused by tetragonal deformations leads to
a modification of the coordination numbers in fcc or bcc
lattice. Here we neglect the rearrangement of site positions
and assume that the set of atoms belongs to the same
coordination shells n in fcc and fct structures for 0.85 �
c/a � 1.2 and in bcc and bct structures for 0.6 � c/a <

0.85. The curves J1(c/a) and J0(c/a) have both a minima
for fcc and a maxima for the bcc structures. One can see
that near the bcc structure J0 is much less sensitive to the
dilatation than to the tetragonal deformation. Near the fcc,
J0 is very sensitive to both types of deformations. This is
mainly due to sensitivity of J1 to deformations whereas Jn

for n > 1 are almost unchanged with variation of lattice
parameters.

The dependence of the exchange parameters on both types
of deformations is shown in Fig. 4 as a contour plot J0(�,c/a).
One can see that the tetragonal deformation together with
the increase in volume enhance significantly the exchange
interaction energy in γ -Fe. The value J0 ≈ 70 meV is reached
for the experimental volume of γ -Fe � ≈ 12 Å3 and (c/a −
1) ≈ 5%.

Calculated exchange parameters Jn are presented in Fig. 5
as functions of interatomic distances. The exchange interac-
tions in fcc iron have a very long-ranged behavior at the vol-
umes � ≈ �exp. Such a strong Friedel oscillation was already
found in Ref. 16. This is a reason of magnetic frustrations
and existence of numerous complex magnetic structures with
low energies in the fcc Fe.12,16,41,44 A tetragonal deformation
of the fcc structure changes dramatically the behavior of Jn

due to a sharp increase of J1 contribution, which becomes
a dominant one. The increase of volume acts in a similar
way. One can see from Fig. 5 that the exchange interactions
depends not only on interatomic distance Rn but is also
very sensitive to particular values of c/a. Therefore correct
lattice deformations should be necessarily taken into account
explicitly for a correct description of magnetic structures
in Fe.

 11

 11.2

 11.4

 11.6

 11.8

 12

 0.6  0.7  0.8  0.9  1  1.1  1.2

 0.98

 1

 1.02

 1.04

Ω
 (

Å
3 )

Ω
/Ω

ex
p

c/a ratio

 0.19  0.17 0.17

 0.14

 0.14  0.11

 0.11

 0.07 0.07  0.04 0.04

 0.02
 0  −0.015

 −0.025

FIG. 4. (Color online) Dependence of the total exchange param-
eter J0 on volume � and c/a ratio as a contour plot J0(�,c/a).

214422-4



MAGNETOELASTIC COUPLING IN γ -IRON . . . PHYSICAL REVIEW B 84, 214422 (2011)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 2  3  4  5  6  7  8

J n
 (

eV
)

R (Å)

fcc (c/a=1.00)
fct (c/a=0.90)
fct (c/a=0.80)

bcc (c/a=0.71)

FIG. 5. (Color online) The exchange parameter as a function of
interatomic distance to the nth neighbor Jn(Rn) for different c/a

ratios.

IV. DISCUSSION AND CONCLUSIONS

We can determine the magnetic-structure independent con-
tribution E0 by subtracting the Heisenberg-like contribution
with calculated exchange parameters from the total energy.
In order to do this one can use the energy of ferromagnetic
state in the spin-spiral framework Q = 0 from Eq. (2) and
the following expression: E0 = EFM − J0. As was mentioned
earlier, E0 essentially differs from a total energy obtained
in the non-spin-polarized calculations because of implicit
dependence of E0 on the magnetic moment M . They are equal
only for the systems with zero magnetic moments of all atoms.

The results for E0 are shown in Fig. 6 together with
the total energies of FM bcc and FM, AFM, and AFMD
fcc states obtained by the reconstruction from E0 and Jn.
For comparison, the total energies of ENM obtained from
calculations by VASP are also shown. These results agree very
well with the previous ab initio calculations39 and demonstrate
the dramatic difference between E0 [see Eq. (4)] and ENM.

For fcc iron the magnetic-structure independent contribu-
tion E0 is rather close to the energy of AFM and AFMD states.
For bcc iron the difference between E0 and the ground-state
energy EFM is larger but rather weakly volume dependent
compared to fcc states. At the same time, the energy of the
FM fcc state shows two minima at low and high volumes.
This behavior of fcc total energy drastically differs from the
E0 curve. The difference is larger for higher volumes and has
entirely magnetic origin due to the increase of the exchange
parameters with � (Fig. 3). Quantitatively, the values of bulk
modulus for fcc iron obtained from the Birch-Murnaghan
equation of state52 for E0 and EAFMD, EAFM curves differ
by about 17% and 30% (161, 189, and 207 GPa, respectively).
For the bcc iron estimation of bulk modulus from E0 and EFM

curves give the same B ≈ 187 GPa, in agreement with the
experiment.53

The situation with tetragonal deformations is quite unusual.
One can see in Fig. 6(b) that E0 depends on c/a very weakly.
This means that the Heisenberg-like contribution is dominant
in the shear modulus C ′, as well as in the whole energy curve
along the Bain path. This is the main origin of anomalously
strong coupling between the magnetic and lattice degrees of
freedom in iron, where the tetragonal deformation plays a
special role. The curve E0(c/a) has a minimum at c/a = 1
(fcc structure) whereas both EFM and EAFM have no minima
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at this point, which means instability of the fcc phase in both
magnetic structures. The minima correspond to bcc (FM) and
fct (AFM, AFMD) states with c/a > 1.

Our calculations reveal another unusual feature of the
magnetic interactions in fcc iron related to a growth of
the exchange parameter J1 and, as a consequence, J0 with
the volume increase at � > �exp [see Fig. 3(a)]. This be-
havior corresponds to the rising branch of the Bethe-Slater
curve J (�), which has been used for a semiquantitative
interpretation of the Invar anomaly.54 This region of volumes
corresponds to the observed high-temperature phase of γ -Fe;
for further increase of interatomic distances the overlap of
d orbitals becomes weaker and the exchange interactions Jn

decreases.
Here we show that the calculated dependence of Jn(�) can

explain the anti-Invar phenomenon in γ -Fe.24 If a magnetic
subsystem is well described by the Heisenberg-like model (1)
its contribution to pressure according to the Hellman-Feynman
theorem is

Pm = − 1

N

〈
∂Hex

∂�

〉
= 1

N

∑
i<j

∂Ji,j

∂�
〈eiej 〉

≈ Z1
∂J1

∂�
〈e0e1〉, (6)

where Z1 is the number of nearest neighbors. We assume that
the nearest-neighbor interaction is the strongest one, which is
supported by our first-principles calculations. For the purpose
of qualitative discussions, we will treat exchange interactions
perturbatively assuming Z1J1 � T (T is the temperature and
kB = 1). Then one has 〈e0e1〉 ≈ J1/3T and therefore

Pm = Z1

6T

∂J 2
1

∂�
. (7)

This means that the pressure induced by magnetic exchange
interactions is positive and decreases with the temperature
increase.

The thermal-expansion coefficient

α = 1

�

(
∂�

∂T

)
P

=
(

1

B

)
T

(
∂P

∂T

)
�

(8)

can be divided into a magnetic-structure independent part (α0)
and one related to magnetic exchange interactions (αm): α =
α0 + αm. The magnetic exchange part is equal to

αm = 1

B

(
∂Pm

∂T
− Bmα0

)
. (9)

Here B is the isothermal bulk modulus B = B0 + Bm,
B0 is the magnetic-structure independent part of B, and
Bm = −�(∂Pm/∂�)T . Usually, the second term in Eq. (9)
is neglected. Since ∂Pm/∂T < 0 one can assume that the
expression (7) should lead to the Invar behavior, and hence to
the negative contribution to the thermal-expansion coefficient.
A strong volume dependence of the exchange parameter J1

can lead to the opposite conclusion. Substituteing Eq. (7) into
Eq. (9), one finds

αm = − 1

B0

Z1

6T

∂J 2
1

∂�

[
1 − α0T

∂ ln
(
∂J 2

1 /∂�
)

∂ ln �

]
. (10)

Using calculated volume dependence J1(�) (Fig. 3) and
values α0, � obtained from the experiment24 one can
find that the second term in square brackets on the
right-hand side of Eq. (10) is approximately 1.1 at a
temperature of 1200 K. Therefore a total magnetic ex-
change contribution to the thermal-expansion coefficient
(10) has positive sign. This corresponds to the anti-Invar
behavior, in a qualitative agreement with the experimental
data.24

The negative magnetic exchange contribution to the
thermal-expansion coefficient αm in the Invar materials usu-
ally is associated with a thermal dependence of the spon-
taneous magnetostriction,19 while the positive contribution
(anti-Invar behavior) is often considered to be related to
thermal volume changes due to magnetic fluctuations.24,55

The present investigation allows us to explain the anti-Invar
effect of the high-temperature γ phase of iron within a
simple Heisenberg-like model in terms of magnetic soften-
ing of the bulk modulus, without any assumptions about
two magnetic states of iron atoms with high and low
volumes.17

Due to the thermal expansion, effective exchange parame-
ters increase with the temperature increase,

J
ef

0 = J0 + λT , (11)

with a positive constant λ > 0. If we substitute this for-
mula into the mean-field expression for the magnetic
susceptibility,3,25,26

χ = m2

3
(
T − 2J

ef

0 /3
) , (12)

one can see that corresponding temperature dependence leads
to an increase of the effective magnetic moment, m2 →
m2/(1 − 2λ/3), and the Curie temperature, TC → TC/(1 −
2λ/3).

To conclude, we have carried out a systematic study of
exchange parameters in α- and γ -Fe as functions of the
volume and tetragonal deformation. The computational results
demonstrate a strong coupling between lattice and magnetic
degrees of freedom, which should be taken into account in
thermodynamic properties of Fe, especially its thermal expan-
sion. Accurate analysis of the magnetic-structure independent
contribution E0 allows us to conclude that a response of fcc and
bcc Fe to deformations is mainly controlled by the magnetic
exchange.

ACKNOWLEDGMENTS

M.I.K. acknowledges financial support from the EU-Indian
scientific collaboration program, project MONAMI. We thank
Igor Abrikosov for critical fruitful discussions. The calcula-
tions were partly performed on the supercomputer at NRC
“Kurchatov Institute.”

214422-6



MAGNETOELASTIC COUPLING IN γ -IRON . . . PHYSICAL REVIEW B 84, 214422 (2011)

1Physical Metallurgy, edited by R. W. Cahn and P. Haasen (North-
Holland, Amsterdam, 1996).

2C. Herring, in Magnetism, edited by G. T. Rado and H. Suhl
(Academic, New York, 1966), Vol. 4.

3S. V. Vonsovsky, Magnetism (Wiley, New York, 1974).
4S. V. Vonsovsky, M. I. Katsnelson, and A. V. Trefilov, Phys. Met.
Metallogr. 76, 247 (1993); 76, 343 (1993).

5A. I. Lichtenstein, M. I. Katsnelson, and G. Kotliar, Phys. Rev. Lett.
87, 067205 (2001).

6C. Carbone, M. Veronese, P. Moras, S. Gardonio, C. Grazioli, P. H.
Zhou, O. Rader, A. Varykhalov, C. Krull, T. Balashov, A. Mugarza,
P. Gambardella, S. Lebegue, O. Eriksson, M. I. Katsnelson, and
A. I. Lichtenstein, Phys. Rev. Lett. 104, 117601 (2010).

7L. Kaufman and M. Cohen, Prog. Metal Phys. 7, 165 (1958).
8H. Hasegawa and D. G. Pettifor, Phys. Rev. Lett. 50, 130 (1983).
9G. L. Krasko and G. B. Olson, Phys. Rev. B 40, 11536 (1989).

10D. W. Boukhvalov, Yu. N. Gornostyrev, M. I. Katsnelson, and A. I.
Lichtenstein, Phys. Rev. Lett. 99, 247205 (2007).

11V. P. Antropov, M. I. Katsnelson, M. van Schilfgaarde, and B. N.
Harmon, Phys. Rev. Lett. 75, 729 (1995); V. P. Antropov, M. I.
Katsnelson, B. N. Harmon, M. van Schilfgaarde, and D. Kusnezov,
Phys. Rev. B 54, 1019 (1996).

12P. James, O. Eriksson, B. Johansson, and I. A. Abrikosov, Phys.
Rev. B 59, 419 (1999).

13M. Marsman and J. Hafner, Phys. Rev. B 66, 224409 (2002).
14I. A. Abrikosov, A. E. Kissavos, F. Liot, B. Alling, S. I. Simak,

O. Peil, and A. V. Ruban, Phys. Rev. B 76, 014434 (2007).
15R. F. Sabiryanov, S. K. Bose, and O. N. Mryasov, Phys. Rev. B. 51,

8958 (1995).
16A. V. Ruban, M. I. Katsnelson, W. Olovsson, S. I. Simak, and I. A.

Abrikosov, Phys. Rev. B 71, 054402 (2005).
17E. F. Wasserman, in Ferromagnetic Materials, edited by K. H. J.

Buschow and E. P. Wohlfarth (North-Holland, Amsterdam, 1990),
Vol. 5, p. 237.

18S. V. Okatov, A. R. Kuznetsov, Yu. N. Gornostyrev, V. N. Urtsev,
and M. I. Katsnelson, Phys. Rev. B 79, 094111 (2009).

19S. Khmelevskyi and P. Mohn, Phys. Rev. B 69, 140404(R)
(2004).

20Y. Tsunoda, N. Orishi, and N. Kunitomi, J. Phys. Soc. Jpn. 53, 359
(1984).

21S. V. Sudareva, V. A. Rassokhin, and A. F. Prekul, Phys. Status
Solidi A 76, 101 (1983).

22K. Ullakko, J. K. Huang, C. Kantner, R. C. O’Handley, and V. V.
Kokorin, Appl. Phys. Lett. 69, 1966 (1996).

23Y. Tsunoda, L. Hao, S. Shimomura, F. Ye, J. L. Robertson, and
J. Fernandez-Baca, Phys. Rev B 78, 094105 (2008).

24M. Acet, H. Zähres, E. F. Wassermann, and W. Pepperhoff, Phys.
Rev. B 49, 6012 (1994).

25A. I. Liechtenstein, M. I. Katsnelson, and V. A. Gubanov, J. Phys.
F 14, L125 (1984); Solid State Commun. 54, 327 (1985)

26A. I. Liechtenstein, M. I. Katsnelson, V. P. Antropov, and V. A.
Gubanov, J. Magn. Magn. Mater. 67, 65 (1987).
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