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Theory of the inverse Faraday effect in view of ultrafast magnetization experiments
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We supplement the theory of the inverse Faraday effect, which was developed in the 1960s, to the conditions
used today in ultrafast magnetization experiments. We show that assumptions used to derive the effective
Hamiltonian and magnetization are not valid under these conditions. We extended the approach to be applicable
to describe magnetization dynamics at femtosecond time scales. We show that after the action of an ultrafast
laser pulse the system is brought with a certain probability to a state, the magnetic signature of which is different
from before the excitation.
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I. INTRODUCTION

Ultrafast optical control of the magnetic state of a medium
is presently a subject of intense research. It is of importance
for the development of alternative concepts for high-speed
magnetic recording and information processing. A series of
experiments has revealed direct optical control of magnetiza-
tion via the inverse Faraday effect (IFE),1,2 i.e.,the generation
of an effective magnetic field by light. In these experiments,
magnetization reversal on subpicosecond time scales induced
by high-intensity laser pulses was demonstrated. The results
motivated intense experimental3–13 and theoretical14–21 in-
vestigations in the field of ultrafast magnetization, but the
mechanisms of magnetization reversal on femtosecond time
scales and the origin of the IFE are still poorly understood.

The IFE was predicted theoretically by Pitaevskii22 in
1960 from a pure phenomenological ansatz on the basis of
a thermodynamic potential describing the internal energy of a
system. Van der Ziel et al.23 observed the effect in 1966 and
Pershan et al.24 provided a detailed explanation of the IFE
from the quantum-mechanical point of view. The equation
M(t) = −γ E∗(t) × E(t), connecting the magnetic field M(t)
to the generating electric field E(t) of the light pulse, was
derived,22,24 which has been used until today to describe
the IFE. According to it, the change of magnetization is
proportional to the intensity of the pulse and vanishes after
the action of the pulse. However, in all modern measurements
of the IFE, the magnetization remains altered and takes some
time to stabilize.

With the advent of ultrafast pump-probe experiments, the
experimental conditions today are quite different from the ones
realized in the past. The duration of the laser pulse used in the
experiment of van der Ziel et al.23 was 30 ns. In the experiments
carried out nowadays, the duration of the laser pulse is equal
to or even shorter than 100 fs. That is about six orders of
magnitude shorter than in the 1960s and the laser fluence
used today is much higher. In the experiment of Kimel et al.1

the fluence was about 1011 W/cm2, which is four orders of
magnitude higher than in Ref. 23. Another essential difference
lies in the observation of the magnetization dynamics. Ziel
et al.23 measured the magnetization during the time the pulse
was present and the variation of magnetization was zero after
the action of the pulse. Nowadays, the magnetization dynamics
after the action of the laser field is of interest and requires an

interpretation, which is opposite the essence of the studies in
1960s. Thus there should be different mechanisms that are
responsible for the stationary and ultrafast IFE.

The understanding of these ultrafast mechanisms is essen-
tial for the investigation of spin precessions, which arise after
the action of circularly polarized light pulse on a system. A
proper set of equations that would describe the full picture
of the magnetic vector oscillations has been sought in several
publications.8,9,18,19 The problem that the authors encounter is
the inclusion of the correct time dependence of the induced
magnetization M(t) in such equations. According to the stan-
dard expression M(t) = −γ E∗(t) × E(t), there is no magnetic
field after the action of the laser light, which apparently is not
the case since the spin precessions are observed for much
longer times than the pulse duration.4–10 In Refs. 8,17, and 19
the induced magnetic field was introduced as a δ function. It
is a convenient however not quite exact approximation when
it is applied to derive the spin oscillations since their period
is typically on the order or just one order of magnitude higher
than a pulse duration. Another useful approach to connect the
laser magnetic action to spin oscillations has been suggested
by Galkin and Ivanov,18 but also under the assumption that the
system is under “the action of a short magnetic field pulse of
high amplitude and width δt much smaller than the problem
characteristic time.” The primary motivation of our work is
to find the correct way to introduce the time dependence of
the induced magnetization. We derive our approach without
any approximations concerning the pulse length. We obtain
that the induced magnetization does not remain zero after the
action of an ultrashort laser pulse.

Reid et al.10 have experimentally shown that “magnetism
on the subpicosecond time scale cannot be adequately de-
scribed by the thermodynamic model of the inverse Faraday
effect.” They compared the initial amplitudes of the observed
oscillations, excited by the 50-fs-long light pulse, with static
measurements of the materials Verdet constant, which is
proportional to γ , over a range of temperatures and found that
the two have very different temperature dependences. They
also obtained that the frequency of the oscillations are 30
times higher than expected for magnetization precessing in
the external field. The second question that we try to answer
is where these disagreements with the classical theories22,24

come from.
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We want to update and extend the approach developed by
Pershan et al.,24 which is the commonly accepted theoretical
foundation of the IFE, to the experimental conditions today
characterized by the availability of ultrafast lasers. Although
the process that is studied by Pershan et al.and in the present
work is the same, the mechanism of the stationary and
ultrafast IFE is shown to be different. We explain why the
thermodynamic approach that works in the nanosecond region
is not valid for the description of the magnetization dynamics
on subpicosecond time scales.

II. EFFECTIVE HAMILTONIAN APPROACH

The stimulated Raman-like scattering process was sug-
gested to be responsible for the magnetization reversal by
light.7,24 In this process, the laser pulse excites the transition
of an electron from the initial state to a virtual intermediate
one and then to the final state. Through the intermediate state,
the spins or magnetic moments of the system are influenced
and at the end the system is in a different magnetic state.

This process is described by the time-dependent
Schrödinger equation. The wave function of the system due to
the action of the electric field E(t) is found by the solution of

i
∂�(t)

∂t
= [H0 + V (t)]�(t) (1)

using the Volterra iteration method, where V (t) is the pertur-
bation due to the action of a field and H0 is the unperturbed
Hamiltonian. It includes all electron interactions, particularly
for the effects on the spin of the electrons, such as spin-orbit
and Zeeman interactions. The solution is the expansion

�(t) = e−iH0t [�0 + �1(t) + �2(t) + · · ·]
= e−iH0t

[
1 − i

h̄

∫ t

−∞
V̄ (t ′)dt ′

− 1

h̄2

∫ t

−∞
V̄ (t ′)dt ′

∫ t ′

−∞
V̄ (t ′′)dt ′′ + · · ·

]
�0, (2)

with V̄ (t) = eiH0tV (t)e−iH0t .
The Raman-like process is of second order in the inverse

speed of light 1/c. The perturbation is of first order 1/c: V (t) =
−d · E = 1

c
d · Ȧ, where d is the dipole moment of the system

and A is the vector potential. Therefore, the third term of the
expansion in Eq. (2) is of interest here. Pershan et al.24 intro-
duced an effective Hamiltonian Heff of the system defined by
transition amplitudes between initial states i and final states f ,

〈f | − i

h̄

∫ t

−∞
Heff(t

′)dt ′|i〉

= 〈f | − 1

h̄2

∫ t

−∞
V̄ (t ′)dt ′

∫ t ′

−∞
V̄ (t ′′)dt ′′|i〉, (3)

which leads to

〈f |Heff(t)|i〉 = − i

h̄

∑
j

〈f |V̄ (t)|j 〉
∫ t

−∞
〈j |V̄ (t ′)|i〉dt ′, (4)

with j being the intermediate states. Taking the most general
form of the perturbation V (t) = v(t)eiωt + v∗(t)e−iωt and
assuming that the amplitude of the perturbation v(t) varies
on a characteristic time scale T that is much larger than

FIG. 1. (Color online) Pulse with amplitude that does not change
noticeably in time (left) and Gaussian-shaped pulse (right). Time T

characterizing the pulse duration is a factor 20 times shorter for the
right pulse as compared to the left pulse.

1/(ω ± ωij ), the approximation∫ t

−∞
v(t ′)ei(ωij ±ω)t ′dt ′ ≈ v(t)

ei(ωij ±ω)t

i(ωij ± ω)
(5)

becomes valid except for resonant transitions ±ω ≈ ωij ,
where ωij = εj −εi

h̄
with εi (j ) the energy of the state i (j ).

Under these conditions one obtains∫ t

−∞
eiωij t

′
V̄ (t ′)dt ′ = v(t)

ei(ωij +ω)t

i(ωij + ω)
+ v∗(t)

ei(ωij −ω)t

i(ωij − ω)
. (6)

Then the effective Hamiltonian is found as

〈f |Heff(t)|i〉 = − i

h̄

∑
j

[
vij (t)v∗

jf (t)

ωij + ω
+ vjf (t)v∗

ij (t)

ωij − ω

]
eiωif t .

(7)

The terms vij vjf ei(±2ωt+ωij ) correspond to a second harmonic
process. They connect the initial state to final states, which
are energetically widely separated from the initial state and
need not be considered here.

The ultrafast magnetization experiments are carried out
with pulses several tens of fs long (T ∼ 1/|ωij − ω|). There-
fore, the change of the pulse amplitude in time cannot
be be neglected anymore. For example, if we choose the
perturbation to be a circularly polarized Gaussian-shaped pulse
v(t) = −d · Ee−t2/T 2

(where E is the amplitude of the electric
field) the approximation in Eq. (5) would be valid only under
the assumption that the laser field could be considered almost
stationary, i.e., if T → ∞, which was actually the condition
considered by Pershan et al.24 The differences between the
pulses are illustrated in Fig. 1. The left-hand plot exhibits
the shape of a pulse for which the approximation in Eq. (5)
holds. During the time considered, the amplitude of v(t) does
not change significantly and the time integral over the field is
determined by the periodic function e±iωt . In the right-hand
plot the constant T that characterizes the pulse width is 20
times shorter and the variation of v(t) is important. When
integrating over the pulse, the factor e−t2/T 2

cannot be omitted.
The exact solution of the integral in Eq. (6) for the Gaussian-

shaped laser pulse is given by∫ t

−∞
eiωij t

′
V̄ (t ′)dt ′ = −d · E T

√
π

2

×
{
e−[T (ωij +ω)]2/4

[
1 + erf

(
t

T
− i

2
T (ωij + ω)

)]

+ e−[T (ωij −ω)]2/4

[
1 + erf

(
t

T
− i

2
T (ωij − ω)

)] }
. (8)
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Thus the effective Hamiltonian [Eq. (4)] for this pulse is

〈f |Heff(t)|i〉
= − i

√
π

h̄
E2T

∑
j

dij djf e−t2/T 2
eiωjf t cos ωt

×
[
e−[T (ωij +ω)]2/4erfc

(
i

2
T

(
ωij + ω

) − t

T

)

+ e−[T (ωij −ω)]2/4erfc

(
i

2
T

(
ωij − ω

) − t

T

)]
. (9)

For large complex arguments z = |z| eiθ , |z| → ∞, and the
polar angle |θ | < 3π/4, the function erfc(z) approaches

asymptotically e−z2

√
πz

.25 Substituting this asymptote into Eq. (9),
one obtains exactly Eq. (7). The range of validity of Eq. (7)
may be determined precisely. From the condition |θ | < 3π/4
it follows that T |ωij ± ω| > 2t/T and the condition T |ωij ±
ω| � 1 is necessary for |z| → ∞. Thus Eq. (7) is certainly
applicable to the experiments of Ziel et al.23 with pulse
durations on the order of nanoseconds; however, it is not valid
for pulses several tens of fs long and times larger than the pulse
duration.

In order to obtain the effective Hamiltonian for a system, the
transition amplitudes between the initial, intermediate (which
would mix orbital momentum and spin), and final states with
different magnetic quantum numbers from the initial ones
should be calculated and summed. Thus the simplest possible
example to demonstrate the discrepancies between the two
different approaches in describing the laser excitation to obtain
the effective Hamiltonian is a three-level system as depicted in
Fig. 2. However, the results of such a comparison are general
because the temporal behavior of the functions presented later
would be similar in many-level systems. We considered the
excitation of a Gaussian-shaped laser pulse that is 100 fs
long (T = 10−13 s) and calculated the time evolutions of the
amplitudes of the effective Hamiltonians in Eqs. (7) and (9).
The results are plotted in Figs. 3(a) and 3(b), respectively,
in units of energy ξ = E2dij djf T /h̄. We can estimate the
amplitude by making the following reasonable assumptions: If
the dipole matrix elements are of the order of 1 a.u. (≈53 pm)
and the electric-field amplitude is about 107 V/m, which
is a typical value for laser fluences of 1011 W/cm2, then
ξ ≈ 10−4 eV.

FIG. 2. (Color online) The three-level system investigated. The
laser pulse causes transitions from the initial state |i〉 to the
intermediate |j〉 and then to the final one |f 〉, with a magnetic state
different from the one of the initial state. The spin is influenced by
the spin-orbit coupling of |j〉.

FIG. 3. (Color online) Time evolution of the amplitude of the
effective Hamiltonian (a) in Eq. (7) at different laser frequencies and
(b) in Eq. (9) at the laser frequency ω = 9.7 eV.

Figure 3(a) shows that the amplitudes of the function in
Eq. (7) reproduce the typical behavior of transition amplitudes
when the excitation frequency is off resonance. The maximum
increases when the excitation frequency is closer to resonance.
At resonance the function in Eq. (7) simply diverges. It
is indicated in Fig. 3(a) by a curve taken with a small
detuning off resonance: ω − ωij = 10−6 eV. This divergence is
a manifestation of the importance of the assumption of Pershan
et al.24 that the excitation frequency must be significantly far
from any resonances |ω ± ωij | � 1/T .

In Fig. 3(b) we depict the action of the effective Hamiltonian
in Eq. (9) for only one excitation frequency, namely, ω =
9.7 eV, because plots of close-by frequencies overlap in a
way that cannot be graphically resolved. The functions at the
frequencies ω = 9.85 and 10 eV are very similar: The height
of the maximum is almost the same; only the positions of
the local maxima are different. The amplitudes of Eq. (9) are
oscillating functions, which is consistent with the presence of
the term cos ωt .

From the plots one could see that at the frequency ω =
9.7 eV the amplitude of the function in Eq. (7) is one order of
magnitude smaller than the one in Eq. (9). Furthermore, the
former function is smooth, while the latter is oscillating. The
completely different behavior of both functions arises from
the fact that the validity condition of the approximation in
Eq. (5) is not satisfied since T (ωij − ω) ≈ 10. Therefore, the
maximum of the function in Eq. (9) is still proportional to
T , while the one in Eq. (7) is proportional to 2ω

|ω2
ij −ω2| , thus

explaining the factor of 10 difference between the amplitudes.
Though both functions differ significantly under the chosen

conditions, they approach each other with an increase of T .
Figure 4 shows both functions for ω = 9.7 eV, when T is one
order of magnitude larger. The oscillations of the function in
Eq. (9) still remain because the terms vij vjf ei(±2ωt+ωij ) were
not eliminated in Eq. (9).
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FIG. 4. (Color online) Time evolutions of the amplitude of both
effective Hamiltonians in Eqs. (7) [dashed (red) line] and (9) [solid
(blue) line] at T = 10−12 s and at the laser frequency ω = 9.7 eV.
The unit ξ is rescaled according to the increased T .

In order to derive the magnetization dynamics from the
effective Hamiltonian, Pershan et al.24 defined a potential
function as

F (t) =
∑
if

Hif

eff(t)ρif (t), (10)

where ρif is the density matrix for the atomic system.
They obtained the time dependence of the magnetization
as derivative of the potential function with respect to an
external magnetic field H , M(t) = − ∂F (t)/∂H |H=0, under
the assumption that vij (t)v∗

jf (t) changes slowly compared to
thermal relaxation times of the system.

If we apply this relation to our system, we would be able
to describe the magnetization dynamics only during the pulse,
i.e., when Hif

eff(t) is nonzero. According to this relation, the
functional and, consequently, the magnetization would be zero
after the action of the pulse. This is certainly not the case in the
experiments of Kimel et al.,1 where the magnetization dynam-
ics is observed after the pulse. This prescription on the basis
of thermodynamical potentials fails due to the steady-state
conditions [Eq. (2.11) in Ref. 26] and the thermodynamical
equilibrium underlying the derivation, which simply cannot be
considered in the ultrafast magnetization experiments, where
intensities are very high and the time scales are shorter than
any relaxation time of the system.

III. SECOND ORDER WAVE-FUNCTION

In order to study the time dependence of the magnetization
after the action of a fast laser pulse we suggest that the
second-order wave function �2 introduced in Eq. (2) should
be calculated, which gives the probability of the transitions,
leading to the change of the magnetic state of the system. It is
related to the effective Hamiltonian by the integral

�2(t) = − i

h̄

∫ t

−∞
Heff(t

′)dt ′. (11)

The second-order wave function �2 was calculated for the
three-level system using the Hamiltonians in Eqs. (7) and (9),
respectively. The solution resulting from the Hamiltonian in
Eq. (7) is denoted by �̄2. The time evolutions of |�̄2| and
|�2| are plotted in Figs. 5(a) and 5(b), respectively, in the
dimensionless units w = ξT /h̄, with T = 100 fs.

For the calculation of �̄2 under the action of the Hamilto-
nian Heff(t) in Eq. (7) we applied the approximation in Eq. (5),

FIG. 5. (Color online) Time evolution of the second-order wave
function (a) |�̄2(t)| applying the approximation in Eq. (5) and (b)
|�2(t)| according to the effective Hamiltonian in Eq. (9). The inset
shows |�2(t)| [solid (red) line] and |�̄2(t)| [dashed (brown) line] at
ω = 9.7 eV.

which is consistent with the derivation of the Hamiltonian in
Eq. (7). We find that the evolution of �̄2 is proportional to
the effective Hamiltonian [Fig. 5(a)] and thus it has the same
functional dependence as the potential function in Eq. (10).
This confirms that the functional F can be used to calculate
the magnetization under the condition that Eq. (5) is applicable.
Compatible with Eq. (10), the magnetization goes to zero after
the excitation is completed according to the time evolution
of �̄2.

Except at resonance, the functions |�̄2| and |�2| exhibit
the same behavior during the first half of the pulse [see the
inset of Fig. 5(b)], but the key difference is that the function
|�2| is nonzero after the action of the pulse. This means that
the system remains in an altered state, i.e., with an altered
magnetization, after the laser pulse has faded away. Therefore,
�2(t) is able to describe the magnetization dynamics after the
excitation in the ultrafast magnetization experiments.

For example, the simplest mechanism of magnetization
changes via the Raman-like scattering process is depicted in
Fig. 2. Due to some internal or external magnetic field, all
spins in the system are aligned in one direction. The light is
circularly polarized and propagating in a different direction,
which is chosen as the axis of quantization. Therefore, the
ground state is a mixture of spin-up and -down states. The
role of the spin-orbit coupling is to split the excited states
with different combinations of |ML + 1, ↑〉 and |ML + 1, ↓〉
(where ML is the projection of the orbital moment of the initial
state). Thus selection rules and dipole matrix elements for the
transition with circularly polarized light to the excited state
are different for each component.24 Thereby, the spin of the
electron is influenced by the virtual state. After the emission of
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a photon, the electron arrives at a state with spin components
that are different from the initial ones.

Calculating the second-order function �2(t), one would
obtain the probabilities for the new state to be spin up or spin
down. In order to calculate this function correctly in a solid
state, the wave functions, which describe all transitions over
excited levels j and final states f , which would effect the
spin, should be summarized �2(t) = ∑

jf �
jf

2 (t). Therefore,
the simplified picture presented here does not influence the
conclusions on the temporal behavior, which is the main
concern of this paper. However, the role of the excited states
should be accurately studied in a real material.

The induced magnetization Mα(t) can be derived from this
function with the help of the momentum operators ĵα (α stays
for x,y,z) as follows. If the wave function of an atom is � ′,
then its magnetization is Mα = −μBgJ 〈� ′|ĵα|� ′〉/|� ′|2. We
substitute � ′ = �0 + �2 for our system because we have
to take into account the total influence of the unchanged
ground state i and the state f , which becomes occupied due
to the action of light. Subtracting the initial magnetization, we
obtain

Mα = −μBgJ

(
〈�0 + �2|ĵα|�0 + �2〉

|�0 + �2|2 − 〈�0|ĵα|�0〉
|�0|2

)

≈ −μBgJ

(〈�0|ĵα|�2〉 + 〈�2|ĵα|�0〉 + 〈�2|ĵα|�2〉
)
.

(12)

The first two terms in small parentheses are proportional to
w = E2dij djf T 2/h̄2 and the last term in small parentheses is
proportional to w2; thus it is negligible and can be ignored.
The equation becomes

Mα(t) ≈ −μBgJ [〈�0|ĵα|�2(t)〉 + 〈�2(t)|ĵα|�0〉]. (13)

According to it, the induced magnetization Mα(t) is propor-
tional to w, which is proportional to the light fluence. The same
dependence has been seen in the experiments.1,5,6 Another
result is that the time dependence of the magnetization is
determined by the function �2(t) and has similar behavior, as
depicted in Fig. 5. It is completely different from the expression
−γ E∗(t) × E(t) in the ultrafast regime, but approaches it with
increasing T [see the discussion of Eq. (9)]. The function
�2(t) and, consequently, the induced magnetization depend
greatly on the ultrashort laser pulse properties (such as shape
or frequency). This statement is supported by the observation
in Ref. 8 that the initial phase and amplitude of the oscillation

of the polarization of the probe pulse depend on the pump
wavelength. This results in many opportunities for tuning spin
dynamics by adjusting the laser properties.

IV. CONCLUSIONS

In the case of ultrashort laser pulses (T ∼ 1/ω), the effec-
tive Hamiltonian and �2 are no longer proportional and there is
nothing like the functional in Eq. (10) to obtain magnetization.
Under these circumstances, the effective Hamiltonian must be
integrated over time to obtain the wave function describing
the transitions that cause the change of the magnetic state.
Thus we conclude that the change of magnetization after
the action of an ultrashort laser pulse can be obtained when
the time-dependent Schrödinger equation is solved without
approximations. We suggest that the magnetic action of the
light should be considered as the magnetization of the sample
changes from its ground-state value to some nonequilibrium
one after the excitation. This description would be helpful to
derive the correct expression for the spin oscillations.

In summary, we extended the theory of Pershan et al.,24

developed to describe the inverse Faraday effect, to the regime
of ultrafast magnetization dynamics, which is the focus of
current research. We showed that the approximations used
at that time cannot be applied to ultrafast pump-probe-type
laser experiments. The exact solution of the time-dependent
Schrödinger equation up to the second order of 1/c ex-
plains why ultrashort laser pulses can cause a change of
magnetization. A laser pulse excites two transitions in the
system: from the initial to the intermediate state and from
the intermediate to the final state, which is in a different
magnetic state from the initial one, in which the system
remains with a certain probability. Magnetization due to the
action of the pulse is related to this probability, but not
to a thermodynamical functional, which is derived from an
effective Hamiltonian. The same considerations can be applied
to other magneto-optical effects, showing that a subpicosecond
magnetization dynamics should be treated differently from that
in a nanosecond region. The formalism outlined to describe
the action of ultrashort laser pulses is general and may also be
applicable to other optical experiments.
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