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The Heisenberg antiferromagnet on a two-dimensional triangular lattice is a paradigmatic problem in frustrated
magnetism. Even in the classical limit S → ∞, its properties are far from simple. The “120-degree” ground
state favored by the frustrated antiferromagnetic interactions contains a hidden chiral symmetry and supports two
distinct types of excitation. And, famously, in an applied magnetic field, three distinct phases, including a collinear
one-third magnetisation plateau, are stabilized by thermal fluctuations. The questions of symmetry breaking raised
by this model are deep and subtle, and after more than thirty years of study many of the details of its phase diagram
remain surprisingly obscure. In this paper we use modern Monte Carlo simulation techniques to determine the
finite-temperature phase diagram of the classical Heisenberg antiferromagnet on a triangular lattice in an applied
magnetic field. At low to intermediate values of the magnetic field, we find evidence for a continuous phase
transition from the paramagnet into the collinear one-third magnetization plateau, belonging to the three-state
Potts universality class. We also find evidence for conventional Berezinskii-Kosterlitz-Thouless transitions from
the one-third magnetization plateau into the canted “Y state” and into the 2:1 canted phase found at high fields.
However, the phase transition from the paramagnet into the 2:1 canted phase, while continuous, does not appear
to fall into any conventional universality class. We argue that this, like the chiral phase transition discussed in
the zero field case, deserves further study as an interesting example of a finite-temperature phase transition with
compound order-parameter symmetry. We comment on the relevance of these results for experiments on magnetic
materials with a triangular lattice.
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I. INTRODUCTION

The problem of antiferromagnetism on a triangular lattice
occupies a special place in the history of frustrated magnetism.
The failure of the Ising antiferromagnet on a triangular lattice
to order at any temperature has been widely celebrated since
the pioneering work of Wannier1 and Husimi and Syôzi.2 Simi-
larly, the hugely influential idea of a zero-temperature quantum
spin liquid was first mooted by Anderson in the context of the
spin-1/2 Heisenberg antiferromagnet on a triangular lattice.3

More recent calculations suggest that this model does order at
T = 0, albeit with a much-reduced sublattice magnetization,
in a coplanar three-sublattice “120-degree” state.4,5 However,
even at a classical level, the finite-temperature physics of
this ordered phase is far from simple. The 120-degree state
possesses a (pseudo)vector chirality defined by the handedness
of the spin texture in each elementary triangle.6 As a
consequence, the model can support Z2 vortices as well as
conventional spin-wave excitations, and its low-temperature
phase has been argued to be a “spin gel” in which both
play an important role.6–10 Despite a very determined effort
in simulation, these ideas remain controversial.11–15

Frustrated magnets also exhibit a fantastically rich range
of phases in applied magnetic field, and once again, studies of
the triangular lattice antiferromagnet have played a central role
in forming opinion. The Ising antiferromagnet on a triangular
lattice famously exhibits a one-third magnetization plateau in
applied magnetic field.16 A one-third magnetization plateau is

also found in the Heisenberg antiferromagnet on a triangular
lattice, where it takes the form of a collinear three-sublattice
state stabilized by both thermal17 and quantum18 fluctuations.
Fluctuations select two further phases as a function of the
magnetic field: a coplanar, three-sublattice “Y state,” which
is a canted version of the 120-degree state, and a 2:1 canted
phase, which is a coplanar, canted version of the one-third
magnetization plateau.17,18 The same succession of phases also
occurs in the XY antiferromagnet on a triangular lattice,19 and
very similar magnetic phase diagrams occur in a wide range
of other models. Consequently, the magnetization process
of the triangular lattice antiferromagnet is often presented
as the paradigm for the behavior of a frustrated magnet in
an applied magnetic field. As such it serves as a useful
starting point to discuss, e.g., the classical Kagomé20,21 and
Shastry-Sutherland22 antiferromagnets.

Further motivation for studying triangular lattice anti-
ferromagnets in magnetic field can be taken directly from
experiment. A full magnetic phase diagram as a function of
magnetic field and temperature has been measured for a range
of triangular lattice antiferromagnets,23 which includes the
S = 1/2 intermetallic GdPd2Al324 and the S = 5/2 insulating
oxides RbFe(MoO4)2

25 and Rb4Mn(MoO4)3.26 In all of these
cases magnetic anisotropy27 and/or weak interlayer coupling28

must be taken into account. Nonetheless, clear evidence is
found in each case for the three phases found in a Heisenberg
model: the Y state, the one-third magnetization plateau, and
the 2:1 canted phase. More general models, with competing or
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anisotropic exchange interactions, exhibit even more complex
behavior as a function of magnetic field and temperature. These
remain a subject of intensive study, for the examples they
provide of novel magnetic phases29–37 and for their delicate
and subtle finite-temperature phase transitions.38,39

In the context of all this activity, it is perhaps surprising
that there are only two published attempts to determine the
phase diagram of a classical Heisenberg antiferromagnet on
a triangular lattice in an applied magnetic field from Monte
Carlo simulation.17,21 And, while these authors agree as to the
phases present, the nature of the phase transitions between
them remains largely unexplored. In this paper we attempt to
remedy this situation by using modern Monte Carlo simulation
techniques to study the phase transitions which occur in the
antiferromagnetic Heisenberg model on a triangular lattice,
as a function of the temperature and magnetic field. The
challenge—and interest—of this problem stems from the fact
that the coplanar Y state and 2:1 canted phases break both
discrete symmetries of the lattice and spin-rotation symmetry
in the plane perpendicular to the applied field. Moreover,
since the Mermin-Wagner theorem forbids the breaking of
a continuous symmetry in two dimensions,40 spin-rotation
symmetry is broken only at the level of a topological,
Berezinskii-Kosterlitz-Thouless (BKT) phase transition.41,42

This type of compound symmetry breaking is notoriously
difficult to disentangle in two dimensions. The example of
coupled Ising (Z2) and XY [O(2)] fields, in particular, has a
long history, dating back to work on spin glasses by Villain.43

Questions of Z2 ⊗ O(2) symmetry breaking also arise in the
XY antiferromagnet on a triangular lattice,44 and in models of
coupled Josephson-junction arrays.45 A central theme for each
of these problems is when—if ever—Ising and XY symmetries
are broken in a single, continuous phase transition.46–52

In the case of the coplanar phases found in the triangular
lattice Heisenberg antiferromagnet in applied magnetic field,
the relevant symmetry is Z3 ⊗ O(2), and we find that the
compound nature of the order parameters significantly modi-
fies the phase transitions which separate coplanar phases from
the high-temperature paramagnet. For low values of the field,
we find a double phase transition, with the system passing first
from the paramagnet into the collinear one-third magnetization
plateau, and then into the Y state. These transitions belong to
the three-state Potts and BKT universality classes, respectively.
Another BKT phase transition is found at a roughly constant
field, separating the one-third magnetization plateau and the
2:1 canted state. Approaching saturation, a single continuous
phase transition is found from the paramagnet into the 2:1
canted state. This exhibits a nonuniversal jump in spin stiffness
and continuously varying exponents as a function of the
magnetic field, and so does not belong to any conventional
universality class. In reaching these conclusions, we pay
careful attention to finite-size effects, which are found to be
very large for low values of the magnetic field. Our results are
summarized in Fig. 1.

The remainder of the paper is structured as follows : In
Sec. II we briefly discuss the Monte Carlo method used
and introduce the order parameters for the different phases,
together with associated correlation functions, and finite-size
ansatzes. In Sec. III we discuss the topology of the overall
magnetic phase diagram, focusing on the importance of
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FIG. 1. (Color online) Magnetic phase diagram of the antiferro-
magnetic Heisenberg model on a triangular lattice, obtained from
Monte Carlo simulation. Results have been extrapolated to the
thermodynamic limit using finite-size scaling analysis, as described in
the text. Continuous phase transitions are drawn with a dashed line,
while Berezinskii-Kosterlitz-Thouless phase transitions are drawn
with a dotted line. For fields h � 3 a double transition is found
upon cooling from the paramagnet, while for h � 3 only a single
transition is found. Horizontal dashed lines represent cuts at the fixed
fields h = 0.4, h = 2.0, and h = 5.0, or fixed temperature T = 0.05,
analyzed below. The low-field region h � 0.2, left unshaded, is
beyond the scope of this work. The black open symbol on the T

axis marks the phase transition found at h = 0, from Ref. 10.

finite-size scaling. In Sec. IV we discuss the transitions
between ordered phases at low temperature. In Sec. V we
present representative cases of double phase transitions upon
cooling, characteristic of low and intermediate fields. In
Sec. VI we discuss a representative case of the single-phase
transition observed at high field and its properties. Lastly,
we conclude with an overall summary of our results and a
discussion of some of the remaining open questions in Sec. VII.

II. MODEL, METHOD, AND ORDER PARAMETERS

The model we consider is defined by the Heisenberg
Hamiltonian:

H = J
∑
〈i,j〉

Si · Sj − h
∑

i

Sz
i , (1)

where the sum 〈i,j 〉 runs over all nearest-neighbor bonds of
a triangular lattice (assuming periodic boundary conditions)
and the sum on i runs over N lattice sites. We consider
antiferromagnetic exchange interactions J > 0, and spins are
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taken to be classical vectors of unit length. In the presence of
a magnetic field it is convenient to rewrite this Hamiltonian as

H =
∑
�

[
− 3J

2
− h2

18J
+ 9J

2

(
m − h

9J

)2 ]
, (2)

where the sum on � runs over all triangular plaquettes in the
lattice and

m = 1

N

∑
i

Sz
i . (3)

By inspection, for h < 9J the system takes on its minimum
energy for

m = h

9J
. (4)

At zero temperature, this condition selects a manifold of three-
sublattice states which evolves smoothly from the 120-degree
state at h = 0 to saturation at h = 9J . In what follows we set
J = 1 and measure h in units of J .

The degeneracy of this manifold is lifted by thermal
fluctuations, which select collinear and coplanar states over
the noncoplanar ones at low temperature, in a manifestation
of the celebrated “order-from-disorder” effect.53 The resulting
phases are (i) a coplanar Y state with one spin pinned in the
negative Sz direction and two canting “up,’, i.e., a distorted
version of the 120-degree state; (ii) a collinear state at exactly
h = 3, with two spins “up” and one spin “down,” i.e., a
one-third magnetization plateau; and (iii) a coplanar 2:1 canted
version of the plateau, which smoothly interpolates until the
collinear saturated paramagnet is reached at h = 9. These
phases are illustrated in Fig. 1.

In the collinear one-third magnetization plateau (ii), only
the Sz components of the spin participate in symmetry
breaking. In the presence of a magnetic field, this phase
breaks only a discrete C3

∼= Z3 symmetry of the lattice, and
long-range order is permitted in two dimensions. However,
the coplanar Y state (i) and 2:1 canted phase (iii) also involve
spin components in the Sx–Sy plane. In this case, long-range
order implies selecting a common plane for canting, breaking
the O(2) symmetry for rotation of spins about the direction of
the magnetic field. Since the Mermin-Wagner theorem forbids
the breaking of this continuous symmetry at any finite tempera-
ture in two dimensions, only a regime with “quasi-long-range”
order, described by the algebraic decay of spin correlations, is
permitted. Both coplanar phases also inherit the broken lattice
symmetry, hence a compound Z3 ⊗ O(2) symmetry is broken
at T = 0. These phases with broken mixed symmetries can
also be viewed as magnetic “supersolids.”54–56

In order to study the finite-temperature properties of the
model defined by Eq. (1), we perform large-scale parallel
tempering57 Monte Carlo simulations. Simulating this model
is challenging because of the underconstrained nature of the
T = 0 ground state. At low temperature the system can become
frozen in noncoplanar T = 0 ground states which still obey the
magnetization constraint, especially for small system sizes. In
this case, the thermal-selection process is not fully realized
and strong finite-size effects are visible. In order to overcome
this problem, we couple the parallel-tempering Monte Carlo
scheme to successive deterministic over-relaxation sweeps,

which comprise the reflection of each spin around its respective
local field. Since this is a reversible and microcanonical
update, the global Markov chain for parallel tempering and
over-relaxation also obeys detailed balance on the whole.
Simulations of from 48 to 128 replicas (temperatures) were
performed in parallel for a variety of L × L rhombohedral
clusters with periodic boundary conditions. The linear size
L was chosen to be commensurate with three-sublattice
order in the range L ∈ 60–210. Typical simulations involved
2×106 steps, half of which were discarded for thermalization.
Each step consisted of one local-update sweep of the lattice
followed by two over-relaxation sweeps, with replicas at
different temperatures exchanged every ten steps. Random
initial configurations were employed.

The three ordered phases found break the translational
symmetry of the lattice. This can also be interpreted as the
breaking of permutation symmetry between the three different
sublattices in which the triangular lattice can be divided,
labeled A, B, and C. In order to study this process, we
introduce a complex order parameter ψ = ψ1 + iψ2, based on
a two-dimensional irreducible representation of the C3

∼= Z3

lattice rotation group:

ψz
1 = 3√

6N

∑
i

2Sz
A + 2Sz

B − 4Sz
C, (5)

ψz
2 = − 3√

2N

∑
i

2Sz
B − 2Sz

A, (6)

|ψz|2 = ∣∣ψz
1

∣∣2 + ∣∣ψz
2

∣∣2
, (7)

where the sum over i runs over the N/3 elements of each
sublattice, A,B, and C. Since parallel tempering effectively
restores the lattice symmetries, we measure the magnitude of
the order parameter:

Ozz = 〈|ψz|〉, (8)

which is normalized to 12/
√

6 in the case of a perfect
“two-up, one-down” collinear configuration (only achievable
at T = 0 and h = 3). The ordering susceptibility and the
(temperature-dependent) structure factor associated with this
order parameter are defined as

χzz = N
〈|ψz|2〉 − 〈|ψz|〉2

T
, (9)

Szz = N
〈|ψz|2〉

T
. (10)

In order to characterize the phase transitions found, we
employ the standard finite-size scaling expressions:

Ozz = L−β/νÕzz(tL1/ν), (11)

χzz = Lγ/νχ̃ zz(tL1/ν), (12)

Szz = L2−ηS̃zz(tL1/ν), (13)

as a function of the reduced temperature t = (Tc − T )/T . The
critical exponents ν, β, and γ are obtained from Eqs. (11) and
(12), through the usual data collapse of the respective scaled
quantities around the critical point. Since the scaled structure
factor S̃zz becomes independent of system size exactly at Tc,
Eq. (13) allows the determination of the correlation function
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exponent η, provided Tc is found beforehand. Error bars for
the critical exponents are calculated by assuming a maximum
deviation in the data points used to perform the data collapse,
which results in a conservative (over)estimator of the precision
in the obtained critical exponents.

The presence of a magnetic field reduces the symmetry
of the model to SO(2) rotations in the Sx–Sy spin plane,
which supports, at most, quasi-long-range order. The spin
stiffness ρS , which acts as the (nonlocal) order parameter
for this algebraic order, can be calculated from the cost in
the free energy of rotating the projection of each spin in
the perpendicular plane S⊥

i = (Sx
i ,S

y

i ) (see, e.g., Ref. 34 and
references therein):

ρs[ê] = − 2√
3N

〈
J

∑
〈i,j〉

(ê.rij )2S⊥
i .S⊥

j

〉

− 2√
3NT

〈(
J

∑
〈i,j〉

(ê.rij )S⊥
i × S⊥

j

)2〉
, (14)

where rij=ri−rj and ρS has been normalized by
√

3/2
to the unit area. Since parallel tempering effectively
restores the lattice symmetries, ρS is averaged over
three symmetric directions in the lattice ê=(êx,êy)=
{(1,0),(1/2,

√
3/2),(−1/2,

√
3/2)}.

The unbinding of vortex pairs at a BKT phase transition
suppresses the spin stiffness, leading to a jump in ρS at the
transition temperature TBKT. This jump 	ρS can be expressed
in terms of the correlation length exponent η as58

	ρS = TBKT

2πη(TBKT)
. (15)

In a conventional BKT transition, η(TBKT) = 1/4, and the jump
in spin stiffness takes on the universal value 	ρS = 2TBKT/π .
However, TBKT is itself strongly renormalized in finite-size
simulations, and the correct ansatz for the finite-size scaling
of TBKT must take account of logarithmic corrections:59

TL = TBKT

(
1 + 1

2

1

log L + log b

)
. (16)

Fits of this two-parameter scaling form to finite-size results
for the jump in spin stiffness give an estimate of the true TBKT
in the thermodynamic limit.

The perpendicular component of the C3 order parameter,
Oxy , can be defined by analogy with Eqs. (5)–(8). Since
this quantity implies a (staggered) planar magnetization it
must vanish at any finite temperature in the thermodynamic
limit. However, in a BKT phase transition, the scaling of the
perpendicular structure factor Sxy , analogue to Eq. (10), yields
the characteristic critical exponent η(TBKT) = 1/4.

Empirically, we find that the analysis of the correlation
length ξ provides the most precise method to obtain the
transition temperature for this model, being less sensitive to
finite-size effects than, e.g., Binder cumulants.60 In order to
calculate this quantity, the structure factor function associated
with momentum q is first defined as

S(q) =
〈

1

N

∣∣∣∣∣
∑

i

Si exp(−iq.ri)

∣∣∣∣∣
2〉

. (17)

Around the wave vectors corresponding to the incipient
three-sublattice order—qK = {(4π/3,0),(2π/3,π/

√
3)}—and

in a disordered phase, this quantity displays the characteristic
Lorentzian form S(q) ∝ 1

q2+ξ 2 , arising from short-range cor-
relations. For a sufficiently large system the correlation length
ξ can be obtained from the ratio between S(q) at qK and the
nearest allowed wave vector qK + δq:

ξ = 1

|δq|

√
S(qK)

S(qK + δq)
− 1, (18)

where δq = (2π/L,0). Equation (18) is only directly related
to the physical correlation length in the absence of long-range
order, that is to say, of Bragg peaks in the structure factor. The
structure-factor function, and thereby the correlation length,
can be divided into parallel (ξzz) and perpendicular (ξxy)
components, where the Sz axis is defined by the direction
of the magnetic field.

The correlation length becomes infinite at any critical point,
whether this is a conventional continuous phase transition or
the topological transition into a critical BKT phase. Hence
the scaled quantities ξzz/L or ξxy/L become independent of
system size (or field) at this temperature, from which Tc (or
hc) can be found in an unbiased way. Error bars for Tc are
estimated using the difference between Tc as obtained by the
intersection of the scaled ξ between the two largest clusters
available and as obtained the intersection between the second-
and third-largest clusters available. The data collapse of ξ for
different system sizes can also be used to extract the correlation
length exponent ν at a continuous phase transition:

ξ = Lξ̃ (tL1/ν). (19)

III. TOPOLOGY OF THE PHASE DIAGRAM

Our main results are summarized in Fig. 1. As mentioned in
the introduction, it is not our objective to address the properties
of the peculiarZ2 ⊗ O(3) phase transition at h = 0, although it
has been speculated that this survives the presence of a (very)
small external field.10 As we shall see, accurate simulations
become increasingly difficult for very low fields and, owing
to the very large correlation length in the Sx–Sy spin plane,
require system sizes larger than the ones presently available.
We will therefore not discuss the phase diagram for h < 0.2,
an area left unshaded in Fig. 1.

For 0.2 � h � 3, two different phase transitions occur as
a function of temperature. At high temperature a continuous
phase transition signals the breaking of the translational sym-
metry of the lattice along the Sz spin direction. The resulting
phase is the collinear one-third magnetization plateau. We
note in passing that the magnetization of this plateau is not
tied to one third in a classical Heisenberg model at finite
temperature, since the collinear “up-up-down” state is dressed
with thermally excited spin-wave excitations. (A perfectly
collinear up-up-down state is realized in a classical model
only at T = 0 and h = 3, where it is energetically degenerate
with many other, noncoplanar states).

In the field range 0.2 � h < 3, the canted Y state is found
by lowering the temperature from the one-third magnetization
plateau. The Y state inherits the broken translational symmetry
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of the plateau and, since two of its spins are canted, also breaks
spin-rotational symmetry at T = 0. At finite temperature, this
results in a phase with algebraic order in the Sx–Sy plane.
The best interpretation of our numerical results is that, in the
thermodynamic limit, the Y state is never found to be in contact
with the paramagnet, in agreement with other recent works.21

For values of the field above the plateau and below
the saturation limit, 3 � h < 9, a single continuous phase
transition separates the paramagnet from the 2:1 canted state.
This transition corresponds to the simultaneous onset of
long-range order in the Sz spin component and algebraic order
in the Sx–Sy spin plane.

The transition temperature associated with long-range order
along the Sz direction is obtained by the critical scaling
of the corresponding correlation length ξzz. The transition
temperature between the plateau and the Y state is obtained
by the characteristic BKT finite-size scaling of the jump in
the spin stiffness. Although the critical scaling of the ξxy

correlation length should yield the same result, we find that
this method is less accurate, even for intermediate fields. This
can be explained by the very rapid growth of the ξxy/L ratio
as the field is lowered, until eventually this correlation length
exceeds the linear sizes of the available clusters, rendering this
analysis useless. Hence, as we shall see, the determination of
TBKT using ξxy is less accurate than that using ρS for the same
set of system sizes, even at intermediate fields.

The onset of algebraic order in the Sx–Sy plane associated
with the 2:1 canted state is obtained through the onset of
critical scaling in ξxy , both as a fixed-temperature scan from the
plateau and as a fixed-field scan from the paramagnetic region.
The transition temperatures obtained with the perpendicular
ξxy and parallel ξzz correlation lengths agree very well,
although they relate to different symmetries. Moreover, a jump
in the spin stiffness is observed very close to the transition
temperature found with the analysis of the correlation lengths.

These conclusions are valid in the thermodynamic limit
L → ∞. It is instructive to contrast them with the results
obtained for a finite-size cluster with L = 120, summarized
in the pseudo-phase-diagram Fig. 2. In order to determine the
finite-size “transition” points we analyze the crossing of the
correlation lengths between a single pair of system sizes, L =
108 and L = 120, and register the temperature where ρS =
2T/π for L = 120. At a low field, the transitions between the
paramagnet and the plateau, and between the plateau and Y

state, are now indistinguishable, within error bars.
Hence the best interpretation is that a single phase-transition

separates the Y state from the one-third magnetization plateau.
In Fig. 2 the position of the plateau–Y -state transition, obtained
with the critical scaling of ξxy , is also shown. The difference
between the transition temperature thus obtained and the one
obtained using ρS vanishes gradually as the field is increased.
Together with the observation that the ξxy correlation length
increases with the decreasing field, eventually becoming
larger than L = 120 for h � 0.8, we can understand that
the determination of TBKT from ξxy is very strongly affected
by finite-size corrections. Therefore, we only plot the result
obtained with ρS in the L → ∞ phase diagram (cf. Fig. 1).

When passing from the paramagnet to the 2:1 canted state
at higher fields, a similar separation is observed between the
transition temperature obtained using the scaling of correlation

L=120

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0  0.1  0.2  0.3  0.4

h

T

ρS

ξxy
ξzz

FIG. 2. (Color online) Finite-size pseudo-phase-diagram of the
antiferromagnetic Heisenberg model on a triangular lattice in the
magnetic field, obtained from Monte Carlo simulation of an L × L

rhombohedral cluster with L = 120. Continuous “phase transitions”
are inferred from maxima in the correlation length along the Sz

direction and drawn with a dashed line. Berezinskii-Kosterlitz-
Thouless phase transitions in the Sx–Sy plane are obtained from
either the position of the spin-stiffness universal jump for L=120
or from the scaling of the corresponding correlation length and
drawn with a dotted line. A double transition upon cooling is
only observed at intermediate fields 0.6 � h � 3, contrary to the
conclusions for L → ∞ (cf. Fig. 1). A small difference between
different measurements of the transitions in the Sx–Sy plane is
observed for both low and high fields. Purple dashed lines indicate
cuts at fixed field and temperature analyzed below. The low-field
region, h < 0.2, is beyond the scope of this work.

lengths and that obtained from the jump in spin stiffness.
However, once again we observe that this difference vanishes
when the correct finite-size scaling is performed. We return to
this point below.

IV. FIELD SWEEP AT LOW TEMPERATURE

We start our analysis of the phase transitions with a scan in
the field at fixed temperature T = 0.05 (cf. Fig. 3 and vertical
dashed line in Fig. 1). All the ordered phases discussed are
found as the value of the field is increased: first, we have
the low-field Y state, which is then followed by the one-third
plateau at h = 2.633(3), and finally the 2:1 canted state at h =
3.010(3). Leaving the plateau by either lowering or increasing
the magnetic field corresponds to the onset of algebraic order in
the Sx–Sy plane, as observed in the rise of the corresponding
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FIG. 3. (Color online) Double phase transition as a function
of the magnetic field at a fixed temperature T = 0.05. The three
different ordered phases, Y state, m = 1/3 plateau, and 2:1 canted
state, are found with increasing field. The magnetization plateau is
distinguished from the surrounding phases by the suppression of (a)
the perpendicular correlation length ξxy and (b) the spin stiffness
ρS . Its structure is also revealed by the suppression of (c) magnetic
susceptibility χ . Throughout this paper, lines connecting data points
are guides to the eye, unless stated otherwise.

correlation length ξxy and spin stiffness [cf. Figs. 3(a) and
3(b)]. These simulation runs were performed without parallel
tempering, but the over-relaxation procedure alone was enough
to obtain good results. The transitions in this region are found
to be rather easy to simulate, since correlation lengths are
relatively small.

The different nature of the magnetization plateau, when
compared to the surrounding canted phases, is clear in the
suppression of magnetic susceptibility χ [cf. Fig. 3(c)]. This
feature becomes more pronounced as the temperature at which
the field scan is performed is lowered.

Both phase boundaries between the plateau and canted
phase are approximately linear in temperature, and can be
traced to different spin-wave excitations of the plateau state.
The transition between the plateau and the 2:1 canted state is
only weakly dependent on temperature, indicating that both
phases have roughly the same entropy, arising from similar

spin-wave excitations. The other spin-wave excitation inside
the plateau corresponds to a canting of the “up” spins. Since
this lowers the total magnetization along Sz, this spin-wave is
favored energetically if the field is decreased, making it more
favorable to create a spin-wave than to “cant” all spins into the
Y state. This “protects” the plateau against the decrease of the
field, and it is this higher entropy of the collinear phase53 which
makes the plateau–Y -state transition line slope downward.

V. LOW AND INTERMEDIATE FIELDS, h � 3

For values of applied field in the range 0.2 � h < 3, a
double phase transition is found as temperature is lowered
from the paramagnetic region. In Fig. 4 we present results
for h = 0.4, which is representative of the low-field region
0.2 � h � 1.2. The low-temperature region displays a finite
value of the C3 order parameter Ozz [Eq. (8), cf. Fig. 4(a)], and
spin stiffness ρS [Eq. (14), cf. Fig. 4(b)]. This is indicative of,
respectively, long-range order in the direction parallel to field
and quasi-long-range (algebraic) order in the perpendicular
plane, as expected in the Y state. However, the absolute value
of these quantities at finite temperature is strongly dependent
on the system size. This can be attributed to the proximity of
the h = 0 point, where both these order parameters vanish and
the correlation length is very large (but probably finite).10 This
explains the unusually strong finite-size corrections, which
vanish gradually as the value of the field is increased. In fact,
the most spectacular demonstration of these problems lies in
the absence of critical scaling of the ξxy correlation length; i.e.,
there is no common crossing or collapse for different system
sizes [cf. Fig. 4(c)]. Since there is no long-range order in the
Sx–Sy plane, Eq. (18) still provides an accurate estimation
of the ξxy correlation length in that region (obviously, the
same no longer holds for ξzz). The absence of a merger, or
even a crossing, implies that the asymptotic regime, where the
correlation length is infinite (i.e., ξxy/L ≈ 1 for finite clusters),
has not been reached in the lattice sizes studied. This may
be due to a slowdown in simulation dynamics, arising from
the pathological properties of the h = 0 point.10 For higher
values of the magnetic field h ≈ 0.8, a critical crossing is
only observed in the largest pair of system sizes studied, L =
180 and 210. With increasing magnetic field, this crossing is
observed for gradually decreasing system sizes.

These unusually strong finite-size effects make the accurate
determination of the transition temperatures very hard. For
h = 0.4, the critical scaling of the ξzz correlation length yields
a reasonably well-converged value (i.e. the movement of
the crossing point between successive system sizes becomes
smaller and is not significant for the largest ones employed) at
Tc = 0.290(3) [cf. left inset to Fig. 4(a)]. This phase transition
corresponds to the breaking of translational symmetry. We
reserve its characterization to later in the text, for a value of the
field that allows a cleaner interpretation. The determination
of Tc through the analysis of the Binder cumulants for
the two-component Ozz order parameter, U = 1 − 〈|ψz|4〉

2〈|ψz|2〉2 ,
converges noticeably slower to the thermodynamic limit [cf.
right inset to Fig. 4(a)].

Analyzing now the Sx–Sy spin-texture plane, the best
fit to the evolution with system size of the position of the
universal jump in spin stiffness is given by a logarithmic form
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FIG. 4. (Color online) Double phase transition as a function of
temperature from the paramagnet into the plateau and then into the
Y state, at h = 0.4. (a) The transition into the plateau breaking a
C3 lattice rotation symmetry at temperature Tc = 0.290(3), identified
through the scaling of the correlation length ξ zz [left inset]. The
right inset shows the Binder cumulants associated with the C3 order
parameter. The expected crossing at Tc is subject to very large finite-
size effects. (b) The transition into the Y state heralded by the jump
in spin stiffness ρS , yielding TBKT = 0.253(4). This value is obtained
with a 1/ log L scaling with system size, as shown in the inset to
(b). (c) The perpendicular correlation length ξxy , which is so large
that no critical crossing is observed for the system sizes studied. All
quantities are strongly renormalized by finite-size effects, even at low
temperatures.

[Eq. (16)], with TBKT = 0.253(4) and b = −1.7084(5) [cf.
inset to Fig. 4(b)]. The resulting value for TBKT is significantly
lower than Tc, clearly implying an intermediate phase between
the paramagnet and the Y state that only breaks translational
symmetry, i.e., the one-third magnetization plateau. A jump in
spin stiffness at T ≈ 0.25 in the thermodynamic limit implies
a remarkable finite-size renormalization of spin stiffness, since
ρS is finite for the lattice sizes studied in a broad region
above that temperature [cf. Fig. 4(b)]. This agrees with the
strong variation of the ρS value with system size, as observed
even deep inside the Y state. It should be emphasized that
the separation of these two transitions is observed only in the

L → ∞ limit. Taken at a fixed system size, both estimates for
the transition temperature coincide at Tc ≈ 0.291(4) (within
error bars) for the finite-size systems studied [cf. Fig. 2]. It is
tempting, therefore, to infer that these two transitions appear
to take place at the same temperature. However, since the
correlation length is very large, any comparison at a fixed
finite size is unreliable.

2

FIG. 5. (Color online) Double phase transition as a function of
temperature from the paramagnet state into the collinear m = 1/3
plateau and then into the coplanar Y state, at h = 2. (a) The transition
into the plateau heralded by the rise in the C3 order parameter. The
transition temperature is Tc = 0.364(1), obtained with the critical
scaling of the correlation length ξ zz in the inset to (a). (b) The
spin-stiffness ρS jump signaling the BKT transition into the Y state
at TBKT = 0.138(3), a value obtained with a logarithmic scaling
with system size, as shown in the inset to (b). The paramagnet-
plateau transition only displays a weak signature in (c) magnetic
susceptibility, but shows a clear peak in (d) heat capacity. The
position of the inner magnetic susceptibility peak in (c), scaling of the
correlation length ξxy in the inset to (c), and the inner heat capacity
peak in (d) give an inaccurate estimative of TBKT.
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FIG. 6. (Color online) Data collapse for the continuous phase transition at h = 2.0, T = 0.364, using the exact three-state Potts universality
class critical exponents. (a) C3 order parameter. (b) C3 order-parameter susceptibility. (c) Associated structure factor Szz.

A further manifestation of strong finite-size effects is seen
in the presence of a small amount of noncoplanarity in the
configurations found in equilibrium. This can be observed by
looking at, e.g., scalar chirality or quadrupolar spin moment
quantities, which show a distinct signature inside the Y phase
(not shown). These signals of noncoplanarity scale to zero with
increasing system size, but very slowly. In spite of all these
problems, the value of TBKT extracted from the jump in spin
stiffness ρS obeys the logarithmic evolution with system size
expected for a BKT transition for fields as low as h = 0.2 [see
inset to Fig. 4(c)].

In order to obtain a clean characterization of this double
phase transition, we perform a similar analysis for a value
of field h = 2, where these two transitions are now well
separated (cf. Fig. 5). A sharp rise of the C3 order parameter
[cf. Fig. 5(a)], is associated with the onset of long-range order
when entering the magnetization plateau. This is observed to
happen at T = 0.364(1), as found in the critical scaling of ξzz

[cf. the inset to Fig. 5(a)]. This phase transition can also be
observed in thermodynamic signatures, such as a very shallow
suppression of the magnetic susceptibility [Fig. 5(c)], and a
sharp peak in heat capacity [Fig. 5(d)].

A finite-size scaling analysis of this phase transition is
performed using the critical exponents for the three-state
Potts model in two dimensions ν = 5/6 (correlation length),
β = 1/9 (order parameter), γ = 13/9 (order-parameter sus-
ceptibility), and η = 4/15 (correlation function).61 A perfect
data collapse is obtained for the order parameter [Fig. 6(a)],
order-parameter susceptibility [Fig. 6(b)], and structure factor
at T = Tc [Fig. 6(c)]. This unambiguously confirms that this
phase transition belongs to the three-state Potts universality
class for h = 2.0.

At a lower temperature T ≈ 0.15, the weak features in
heat capacity and magnetic susceptibility herald a transition
associated with quasi-long-range ordering in the Sx–Sy plane.
This can be interpreted as the formation of vortex pairs in
the spin texture defined by the Sx–Sy plane, arising from the
two canted spins of the Y -state configuration. Therefore we
find a BKT transition and respective rise in the spin stiffness
[cf. Fig. 5(b)]. The transition temperature is found by tracking
the position of the universal jump in the spin stiffness TBKT
in the inset to Fig. 5(b). Once again the best fit to the finite-
size scaling is given by a logarithmic function of system size,
yielding TBKT = 0.138(3) and b = 1.5051(4).

In order to confirm the BKT character of this transition, we
study the critical scaling of Sxy , the structure factor associated
with the component of the C3 order parameter perpendicular
to field. The crossing of Sxy/L2−η for different system sizes
at TBKT (using the value found with the ρS analysis) occurs for
a value of the correlation exponent η = 0.26(2) (cf. Fig. 7).
This is in good agreement with η(TBKT) = 1/4, the expected
value in a standard BKT transition.

If we accept this finite-size scaling analysis at face value,
we are lead to the conclusion that, for all values of magnetic
field 0.2 � h < 3, the Z3 and O(2) symmetries are broken
at different temperatures. These two distinct phase transitions
are themselves perfectly conventional. The phase transition
from the paramagnet to the collinear one-third magnetization
plateau shows three-state Potts character, while the phase
transition from the one-third magnetization plateau to the
algebraically correlated Y state is BKT in nature. This is the
interpretation given in the phase diagram Fig. 1.

However this interpretation needs to be approached with
some caution. Even for h = 2, some of the quantities calcu-
lated are strongly affected by finite-size corrections. This can
be readily observed in the inset of Fig. 5(c), where it is shown
that the value of TBKT obtained from the critical scaling of the
transverse correlation length ξxy depends on the size of the
lattice studied. The absence of a good data collapse within the

FIG. 7. (Color online) Evidence for the Berezinskii-Kosterlitz-
Thouless nature of the lower transition at h = 2.0,T = 0.138. The
collapse of the structure factor Sxy at the critical temperature from
Fig. 5(b) yields a critical exponent η = 0.26(2), in good agreement
with the BKT universality class.
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FIG. 8. (Color online) Continuous phase transition from the
paramagnet into the 2:1 canted state as a function of temperature,
for h = 5. (a) C3 order parameter, measuring the broken transla-
tional symmetry. The inset to (a) shows the single-peaked energy
distribution at the transition temperature. (b) Scaling of the parallel
correlation length ξ zz, showing strong finite-size effects above the
transition. The inset to (b) shows a detail of the scaling of ξ zz

which yields a crossing at Tc = 0.212(1). (c) The scaling of the
perpendicular correlation length ξxy also showing strong finite-size
effects above Tc. This transition temperature is also found to be
Tc = 0.212(1), as shown in the inset to (c). (d) The rise in spin stiffness
ρS also heralding the entry into the 2:1 canted state. In the inset to (d)
a 1/[2πη(Tc)] jump of ρS/T is scaled as a function of 1/L + 1/L2

resulting in Tc = 0.217(4), in relatively good agreement with the
scaling of the correlation lengths presented in the insets to (b) and (c).
(e) Heat capacity showing a broad peak at a higher temperature.

algebraically correlated Y state is further evidence of strong
finite-size effects. It would therefore be premature to rule out a
single-phase transition for h → 0. Given that the clusters used
in the present simulations are not small (180 × 180 = 32 400
sites), a fairly heroic act of simulation may be needed to finally
resolve this question.

VI. HIGH FIELD, h � 3

The behavior of the Heisenberg antiferromagnet on a trian-
gular lattice for magnetic field h > 3 is dramatically different.
The zero-temperature state is a 2:1 canted version of the
one-third magnetization plateau, which breaks the translational
symmetry of the lattice and spin-rotational symmetry in the
Sx–Sy plane (at T = 0), i.e., the same symmetries as the Y state
studied above. However, a single phase transition mediates
between the high-temperature paramagnet and the 2:1 canted
phase, in clear contrast with the case described in Sec. V.

A selection of results for a representative field value h = 5
is shown in Fig. 8. The rise of the C3 order parameter, in
Fig. 8(a), heralds the onset of long-range order along the
Sz direction. Strong finite-size artifacts are observed in the
paramagnetic region close to the transition, but the scaling of
the ξzz correlation length yields a well-converged value of Tc =
0.212(1) [cf. Fig. 8(b)] with negligible finite-size corrections.
The critical scaling of the perpendicular correlation length
ξxy [cf. Fig. 8(c)] results in a value of Tc = 0.212(1) (again
with negligible finite-size corrections), which is in perfect
agreement with the value obtained with ξzz.

We observe that this very good agreement, smaller than
the statistical error bars 	T = 0.001 − 0.004, is achieved for
all values of fields h � 3.3. More precisely, this agreement
implies that the correlations along the Sz direction and the
Sx–Sy plane become critical at the same temperature. This
is good evidence for a single-phase transition into the Y

state, without any intermediate phase. In the absence of
any symmetry-breaking field in the Sx–Sy plane, the rise of
the respective correlation length corresponds to the onset to
algebraic order [cf. Fig. 8(c)]. This can also be observed in the
rise of spin stiffness [cf. Fig. 8(d)].

Such a phase transition, which breaks a compound symme-
try Z3 ⊗ O(2), need not show the behavior expected of either
a three-state Potts or BKT transition. This phase transition
retains a continuous character up to the largest cluster size
studied, L = 210, as can be verified by the unimodal energy
distribution at the calculated Tc [cf. inset to Fig. 8(a)]. We
have also explicitly checked that the Binder cumulant for
energy does not develop any characteristic signatures of a
first-order transition as L → ∞ (not shown). The heat capacity
[cf. Fig. 8(e)] only shows a broad peak at a higher temperature
than the estimated Tc. Although the peak does not diverge
with increasing system size, the temperature of its maximum
becomes lower.

The strong finite-size corrections, observed at T > Tc in,
e.g., Fig. 8(a), make the finite-size scaling analysis much
less precise than in Sec. V, but some conclusions can still
be reached. For h = 5, it is possible to reliably extract the
correlation length exponent ν = 2.0(2), the order-parameter
exponent β = 0.50(5), and the correlation function exponent
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FIG. 9. (Color online) Scaling analysis of the continuous phase transition between the paramagnet and the 2:1 canted state at h = 5,T =
0.212. (a) The collapse of simulation results for the ξ zz correlation length yielding the correlation length exponent ν = 2.0(2). (b) The scaling
of the respective component of the order-parameter parallel giving ν = 2.0(2) and β = 0.50(5). (c) The critical scaling of the parallel Szz

structure factor giving the correlation exponent η = 0.50(5).

η = 0.50(5) along the Sz spin direction (cf. Fig. 9). This
combination of critical exponents does not appear to belong to
any known universality class.

The finite-size scaling analysis of the perpendicular com-
ponent of the correlation length ξxy results in ν = 2.0(3) [cf.
Fig. 10(a)]. This closely matches the ν exponent obtained
for the parallel component of the correlation length. This is in
contrast with the BKT universality class, where the correlation
length diverges exponentially.

The value obtained for the correlation function exponent
η = 0.27(2) at T = 0.212, our estimate for Tc [cf. Fig. 10(b)],
is interestingly close to what is expected in a BKT transition.
Nevertheless, this is, apparently, just a coincidence, as we shall
see.

We anticipate that, regardless of the details of the phase
transition, the low-temperature 2:1 canted phase will contain
bound pairs of vortices in the spin texture, which will unbind
at T = Tc, and precipitate a jump in the spin stiffness ρS .
However, the fact that generically η �= 1/4 means that the
jump in the spin stiffness need not have the “universal” value
	ρS = 2T/π [cf. Eq. (15)].

FIG. 10. (Color online) Scaling analysis of the continuous phase
transition between the paramagnet and the 2:1 canted state at
h = 5,T = 0.212. (a) The collapse of the ξxy correlation length
yielding the correlation length exponent ν = 2.0(2), exactly as in
the Szz direction [cf. Fig. 9(a)]. (b) The collapse of the Sxy structure
factor giving the correlation exponent η = 0.27(2).

This interpretation is corroborated by the analysis of the
data in Fig. 8(d) and its inset—the extrapolation to L → ∞
of the temperature at which the T

2πη
jump occurs yields

the value Tc = 0.217(4). This value agrees within errors
with the estimate Tc = 0.212(1) obtained with the scaling
of the correlation lengths. The best fit to the finite-size data
is now given by the power-law form a/L + b/L2, not the
1/ log(L) scaling expected in a BKT transition. However, if
this transition does not belong to the BKT universality class,
there is no good a priori reason to assume that Tc scales
logarithmically with system size.

The h = 5 results presented above are broadly representa-
tive of the phenomenology of the single transition from the
paramagnet into the 2:1 canted state, in the range 3 � h < 9.

FIG. 11. (Color online) Evolution of the critical exponents asso-
ciated with correlations of the Sz components of spin at the continuous
phase transition between the paramagnet and the 2:1 canted state, as a
function of magnetic field h. Both (a) the correlation length exponent
ν and (b) the order-parameter exponent β increase with increasing
magnetic field; lines are guides to the eye. However, (c) the ratio β/ν

is roughly constant at 0.24(3) (horizontal line).
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FIG. 12. (Color online) Evolution of the correlation function
exponent η(Tc), related to the Sx–Sy spin plane, of the single-phase
transition between the paramagnet and the 2:1 canted state as a
function of the magnetic field. The horizontal dashed line shows
the standard BKT value η(TBKT) = 0.25.

However, important details such as the critical exponents
change as a function of field.

Both ν and β exponents, associated with the Sz component,
increase monotonically with the magnetic field, as can be
observed in Figs. 11(a) and 11(b). However, the β/ν ratio
remains roughly constant at β/ν = 0.24(3) [cf. Fig. 11(c)].
The two-dimensional scaling law η = 2β/ν therefore implies
η ∼ 0.5, which agrees with the result from the scaling of the
structure factor at Tc for the studied fields, as exemplified
in Fig. 9(c) for h = 5. The order-parameter susceptibility
χzz is strongly affected by finite-size effects (not shown).
However, the critical scaling of χzz yields a value of roughly
γ ≈ 3 for h = 5, which is consistent with the scaling relation
γ = ν(2 − η). The hyperscaling law in two dimensions α =
2(1 − ν), combined with Fig. 9(a), means that the heat-
capacity exponent α is negative for this phase transition. This
explains the absence of a singularity in specific heat at the
transition temperature [cf. Fig. 8(e)], and clearly distinguishes
the continuous phase transition here found from a three-state
Potts transition.

The variation with field of the spin correlations in the Sx–
Sy plane at this transition is also noteworthy (cf. Fig. 12.)
The correlation function exponent η(Tc) is observed to also
change continuously with the field, albeit more slowly. We
use this value of η(Tc) to find the location of the nonuniversal
jump in spin stiffness for the other values of magnetic field
at h � 3.3 displayed in Fig. 1. The critical temperatures thus
found are in good agreement with the ones obtained with
the correlation length, taking into account the uncertainties in
determining η.

Our results strongly suggest the existence of a point at T ≈
0.31,h ≈ 3.2, where three apparently continuous transitions
meet. Although simulations approaching this point become
very difficult, we find no evidence for any of the transitions
becoming first order.

Lastly, the zero-temperature phase transition from the
(collinear) saturated paramagnet into the 2:1 state is observed

at a field of h = 9. This corresponds to the opening of
a gap, at the three-sublattice momenta {qK}, to spin-wave
excitations inside the saturated phase. As the saturation field
is approached the required computational effort increases and
the accuracy suffers. However, we also interestingly observe
that the agreement between the Tc found by the scaling of both
correlation lengths and Tc found by the spin-stiffness jump is
better at both high and low values of the 3.3 � h < 9 range of
the applied field.

VII. DISCUSSION AND CONCLUSIONS

In this paper we have used modern Monte Carlo simulation
techniques to explore the finite-temperature phase diagram
of the classical Heisenberg antiferromagnet on a triangular
lattice in an applied magnetic field. The broad outline of this
phase diagram has been known for some decades,17 and all
of the phases predicted—a collinear one-third magnetization
plateau, together with two algebraically correlated coplanar
phases, the Y state and a 2:1 canted phase—have since been
observed in experiment.24–26 Nonetheless, recent works not
withstanding,21,37 the nature of the finite-temperature phase
transitions between these phases remains surprisingly poorly
understood. The interest of this problem lies in the fact that
both the Y state and 2:1 canted phase break two qualitatively
different symmetries—a discreteZ3 symmetry associated with
their three-sublattice structure and the spin-rotation symmetry
in the Sx–Sy plane. The order parameters for these phases
therefore have a compound Z3 ⊗ O(2) character, and it is
interesting to ask how the two symmetries are restored as
the temperature is raised. Existing studies of this compound
symmetry are very rare.48,62 The answers we find, summarized
in Table I, are remarkably different for the two different
phases.

We consider first the case of low values of field h < 3. Here
the system exhibits two phases—a long-range ordered one-
third magnetization plateau and an algebraically correlated Y

state [cf. Fig. (1)]. Cooling from the paramagnet reveals two
continuous phase transitions, the expected three-state Potts
transition into the one-third plateau and then a conventional
BKT transition into the Y state at a lower temperature.
Both of these transitions are well characterized for h = 2
(Fig. 5). However, as h → 0 the correlation length in the Sx–Sy

plane increases dramatically and, for h � 0.8, is comparable
with the linear dimension of the largest clusters simulated
for all temperatures [Fig. 4(c)]. This effect, combined with
the proximity between the three-state Potts and BKT phase
transitions, makes the interpretation of simulation results
extremely challenging. Nonetheless, we are able to obtain a
good finite-size scaling of results for spin stiffness and ξzz

TABLE I. Critical exponents for the different continuous phase transitions studied in this paper, as found from classical Monte Carlo
simulation of the Heisenberg antiferromagnet on a triangular lattice, at different values of magnetic field h.

h Ozz(T ) χzz(T ) ξ zz(T ) Szz(r) Sxy(r) Classification

Paramagnet–plateau 2 β = 1/9 γ = 13/9 ν = 5/6 η = 4/15 n/a Three-state Potts
Plateau–Y state 2 n/a n/a n/a n/a η(TBKT) = 1/4 BKT
Paramagnet–2:1 canted 5 β = 0.50(5) γ ≈ 3 ν = 2.0(2) η = 0.50(5) η(Tc) = 0.27(2) Unknown
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correlation length down to h ≈ 0.2, under the assumption that
the two phase transitions remain distinct and well separated
[Figs. 4(a) and 4(b)]. It is this, quantitative, analysis of the
simulation results which leads to the phase boundaries shown
in Fig. 1.

At first sight, this result might seem to imply that the double
phase transition—from paramagnet to plateau and then from
plateau to Y state—survives all the way down to the zero
field case (h = 0). We would, however, council caution: the
physics of the Heisenberg model in a finite magnetic field
may be very different from that in a vanishing magnetic field
where the order parameter and excitations have a qualitatively
different character.10 We note that exchange anisotropy has
recently been argued to act as a singular perturbation in the
Heisenberg antiferromagnet on the triangular lattice,63 and
the same role may be played by applied magnetic field for
the isotropic Heisenberg model studied here. It could also
be that proximity to the unconventional phase transition at
h = 0 renders the finite-size scaling used to extract phase
boundaries in Fig. 1 unreliable for h → 0. Previous studies of
the Heisenberg antiferromagnet on a triangular lattice for this
range of fields have argued for both a single transition from the
paramagnet into the Y state17 and a double transition of the type
described above, but with the temperature window between the
two transitions closing as h → 0.21 Further simulations with
larger cluster sizes, together with a more sophisticated analysis
of results, will be needed to resolve this issue.

Our results for higher fields, h > 3, point to a very different
scenario. Here the system undergoes a single, continuous phase
transition from the high-temperature paramagnet into the 2:1
canted phase. For this to happen, the fluctuations in all three
spin components must become critical at exactly the same
temperature. This would not be unusual in a three-dimensional
frustrated magnet,34 but it has some very interesting conse-
quences in the present, two-dimensional model. Considering
first correlations of the Sz components of spin, we find that the
correlation length exponent ν and order-parameter exponent
β increase with increasing magnetic field [Figs. 11(a) and
11(b)]. However, the correlation function exponent remains
constant at η ≈ 0.5 [Fig. 11(c)], a value quite different from the
three-state Potts transition seen at low values of the magnetic
field [Fig. 6(c)]. Turning our attention to the Sx–Sy plane,
the Oxy order parameter vanishes in the thermodynamic limit,
and spin stiffness shows a jump at the transition temperature
[Fig. 8(d)], as would be expected for a BKT transition.
However, in this case the correlation length exponent, η(Tc),
varies with the magnetic field and is generically different from
the value η(TBKT) = 1/4 found at a BKT transition (Fig. 12).
This nonuniversal value of η implies a nonuniversal jump in
the spin stiffness, and the temperature at which this jump in
the spin stiffness occurs is found to scale as a polynomial in
1/L [inset to Fig. 8(d)]. These results point to a highly unusual
line of continuous phase transitions, interpolating from a point
at which three critical lines meet (T ≈ 0.31,h ≈ 3.2) to the
saturated state at (T = 0,h = 9) (cf. Fig. 1).

At an intuitive level, it is easy to see why a phase
transition at which Z3 and O(2) symmetries are broken
simultaneously might be different from an isolated three-state
Potts or BKT transition. The appeal to three-state Potts or
BKT universality classes rests on the assumption of purely

short-range interactions. This condition is unlikely to be met
in the combined transition, where critical fluctuations of one
field can mediate a long-range interaction for the other. For
example, vortices in the transverse components of spin carry
a (topological) charge and might be expected to couple to
Sz components of spins, invalidating the idea of short-range
interactions between these Potts variables. And, conversely,
these vortices can only exist inside a finite-size “box” set by
the Potts degree of freedom. Long-range dipolar interactions
are well known to induce logarithmic corrections to scaling
in conventional phase transitions,64 and it seems reasonable
to suppose that long-range interactions modify the critical
exponents in this compound phase transition.

Precisely what happens where these lines of continuous
phase transitions meet, at T ≈ 0.31,h ≈ 3.2, is difficult to say,
as it becomes increasing difficult to extract reliable estimates
of the critical exponents as this point is approached. Our best
estimate of the exponent ν associated with correlations of
the Sz components of spin tends to ν ∼ 1 as h → 3.2 from
above [Fig. 11(a)]. This is roughly compatible with the three-
state Potts value ν = 5/6, seen for the transition from the
paramagnet into the one-third magnetization plateau for h = 2
(Fig. 6). However, the order-parameter exponent tends to β ∼
0.2 [Fig. 11(b)], roughly double the three-state Potts value of
β = 1/9. Similarly, considering spin correlations in the Sx–Sy

plane, we find a correlation function exponent η(Tc) ∼ 0.5
(Fig. 12), twice the value observed for the BKT transition from
the one-third magnetization plateau to the Y state for h = 2
(Fig. 7). Clearly, more work needs to be done to understand
how the different phases come together at this point.

Conformal field theory (CFT) has proved to be a very
powerful tool for understanding two-dimensional phase
transitions.65 Within this approach, every continuous phase
transition can be characterized in terms of a single parameter,
the central charge c, and critical exponents are typically
rational fractions with discrete values determined by c. In
the present case, the three-state Potts transition from the
paramagnet to the one-third magnetization plateau for h = 2
has the central charge c = 4/5, while the BKT transition
from the one-third magnetization plateau to the 2:1 canted
phase for T = 0.05 has the central charge c = 1. It has
been argued that continuously varying critical exponents arise
most naturally in Gaussian (c = 1) CFT’s with an additional,
marginal, operator.66 However, it is hard to see how either
a c = 1 theory, or a direct product of a c = 1 theory with
another CFT, can be reconciled with the variation of exponents
found in our simulations. We speculate that the transition
from the paramagnet to the 2:1 canted state might therefore
provide an example of varying critical exponents associated
with a central charge c �= 1. This line of phase transitions also
provides an example of the concept of “weak universality,”
where the exponent η is universal while β and ν are allowed
to change. The idea of weak universality was first proposed in
the context of the two-dimensional Ising model with four-spin
interaction,67 which can be described by a c = 1 CFT.68

Our results suggest a further generalization to these ideas to
compound phase transitions which do not necessarily have
c = 1 as the global charge.

It is also instructive to compare these results with existing
work on Z2 ⊗ O(2) phase transitions in two dimensions. In
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principle, systems with Z2 ⊗ O(2) symmetry breaking can
also support a line of continuous phase transitions from the
disordered state with continuously varying exponents.46,47

Recent numerical work suggests that this scenario is not
realized in the most widely studied model, the fully frustrated
XY model on a square lattice.49 However, in a recent twist
to the story, Ising and BKT transitions have been observed
to merge into a single, continuous, phase transition in a more
general model.51,52

The ultimate test of the results contained in this paper would
be a comparison with the magnetic phase diagram of a real
triangular lattice antiferromagnet. Here the picture is obscured
by terms not present in the isotropic Heisenberg model,
notably magnetic anisotropy and coupling between triangular
lattice layers.23 However, published results for Heisenberg
models with easy-axis anisotropy,27 easy-plane anisotropy,69

and interlayer coupling28 suggest that many of the most
interesting features of the phase diagram Fig. 1 survive.
Moreover, the rapid advances in experiments on cold atoms
in optical lattices might make it possible to simulate a truly
two-dimensional and isotropic Heisenberg antiferromagnet in
the laboratory.70

In conclusion, the behavior of the Heisenberg model on a
triangular lattice in an applied magnetic field is much richer,
and much less well understood, than usually supposed. In
this paper we have used modern Monte Carlo simulation
techniques to characterize the different phase transitions which
occur as a function of temperature and magnetic field. The
interest of this problem stems from the combined Z3 ⊗ O(2)
symmetry of low-temperature coplanar phases. For values
of magnetic field h � 3.2, we find that the Z3 symmetry

associated with the three-sublattice structure and the O(2)
symmetry associated with the spin rotations in the Sx–Sy

plane are broken at different temperatures. In contrast, for high
values of magnetic field h � 3.2, we find that these symmetries
are broken at the same temperature, in a line of continuous
phase transitions with continuously varying exponents. Our
results leave a number of important questions unanswered,
including the topology of the phase diagram for h → 0 and
the way in which Z3 and O(2) symmetries combine for
T ≈ 0.31,h ≈ 3.2. Given the importance of finite-size effects,
it seems unlikely that these questions can be resolved by
simulation alone, without further input from field theory. We
therefore hope that this paper will help to reopen the discussion
of this canonical problem in frustrated magnetism.
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