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Néel to dimer transition in spin-S antiferromagnets: Comparing bond operator theory with
quantum Monte Carlo simulations for bilayer Heisenberg models
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We study the Néel to dimer transition driven by interlayer exchange coupling in spin-S Heisenberg
antiferromagnets on bilayer square and honeycomb lattices for S = 1/2, 1, and 3/2. Using exact stochastic series
expansion quantum Monte Carlo (QMC) calculations, we find that the critical value of the interlayer coupling,
J⊥c[S], increases with increasing S, with clear evidence that the transition is in the O(3) universality class for all
S. Using bond operator mean-field theory restricted to singlet and triplet states, we find J⊥c[S] ∝ S(S + 1), in
qualitative accord with QMC, but the resulting J⊥c[S] is significantly smaller than the QMC value. For S = 1/2,
incorporating triplet-triplet interactions within a variational approach yields a critical interlayer coupling, which
agrees well with QMC. For higher spin, we argue that it is crucial to account for the high-energy quintet modes,
and we show that including these within a perturbative scheme leads to reasonable agreement with QMC results
for S = 1 and 3/2. We discuss the broad implications of our results for systems such as the triangular lattice
S = 1 dimer compound Ba3Mn2O8 and the S = 3/2 bilayer honeycomb material Bi3Mn4O12(NO3).
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I. INTRODUCTION

Spin dimer compounds provide the simplest realization of a
magnetically disordered ground state—one in which strongly
coupled pairs of spins entangle to form singlets. Such systems
are also of great interest since they undergo magnetic-field-
induced spin ordering via a quantum phase transition, which
is analogous to Bose-Einstein condensation.1–4 There are many
well-known spin dimer compounds5–8 and well studied model
Hamiltonians9–12 exhibiting such physics for S = 1/2 spins.
However, ongoing experiments on higher spin systems, such
as the S = 1 triangular lattice dimer compound13 Ba3Mn2O8,
point to a need to better understand higher spin generalizations
and instabilities of such dimer states driven by interdimer
interactions.

Here, we explore this issue using a simple model that
exhibits such a dimerized ground state, namely the bilayer
Heisenberg antiferromagnet, with a Hamiltonian given by

H = J⊥
∑

i

Si,1 · Si,2 + J1

∑
〈ij〉

∑
�=1,2

Si,� · Sj,�. (1)

Here, i labels sites in one layer, � = 1,2 is the layer index,
and 〈ij 〉 represents nearest-neighbor pairs of spins within
each layer. For J⊥ � J1, the first term in H dominates and
the ground state is composed of isolated interlayer singlets
with Si,1 + Si,2 = 0 for every i. If J⊥ � J1, the system will
order magnetically provided the second (intralayer) term in
the Hamiltonian is not too frustrated by the lattice geometry.
Here, we restrict our attention to cases in which each layer is
itself a bipartite lattice so that the ground state for J⊥ � J1 has
long-range Néel order [see Fig. 1(a)]. This model Hamiltonian
has been studied extensively for the S = 1/2 square lattice
bilayer.11,14–18 The effects of disorder, induced by site dilution,
have also been explored.19 However, there has been relatively
little work on understanding the higher spin generalizations
of the Hamiltonian in Eq. (1). The spin-S square lattice

bilayer has been studied using Schwinger boson mean-field
theory20 and series expansions.21 Variants of this spin-S model
have been argued to support novel spin solid phases in three
dimensions.22 In this paper, we study this Hamiltonian for
S = 1/2, 1, and 3/2 spins on square and honeycomb bilayers
using exact quantum Monte Carlo simulation algorithms23

and approximate analyses based on a bond operator method
generalized to arbitrary spin.24

Our main results are as follows. (i) Using exact stochastic
series expansion quantum Monte Carlo (QMC) calculations,
we find a Néel to dimer transition with increasing J⊥ that
is in the O(3) universality class for all the models we have
studied. (ii) The critical value of the interlayer coupling,
J⊥c[S], for the Néel to dimer transition is found to increase for
higher spin. Using a bond operator mean-field theory restricted
to singlet and triplet states, we find J⊥c[S] ∝ S(S + 1), in
qualitative accord with QMC results. However, there is a
quantitative discrepancy between the mean field J⊥c[S] and its
QMC value, which becomes more significant for higher spin.
(iii) For S = 1/2, we show that taking into account triplet-
triplet interactions within a variational approach brings the
J⊥c[S] value close to the QMC result. For higher spin, we show
that the dominant corrections to the critical point arise from the
high-energy quintet modes, and direct triplet-triplet interac-
tions are less important. Incorporating the quintet excitations
within a perturbative treatment is shown to yield a critical
interlayer coupling that is in good agreement with QMC results
for S = 1 and 3/2. We discuss the broad implications of our
results for high-spin antiferromagnets such as the triangular
lattice S = 1 dimer compound13 Ba3Mn2O8 and the S = 3/2
bilayer honeycomb material25 Bi3Mn4O12(NO3).

This paper is organized as follows. Section II contains
results from the QMC simulations on the phase diagram of
the honeycomb and square lattice bilayer models for S = 1/2,
1, and 3/2. In Sec. III, we outline the bond operator formalism
generalized to the case of spin S. Section IV gives bond oper-
ator mean-field theory results for the square and honeycomb
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FIG. 1. (Color online) The interlayer dimer state on square and
honeycomb bilayers with singlet correlations between layers. The
in-plane exchange J1 and the interplane exchange J⊥ act as shown.

lattice models. Section V discusses the variational approach
that we use to take into account corrections beyond mean-field
theory. Section VI analyzes the S = 1/2 model including the
effect of triplet-triplet interactions, while Sec. VII contains a
treatment of the dominant quintet corrections for S > 1/2. We
end with a discussion in Sec. VIII. Details are contained in the
Appendixes.

II. QUANTUM MONTE CARLO SIMULATIONS

The bilayer honeycomb and square lattices are bipartite
lattices which can be split into two sublattices A and B,
with every lattice bond being a link between sites belonging
to different sublattices. This ensures that there is no sign
problem, so that the model in Eq. (1) is amenable to quantum
Monte Carlo simulations. We perform quantum Monte Carlo
simulations for S = 1/2, 1, and 3/2 on the bilayer square (of
linear system size L = 12, 16, 24, 32, and 40) and bilayer
honeycomb (L = 12, 18, 24, 30, and 36) lattices using the
stochastic series expansion algorithm.23 For S = 1 and 3/2,
simulations are performed with modified worm weights, which
lead to a slightly more efficient algorithm, as in Ref. 26. At
large enough ratio J⊥/J1, the system undergoes a quantum
phase transition from a Néel state to a dimerized paramagnetic
state. To locate the quantum critical points, we perform finite-
size scaling analysis of the superfluid density and the staggered
magnetization density squared. We measure the superfluid
density ρs by measuring winding number fluctuations,27

ρs = T

〈
W 2

1 + W 2
2

〉
2J1

,

where W1,2 are the winding numbers in two spatial directions
and T is the temperature. The staggered magnetization density
squared is given by

|ms |2 = 3

[
1

N

N∑
i

(−1)pSz
i

]2

,

where (−1)p = 1 for lattice sites from sublattice A, (−1)p =
−1 for sites from sublattice B, and N is the number of lattice
sites. In the vicinity of a continuous phase transition, the

superfluid density scales as

ρs = L2−d−zF

(
[K − Kc]L1/ν,

1

T Lz

)
,

where L is the linear system size, d = 2 is the dimensionality
of the system, T is the temperature, [K − Kc] ≡ [(J⊥ −
J⊥c)/J1] is the distance from the critical point J⊥c/J1, and
ν is the correlation length critical exponent. The staggered
magnetization density squared scales as

|ms |2 = L−2β/νM

(
[K − Kc]L1/ν,

1

T Lz

)
,

where β is the critical exponent. If one plots ρsL
z as a function

of J⊥/J1 at a large enough and fixed value of 1/(T Lz),
then the curves for different system sizes should cross at
the critical point J⊥c/J1. If one plots ρsL

z as a function of
[K − Kc]L1/ν , with appropriately chosen values of the critical
exponents and Kc, the curves for different system sizes should
collapse onto the universal curve given by the function F .
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FIG. 2. (Color online) Scaling of the superfluid density (upper
panel) and of the staggered magnetization density squared (lower
panel) for the S = 1 antiferromagnet on the bilayer square lattice. The
curves cross at a distinct point around J⊥/J1 = 7.15. The insets show
the corresponding data collapse for z = 1, ν = 0.7112, β = 0.3689,
and J⊥c/J1 = 7.15. Lines guide the eye. The error bars are smaller
than the symbol size if not visible.
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NÉEL TO DIMER TRANSITION IN SPIN-S . . . PHYSICAL REVIEW B 84, 214412 (2011)

 2

 2.5

 3

 3.5

 4

 4.5

 5

 13.56  13.58  13.6  13.62  13.64  13.66  13.68  13.7

ρ s
L

J⊥/J1

L=12
L=16
L=24
L=32
L=40

 2
 2.5

 3
 3.5

 4
 4.5

 5

-12 -9 -6 -3  0  3  6  9  12

ρ s
L

[K-Kc]L
1/ν

FIG. 3. (Color online) Scaling of the superfluid density for the
S = 3/2 antiferromagnet on the bilayer square lattice. The curves
cross at a distinct point around J⊥/J1 = 13.634. The inset shows the
corresponding data collapse for z = 1, ν = 0.7112, and J⊥c/J1 =
13.634. Lines guide the eye. The error bars are smaller than the
symbol size if not visible.

Similarly, |ms |2L2β/ν as a function of J⊥/J1 should have a
distinct crossing point at the critical point, and |ms |2L2β/ν as a
function of [K − Kc]L1/ν should collapse onto the universal
curve given by the function M . We perform simulations at a
fixed aspect ratio T = J1/2L.

A. Square lattice

The quantum critical point for the S = 1/2 bilayer quantum
antiferromagnet on the square lattice was found in Refs. 11
and 28, J⊥c/J1 = 2.5220(1). In the present work, we find that
the quantum critical points are located at J⊥c/J1 = 7.150(2)
for S = 1 and at J⊥c/J1 = 13.634(3) for S = 3/2. The data
scale very well with the critical exponents ν = 0.7112 and
β = 0.3689 of the O(3) universality class29 for any value of
spin. The crossing points and data collapse for S = 1 and 3/2
are shown in Figs. 2 and 3. Note that we do not show the scaling
of the magnetization density squared for S = 3/2 because the
data points are too noisy.

B. Honeycomb lattice

We find that for the honeycomb lattice, the quantum
critical points are located at J⊥c/J1 = 1.645(1) for S = 1/2,
J⊥c/J1 = 4.785(1) for S = 1, and J⊥c/J1 = 9.194(3) for
S = 3/2. The data scale very well with the critical exponents
ν = 0.7112 and β = 0.3689 of the O(3) universality class29

for any value of spin. The crossing points and data collapse
for S = 1 and 3/2 are shown in Figs. 4 and 5. We do not show
the scaling of the magnetization density squared for S = 3/2
because the data points are too noisy.

C. Critical point as a function of spin

In Fig. 6, we show the quantum critical points J⊥c/J1 as
functions of S(S + 1) for the bilayer square and honeycomb
lattices. We find that J⊥c/J1[S] is a linear function of S(S + 1).
In the following sections, we will attempt to make sense of
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FIG. 4. (Color online) Scaling of the superfluid density (upper
panel) and of the staggered magnetization density squared (lower
panel) for the S = 1 antiferromagnet on the bilayer honeycomb
lattice. The curves cross at a distinct point around J⊥/J1 = 4.785. The
insets show the corresponding data collapse for z = 1, ν = 0.7112,
β = 0.3689, and J⊥c/J1 = 4.785. Lines guide the eye. The error bars
are smaller than the symbol size if not visible.

these QMC results using an extension of the bond operator
theory of the dimerized state and its instability to Néel order.

III. BOND OPERATOR REPRESENTATION

An elegant approach that allows us to understand the
physics of the dimer ground state and its magnetic ordering
instabilities is the bond operator formalism, which was first
proposed for S = 1/2 antiferromagnets.30 In this scheme, the
spin operators are represented in a new basis consisting of
singlet and triplet states on the interlayer bonds (i,1)-(i,2). In
the limit where the intralayer coupling J1 = 0, the ground
state consists of localized singlets on these bonds, with a
gap J⊥ to the triplet excitations. A nonzero J1 allows a pair
of neighboring bonds (i,1)-(i,2) and (j,1)-(j,2) to exchange
their singlet/triplet character. Such a “triplet hopping” process
converts the localized triplet modes into dispersing “triplons,”
with threefold-degenerate bands due to the underlying SU(2)
symmetry of the Hamiltonian. In this picture, the dimer to Néel
transition is an O(3) transition driven by the condensation of
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FIG. 5. (Color online) Scaling of the superfluid density for the
S = 3/2 antiferromagnet on the bilayer honeycomb lattice. The
curves cross at a distinct point around J⊥/J1 = 9.194. The inset
shows the corresponding data collapse for z = 1, ν = 0.7112, and
J⊥c/J1 = 9.194. Lines guide the eye. The error bars are smaller than
the symbol size if not visible.

triplon modes at a certain wave vector where the dispersion
minimum hits zero. Generalizations of this approach to spin-1
magnets have been proposed earlier.31,32 Here, we adopt a
recent generalization of the bond operator method to arbitrary
spin24 to study bilayer Heisenberg antiferromagnets.

In a spin-S bilayer system, in the limit J⊥ � J1, we have
isolated interlayer bonds. The bond can be in one of the
following states: a singlet, a threefold-degenerate triplet, a
fivefold-degenerate quintet, etc. We introduce one boson for
each of these states:

|si〉 ≡ s
†
i |0〉,

|ti,m∈{−1,0,1}〉 ≡ t
†
i,m|0〉,

|qi,m∈{−2,...,2}〉 ≡ q
†
i,m|0〉,

...

 0
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FIG. 6. (Color online) J⊥c/J1[S] as a function of S(S + 1) for the
bilayer square and honeycomb lattices. Lines are linear fits. Note that
the curves cross approximately at S(S + 1) = 0.

The index i here runs over all interlayer bonds, and m labels
the Sz component of the total spin on the interlayer bond.
These boson operators form the basis for a bond operator
representation. To restrict to the physical Hilbert space of spins,
every interlayer bond should have exactly one boson,

s
†
i si +

∑
m=−1,0,1

t
†
i,mti,m +

∑
n=−2,...,2

q
†
i,nqi,n + · · · = 1. (2)

In terms of bond operators, the exchange interaction on an
interlayer bond is given by

J⊥Si,1 · Si,2 = εss
†
i si + εt

∑
m=−1,0,1

t
†
i,mti,m

+ εq

∑
m=−2,...,2

q
†
i,mqi,m + · · · , (3)

where εs = −J⊥S(S + 1), εt = J⊥{1 − S(S + 1)}, and
εq = J⊥{3 − S(S + 1)}.

Bond operator theory reexpresses the spin operators and
their interactions in terms of these bond bosons. In the limit
J⊥ � J1, the singlets, triplets, quintets, etc. form a hierarchy
with the energy spacing between each tier of order J⊥. In this
paper, we restrict our analysis to the low-energy subspace of
singlets, triplets, and quintets on a bond, and we neglect higher
spin states as they are much higher in energy.

We first turn to the usual bond operator mean-field theory
retaining only singlet and triplet modes, ignoring triplet inter-
actions and higher excited states and imposing the constraint
in Eq. (2) on average. We then consider, in turn, the effect of
triplet-triplet interactions for S = 1/2 and the effect of quintet
states for S > 1/2. For convenience of notation, we henceforth
set J1 = 1, thus measuring J⊥ in units of J1.

IV. SINGLET-TRIPLET MEAN-FIELD THEORY

At mean-field level, the interlayer dimer state is described
by a uniform condensate of the singlet bosons, with 〈si〉 =
〈s†i 〉 = s̄. Retaining only triplet excitations, the spin operators
at each site are given by24

S+
i,� = (−1)�

√
2S(S + 1)

3
s̄{ti,−1 − t

†
i,1}

+ 1√
2
{t†i,1ti,0 + t

†
i,0ti,−1}, (4)

Sz
i,� = (−1)�

√
S(S + 1)

3
s̄{ti,0 + t

†
i,0}

+ 1

2
{t†i,1ti,1 − t

†
i,−1ti,−1}. (5)

Using these expressions, the Hamiltonian takes the form

Hmf = εsN⊥s̄2 + εt

∑
i,m

t
†
i,mti,m − μ

∑
i

(∑
m

t
†
i,mti,m + s̄2 − 1

)

+ 2S(S + 1)

3
s̄2

∑
〈i,j〉

[{ti,0 + t
†
i,0}{tj,0 + t

†
j,0}

+ ({ti,−1 − t
†
i,1}{t†j,−1 − tj,1} + H.c.)], (6)

where μ is a Lagrange multiplier that enforces the constraint
in Eq. (2) on average. N⊥ is the number of interlayer bonds.
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We have dropped quartic terms in the triplet operators (which
corresponds to ignoring triplet-triplet interactions).

In the rest of this paper, we use the following two basis sets
to represent triplet states: {|t−1〉i ,|t0〉i ,|t1〉i} or {|tx〉i ,|ty〉i ,|tz〉i}.
The former basis labels states by the z projection of spin.
The latter labels each state by the direction in which its spin
projection is zero. We can go from one basis to another using
|t0〉i = |tz〉i and |t±1〉i = (∓|tx〉i − i|ty〉i)/

√
2. Below, we will

use the index m to represent an element of the first basis and
u to represent an element of the second.

A. Square lattice bilayer

A top view of the square lattice bilayer with the relevant
primitive lattice vectors is shown in Fig. 7. At mean-field level,
the Hamiltonian of Eq. (1) may be written as

H (0)
�

= −J⊥N⊥S(S + 1)s̄2 − μs̄2N⊥ + μN⊥ − 3N⊥A

2

+
∑

k,u∈{x,y,z}

′
ψ

†
k,u

(
A + 2εk 2εk

2εk A + 2εk

)
ψk,u,

(7)

where ψk,u = [tk,u t
†
−k,u]T . The primed summation indicates

that if k is included in the sum, then −k is excluded. The
coefficients in the Hamiltonian matrix are

A = J⊥{1 − S(S + 1)} − μ, (8)

εk = 2S(S + 1)

3
s̄2[cos(kx) + cos(ky)]. (9)

Diagonalizing this Hamiltonian matrix by a bosonic Bogoli-
ubov transformation (see Appendix A), we obtain eigenval-
ues λk = √

A(A + 4εk) for the energies of the independent
“triplon” modes. Each of these modes adds a zero-point
contribution to the ground-state energy, yielding

E(0)
�

= −J⊥N⊥S(S + 1)s̄2 − μs̄2N⊥ + μN⊥

−3N⊥A

2
+ 3

∑
k

′
λk. (10)

We minimize this ground-state energy with respect to μ and
s̄, via ∂E(0)

�

/∂μ = 0 and ∂E(0)
�

/∂s̄2 = 0. This yields the two
equations

s̄2 = 5

2
− 3

N⊥

∑
k

′ A + 2εk

λk
, (11)

μ = −J⊥S(S + 1) + 6

N⊥

∑
k

′ Aεk

s̄2λk
. (12)

Using the values of s̄ and μ thus obtained, we may calculate
the gap to triplet excitations. The dimer-Néel transition occurs
when the triplon gap vanishes at J⊥ = J⊥c. We have explicitly
checked that triplon condensation at k = (π,π ) yields Néel
order on the bilayer. Using Eqs. (11) and (12) above, we arrive
at the following two results at the critical point. (i) The value
s̄ at the dimer-Néel critical point is independent of spin and is
given by

s̄2
c = 5

2
− 3

2N⊥

∑
k

′ 4 + (cos kx + cos ky)√
4 + 2(cos kx + cos ky)

. (13)

FIG. 7. (Color online) Top view of bilayers. (Top) Square lattice
with primitive lattice vectors x̂ and ŷ shown. (Bottom) Honeycomb
lattice. The shaded region is the unit cell composed of two sites. Sites
marked with a red circle belong to the A sublattice. Unmarked sites
belong to the B sublattice. The primitive lattice vectors â and b̂ are
shown.

A numerical evaluation shows s̄c ≈ 0.904. (ii) We find the
location of the dimer-Néel critical point,

J⊥c = S(S + 1)

[
40

3
− 32

N⊥

∑
k

′ 1√
4 + 2(cos kx + cos ky)

]
.

(14)

A numerical evaluation yields J⊥c ≈ 3.047S(S + 1). For S =
1/2, this mean-field result, J⊥c[S = 1/2] ≈ 2.286, agrees with
previous work17 and is slightly smaller than the QMC value.11

For higher spin, the mean field estimates, J⊥c[S = 1] ≈ 6.095
and J⊥c[S = 3/2] ≈ 11.428, are significantly smaller than our
QMC results. This comparison is summarized in Table I. The
scaling result J⊥c ∼ S(S + 1) has been suggested in Ref. 21
on the basis of series expansion calculations. Remarkably, as
shown in Fig. 6, this scaling relation derived from mean-field
theory seems to be reasonably accurate even for exact QMC
results.

TABLE I. Value of J⊥c on the square lattice from different
methods for different values of S. MFT stands for mean-field
theory. The QMC data for S = 1/2 are from Ref. 11. The column
“MFT+triplet interactions” gives variational results appropriate for
S = 1/2. The column “MFT+quintet coupling” gives variational
results appropriate for S > 1/2.

MFT + MFT +
S QMC MFT triplet interactions quintet coupling

0.5 2.5220(1)11 2.287 2.568
1 7.150(2) 6.098 6.387 7.32(14)

1.5 13.634(3) 11.434 11.714 13.32(1)

214412-5



R. GANESH, SERGEI V. ISAKOV, AND ARUN PARAMEKANTI PHYSICAL REVIEW B 84, 214412 (2011)

B. Honeycomb lattice bilayer

The honeycomb lattice is composed of two interpenetrating
triangular lattices, as shown in Fig. 7. Operators, therefore,
come with an additional sublattice index that distinguishes A
and B sublattices. The mean-field Hamiltonian is given by

H
(0)� = −N⊥J⊥S(S + 1)s̄2 − N⊥μs̄2 + N⊥μ

−3N⊥C

2
+

∑
k,u

′
ψ

†
k,uMkψk,u, (15)

where C = [J⊥{1 − S(S + 1)} − μ]. N⊥ denotes the number
of interlayer bonds in the honeycomb bilayer. The operator
ψk,u and the Hamiltonian matrix Mk are given by

ψk,u =

⎛
⎜⎜⎜⎜⎝

tk,A,u

tk,B,u

t
†
−k,A,u

t
†
−k,B,u

⎞
⎟⎟⎟⎟⎠ , Mk =

⎛
⎜⎜⎜⎝

C βk 0 βk

β∗
k C β∗

k 0

0 βk C βk

β∗
k 0 β∗

k C

⎞
⎟⎟⎟⎠ , (16)

where βk = 2 S(S+1)
3 s̄2γk, with γk = 1 + e−ikb + e−ika−ikb , and

we have defined ka ≡ k · â and kb ≡ k · b̂. Diagonalizing this
Hamiltonian (see Appendix B), we obtain two eigenvalues for
every k. The eigenvalues are given by λk,1/2 =

√
C2 ∓ 2C|βk|.

The mean-field ground-state energy is given by

E
(0)� = −N⊥J⊥S(S + 1)s̄2 − N⊥μs̄2 + N⊥μ

−3N⊥C

2
+ 3

∑
k

′
(λk,1 + λk,2). (17)

As before, we demand ∂E
(0)� /∂μ = 0 and ∂E

(0)� /∂s̄2 = 0. This
leads to the two mean-field equations

s̄2 = 5

2
− 3

N⊥

∑
k

′
[
C − |βk|

λk,1
+ C + |βk|

λk,2

]
, (18)

μ = −2CS(S + 1)

N⊥

∑
k

′ |γk|
[

1

λk,1
− 1

λk,2

]
− J⊥S(S + 1).

(19)

Using the values of s̄ and μ thus obtained, we calculate the
gap to triplet excitations. The dimer-Néel transition occurs
when the triplon gap vanishes at J⊥ = J⊥c. Using the above
equations, we arrive at the following two results at the critical
point. (i) The value s̄ at the dimer-Néel critical point is
independent of spin and is given by

s̄2
c = 5

2
+ 3

2N⊥

∑
k

′
[ |γk| − 6√

9 − 3|γk|
− |γk| + 6√

9 + 3|γk|
]

. (20)

A numerical evaluation shows s̄c ≈ 0.872. (ii) We find the
location of the dimer-Néel critical point

J⊥c

S(S + 1)
= 10 − 36

N⊥

∑
k

′
[

1√
9 − 3|γk|

+ 1√
9 + 3|γk|

]
.

(21)

A numerical evaluation yields J⊥c ≈ 1.748S(S + 1). For
S = 1/2, the mean-field result, J⊥c[S = 1/2] ≈ 1.311, is
somewhat smaller than the QMC value. For higher spin, the

TABLE II. Value of J⊥c on the honeycomb lattice from different
methods for different values of S. MFT stands for mean-field theory.

MFT + MFT +
S QMC MFT triplet interactions quintet coupling

0.5 1.645(1) 1.312 1.588
1 4.785(1) 3.498 3.774 4.80(9)

1.5 9.194(3) 6.559 6.837 9.58(18)

mean-field critical points, J⊥c[S = 1] ≈ 3.496 and J⊥c[S =
3/2] ≈ 6.555, are significantly smaller than the corresponding
QMC results. This is summarized in Table II. Remarkably,
as shown in Fig. 6, the scaling result J⊥c ∼ S(S + 1) from
mean-field theory appears to be valid even for the exact QMC
results on the honeycomb lattice. We have also explicitly
checked that triplon condensation of the mode with energy λk,1

at momentum k = (0,0) yields Néel order on the honeycomb
bilayer.

V. BEYOND MEAN-FIELD THEORY: VARIATIONAL
ANALYSIS

Corrections to the mean-field Hamiltonian arise from
triplet-triplet interactions and coupling to higher spin objects
such as quintets and heptets. As a function of S, we find
two regimes where two different correction terms dominate.
For S = 1/2, the only correction stems from triplet-triplet
interactions since higher spin states are absent. For S > 1/2,
the dominant correction arises from coupling to higher spin
(quintet) states. Ordinarily, such quintet terms can be ignored
as the energy cost of exciting quintets is large; however,
these terms scale as S2 as opposed to the S0 scaling of
the triplet-triplet interactions and they play an increasingly
important role for larger S. These two correction terms are
separately discussed in the following two sections.

Specifically, for the two regimes S = 1/2 and S > 1/2, we
identify the leading correction term and take it into account
using a variational approach. With the leading correction, the
Hamiltonian takes the form H (0)

�

→ H (0)
�

+ 
H
�

and H
(0)� →

H
(0)� + 
H�. We treat 
H as a perturbation acting upon the

states of H (0). As a variational ansatz, we assume that the
effect of the correction terms is entirely accounted for by a
renormalization of the parameters s̄ and μ, which enter the
mean-field Hamiltonian, H (0)

�

or H
(0)� . We choose μ to enforce

single boson occupancy per site on average. The perturbations

H , for both regimes, preserve total boson number. Thus, it
suffices to evaluate the total boson number using H (0). This
gives us the constraint

s̄2 +
∑
i,m

〈t†i,mti,m〉 = N⊥, (22)

where the expectation value is evaluated with respect to H (0).
(For the honeycomb lattice case, there is an additional sum
over the sublattice degree of freedom in the above equation.)
This leads precisely to the mean-field number constraint in
Eq. (11) or Eq. (18), which can now be used to determine
μ. The parameter s̄ is chosen to minimize the ground-state
energy, evaluated to leading order in perturbation theory.
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For S = 1/2, we find that the leading correction is obtained
within first-order perturbation theory in 
H . For S > 1/2, the
dominant perturbing terms require us to go to second order in
perturbation theory. In the next two sections, we discuss these
correction terms in detail.

VI. TRIPLET INTERACTION CORRECTIONS

A. Triplet interactions on the square lattice

Staying within the singlet-triplet sector, the term we
have ignored in the mean-field treatment is the triplet-triplet
interaction term. For S = 1/2, there are no higher spin bosons
beyond the singlet-triplet sector, so this is the only correction.
For S > 1/2, this constitutes one term in a slew of correction
terms. For any spin S, the triplet interaction terms are given by


H (t)� = −1

2

∑
〈ij〉

∑
u,v,w,v′,w′
∈ {x,y,z}

εuvwt
†
i,vti,wεuv′w′ t

†
j,v′ tj,w′ . (23)

We note that there are no cubic terms in triplet operators.
As described in Ref. 33, this makes our bilayer problem
qualitatively different from other dimerized states such as
the spin-1/2 staggered dimer on the square lattice. Typi-
cally, triplet-triplet interactions such as those of Eq. (23)
are taken into account within a self-consistent Hartree-Fock
approximation.30,34 Here, we take the interactions in Eq. (23)
to be a perturbation acting on H

(0)� and evaluate the first-order
correction to ground-state energy. To this end, we decouple

H

(t)� using bilinears that possess finite expectation values at
the level of mean-field theory:

〈t†i,vti+δ,w〉 ≡ δv,wρ,
(24)

〈t†i,vt†i+δ,w〉 ≡ δv,w
.

Here, i and i + δ are nearest neighbors on the square lattice.
Explicit expressions for ρ and 
 are given in Appendix A. We
note that ρ and 
 are functions of the variational parameters
s̄ and μ. The first-order energy correction due to triplet
interactions is given by


E(t)� = 〈
H (t)� 〉 = 6N⊥[ρ2 − 
2]. (25)

Thus, the variational energy of the ground state upon including
the triplet interaction term is given by

E(t)�,var(s̄,μ) = E(0)� + 
E(t)� , (26)

where E
(0)� is as defined in Eq. (10). The parameter s̄ is chosen

to minimize this energy. We find that triplet interactions reduce
the stability of the dimer phase and shift J⊥c to larger values.
For S = 1/2, this leads to a renormalized transition point
J⊥c ≈ 2.58, very close to the QMC result. For S > 1/2, the
renormalization is too weak to account for the discrepancy
between the earlier mean-field result and the QMC data. These
triplet corrected results for the square lattice are summarized
in Table I.

B. Triplet interactions on the honeycomb lattice

The interaction between triplets on the honeycomb lattice
is given by


H
(t)� = −1

2

∑
i,δ

∑
u,v,w,v′,w′
∈ {x,y,z}

εuvwt
†
i,A,vti,A,w

× εuv′w′ t
†
i+δ,B,v′ ti+δ,B,w′ . (27)

The operators δ are such that the sites (i,A) and (i + δ,B)
are nearest neighbors. This interaction term contributes to
the ground-state energy at first order in perturbation theory.
To evaluate this correction, we quadratically decompose the
interaction using the following two bilinears:

〈t†i,A,vti+δ,B,w〉 ≡ δv,wρ,
(28)

〈t†i,A,vt
†
i+δ,B,w〉 ≡ δv,w
,

with the expectation values to be evaluated using the unper-
turbed Hamiltonian H

(0)� . Explicit expressions for ρ and 
 are
given in Appendix B. The first-order correction to ground-state
energy is given by


E
(t)� = 9

2N⊥[ρ2 − 
2]. (29)

The parameter s̄ is chosen to minimize the energy,

E
(t)�,var(s̄,μ) = E

(0)� + 
E
(t)�. (30)

As on the square lattice, we find that triplet interactions
reduce the stability of the dimer phase and shift J⊥c to larger
values. For S = 1/2, this leads to a renormalized transition
point J⊥c ≈ 1.59, which is in reasonable agreement with
the QMC result J⊥c = 1.645(1). For S > 1/2, however, the
renormalization is again too weak to account for the QMC
data. These triplet corrected results for the critical point on the
honeycomb lattice are summarized in Table II.

VII. QUINTET CORRECTIONS

In the previous section, we have seen that triplet correction
terms lead to a reasonably good agreement with QMC
results for the dimer-Néel quantum critical point for S = 1/2.
However, they fail to account for the significant discrepancy
between QMC and bond operator mean-field theory for
S > 1/2. This leads to us to suspect that higher-order spin
excitations on the dimer bonds must be responsible for this
difference. Upon including quintet terms, the spin operators
at a site i contain a large number of terms as given in
Eqs. (20) and (21) of Ref. 24 and reproduced in Appendix C
for convenience.

Using these spin expressions to rewrite the Hamiltonian in
Eq. (1), we find that correction terms beyond mean-field theory,
including those involving quintet states, may be grouped as


H = D̂ttt t + s̄R̂ttq(S2) + F̂ttqq(S2) + Ĝqqqq (S0). (31)

The subscripts indicate the composition of the terms in terms
of bond operators. The scaling of each term with S is indicated
in parentheses. For example, R̂ttq(S2) is composed of terms
that involve two triplet operators and one quintet operator,
and the coefficients of these terms scale as S2. The term that
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we have accounted for in the previous section is D̂ttt t , which
scales as S0 and contains four triplet operators. Naively, terms
involving quintets should be less important due to the energy
cost of exciting quintets. However, we see from the above
classification of terms that the coefficients of R̂ttq(S2) and
F̂ttqq(S2) increase rapidly with increasing spin. We find that
R̂ttq(S2) is, in fact, the dominant contribution for all S > 1/2.
(For the case of S = 1, we have explicitly checked that this
term dominates over triplet-triplet interactions encoded by
D̂ttt t ; see Table I.) The term F̂ttqq(S2) is suppressed because it
involves two quintet operators that act on different sites. In our
variational scheme, this term will contribute to the ground-state
energy at second order in perturbation theory. However, as
the quintets are taken to be localized excitations, this term
will involve intermediate states with two quintet excitations.
Therefore, it will contribute much less than R̂ttq(S2).

In the vicinity of the dimer-Néel transition, we assert
that R̂ttq(S2) will remain the dominant correction term for
any S > 1/2 even if higher spin states such as heptets,
nonets, etc., are included. As the dimer-Néel transition occurs
via condensation of triplet excitations, it is reasonable that
the dominant corrections come from quintets which are
immediately higher in energy than triplets. Heptets, nonets,
etc. occur at much higher energies and are unlikely to affect
the triplet condensation point. To argue that this is indeed
the case, we first note that the Hamiltonian of Eq. (1) can
change the spin of a bond by ±1 at most (this can be seen
from the rotation properties of a single spin operator acting on
a bond eigenstate). For example, if we restrict our attention
to one particular bond, the Hamiltonian connects a triplet
state to singlet, triplet, and quintet states. The matrix element
connecting the triplet to a nonet state (or a state of even higher
spin) is zero. Similarly, on a given bond, the heptet state
has nonzero matrix elements only with quintet, heptet, and
nonet states. The resulting terms in the Hamiltonian involving
heptets, nonets, etc. will not contribute at second order in
perturbation theory, but will only appear at higher order. As
an illustration, upon including heptets, the Hamiltonian can
have a term of the form h

†
i,mqi,nt

†
j,m′ tj,n′ . Clearly, this term

does not contribute to ground-state energy at first or second
order. In addition, at whichever order it contributes, the energy
denominators will involve large heptet excitation energies
which will further suppress the energy contribution.

In summary, in the vicinity of the dimer-Néel transition for
any value of S > 1/2, the leading correction to bond operator
mean-field theory comes from s̄R̂ttq(S2). We write


H (S>1/2) ≈ 
H (q) ≡ s̄R̂ttq(S2). (32)

Note that if we were to use a path-integral approach to integrate
out the quintet excitations at this stage, we would be led to an
effective triplet-triplet interaction which is enhanced by a factor
of S4 compared to the bare triplet-triplet term discussed in the
previous section (although it would be divided by the quintet
gap, which scales as S2 near the Néel to dimer transition).
Here we follow a different route, similar in spirit, and treat
this term perturbatively assuming the quintet states to be local
excitations. The energy cost of creating a quintet is given

by Eq. (3). We measure this energy cost from the Lagrange
multiplier μ to get

εq − μ = J⊥{3 − S(S + 1)} − μ (33)

as the energy cost of a quintet excitation.

A. Quintet corrections on the square lattice

The terms in s̄R̂ttq(S2) may be organized as

s̄R̂ttq(S2) = s̄
∑

i

∑
n=−2,...,2

[
q
†
i,n

∑
δ

T̂
[n]
i,i+δ + H.c.

]
. (34)

The operator T̂
[n]
i,i+δ is composed of triplet bilinears. The

index δ sums over the four nearest-neighbor vectors on the
square lattice. The explicit form of these operators is given
in Appendix D. The operator R̂ttq(S2) does not contribute to
ground-state energy at first order, as it is linear in quintet
operators. The energy correction, at second order, is given by


E
(q)� = s̄2

∑
σ �=0

∑
i,n,δ

i ′,n′,δ′

〈0|qi ′,n′ (T̂ [n]
i ′,i ′+δ′)†|σ 〉〈σ |q†

i,nT̂
[n]
i,i+δ|0〉

E0 − Eσ

.

(35)

The index σ sums over all excited states of H
(0)� , the variational

Hamiltonian. The only intermediate states that contribute are
those with a single quintet. In our variational formalism, we
take the quintets to be local excitations. This constrains us to
(i = i ′), (n = n′). This leaves us with


E
(q)� = s̄2

∑
ν �=0

∑
i,n

〈0| ∑δ′
(
T̂

[n]
i,i+δ′

)†|ν〉〈ν| ∑δ T̂
[n]
i,i+δ|0〉

E0 − Eν

.

(36)

The intermediate states |ν〉 which contribute involve a single
quintet excitation. Within the triplet sector, at zero temperature,
the intermediate states can have either (a) no triplon quasipar-
ticles or (b) two triplon quasiparticles. The contribution from
states with no triplon quasiparticles vanishes due to global
spin-rotational symmetry of the Hamiltonian. The energy
correction from two triplon intermediate states is evaluated to
obtain the energy correction, 
E

(q)� . The complete expression
is given in Appendix D.

Being second order in R̂ttq(S2), the energy correction from
quintet coupling naively scales as S4 for large S. However,
the energy denominator involves the energy of quintet states,
which is proportional to J⊥. Close to the dimer-Néel transition,
at the mean-field level, J⊥ approximately scales as S2 for
large S [see Eq. (14)]. We expect perturbative corrections to
preserve this scaling of J⊥c with S2. Thus, near the dimer-
Néel transition, 
E

(q)� scales as S4/S2 ∼ S2. The ground-state
energy to leading order in perturbation theory is thus given by

E
(S>1/2)�,var (s̄,μ) = E(0)� + 
E

(q)� . (37)

This energy is a function of s̄ and μ. As discussed earlier, μ

is tuned to enforce single boson occupancy per site, while s̄ is
chosen to minimize E

(S>1/2)�,var (s̄,μ).
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Having determined s̄ and μ variationally, we can find the
gap to triplon excitations as a function of J⊥. The dimer-Néel
transition is indicated by the vanishing of the triplon gap in
the variationally obtained state. As summarized in Table I,
the renormalized critical points obtained in this manner are
within 2.5% of the QMC results. While the precise quantitative
agreement is perhaps fortuitous, and will certainly change
depending on the nature of the approximations made, the
important problem we have resolved is to show that the
large discrepancy between QMC and simple bond operator
mean-field theory for S > 1/2 can be accounted for by virtual
quintet excitations.

B. Quintet corrections on the honeycomb lattice

On the honeycomb lattice, the terms in s̄R̂ttq(S2) may be
written as

s̄R̂ttq = s̄
∑

i

∑
n=−2,...,2

[
q
†
i,A,n

∑
δ

Â
[n]
i,i+δ + H.c.

+ q
†
i,B,n

∑
δ

B̂
[n]
i,i−δ + H.c.

]
. (38)

The operators Âi,i+δ and B̂i,i−δ are triplet bilinears centered
on nearest-neighbor bonds. We give their explicit forms in
momentum space in Appendix E. The terms in R̂ttq(S2)
contribute to ground-state energy only at second order in
perturbation theory. The energy correction may be written as


E
(q)� = s̄2

∑
σ �=0

∑
i,n

〈0|
[
qi,A,n

∑
δ′

Â
[n]
i,i+δ′

]
|σ 〉

× 〈σ |
[
q
†
i,A,n

∑
δ

Â
[n]
i,i+δ

]
|0〉/{E0 − Eσ } + (A→ B),

(39)

where the index σ sums over all excited states of H
(0)� .

As the terms in R̂ttq(S2) involve one quintet operator, only
intermediate states with a single occupied quintet state will
contribute,


E
(q)� = s̄2

∑
ν �=0

∑
i,n

〈0| ∑δ′
(
Â

[n]
i,i+δ′

)†|ν〉〈ν| ∑δ Â
[n]
i,i+δ|0〉

{E0 − Eν}

+s̄2
∑
ν �=0

∑
i,n

〈0| ∑δ′
(
B̂

[n]
i,i−δ′

)†|ν〉〈ν| ∑δ B̂
[n]
i,i−δ|0〉

{E0 − Eν} .

(40)

We evaluate these overlaps in momentum space, as de-
scribed in Appendix E. The intermediate state |ν〉 could
have either (i) no triplon quasiparticles or (ii) two triplon
quasiparticles. However, the contribution from states with no
triplons vanishes due to global spin rotational symmetry. The
explicit expression for 
E

(q)� is given in Appendix E. Thus, the
energy of the ground state to leading order in quintet coupling
is given by

E
(S>1/2)�,var = E

(0)� + 
E
(q)� . (41)

We choose s̄ to minimize this energy. The vanishing of the
triplet gap in the variationally determined state signals the
dimer-Néel transition. Our results for J⊥c on the honeycomb
lattice are shown in Table II. The renormalized critical points
for S = 1 and 3/2 are within 5% of the QMC value.

VIII. DISCUSSION

In this paper, we have studied the Néel to dimer transition
in Heisenberg antiferromagnets on bilayer square and honey-
comb lattices for different spin values using QMC and bond
operator approaches. The critical bilayer exchange J⊥c scales
as S(S + 1) within both bond operator mean-field theory and
QMC simulations. However, there is a systematic deviation
between bond operator mean-field theory and QMC, with the
deviation itself scaling as ∼S2. Our variational extension of
bond operator theory to include the dominant triplet and quintet
excitations successfully captures this systematic deviation and
gives a more precise estimate of J⊥c.

Bi3Mn4O12(NO3) provides an example of a bilayer honey-
comb antiferromagnet25 with S = 3/2, where strong interlayer
exchange couplings ∼2J1 have been inferred from electronic
structure calculations.35 Despite this strong bilayer coupling,
our study indicates that this material would be deep in the Néel
ordered phase if there are no other frustrating interactions. We
are thus forced to attribute the observed lack of magnetic order
in Bi3Mn4O12(NO3) to frustration effects arising from further
neighbor couplings; such further neighbor interactions have
been shown to drive a variety of new phases on the honeycomb
lattice.36–43 One recent example of a dimer system with S = 1
is the triangular dimer material13,44 Ba3Mn2O8. Our approach
could be applied to understand the triplon spectrum and the
effect of quintet corrections in this material. In particular, our
work shows that extracting exchange couplings from fitting
experimental data to bond operator mean-field theory may
not yield precise estimates. In summary, our work provides
a starting point to think about the physics of high-spin
Heisenberg antiferromagnets in a variety of model systems
and materials.
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APPENDIX A: SQUARE BILAYER: BOSONIC
BOGOLIUBOV TRANSFORMATION

The MFT Hamiltonian of Eq. (7) is diagonalized by a
pseudounitary matrix,

Uk =
(

cosh θk sinh θk

sinh θk cosh θk

)
. (A1)

Imposing tanh 2θk = −2εk/(A + 2εk), we get

ψ
†
k,u

(
A + 2εk 2εk

2εk A + 2εk

)
ψk,u =φ

†
k,u

(
λk 0
0 λk

)
φk,u. (A2)
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We have defined new quasiparticle operators given by ψk,u =
Ukφk,u so that(

tk,u

t
†
−k,u

)
=

(
cosh θk sinh θk

sinh θk cosh θk

) (
τk,u

τ
†
−k,u

)
. (A3)

The τ operators are the triplon quasiparticles. The bilinears
defined in Eq. (24) may be evaluated using the elements of U

as follows:

ρ = 1

4N⊥

∑
k,δ

[〈t†k,vtk,v〉eik·δ]

= 1

4N⊥

∑
k

′
(2 cos kx + 2 cos ky)

A + 2εk

λk
, (A4)


 = 1

4N⊥

∑
k,δ

[〈t†k,vt
†
−k,v〉eik·δ]

= 1

4N⊥

∑
k

′
(2 cos kx + 2 cos ky)

(−2εk)

λk
. (A5)

APPENDIX B: HONEYCOMB BILAYER: BOSONIC
BOGOLIUBOV TRANSFORMATION

The mean-field Hamiltonian of Eq. (15) may be diagonal-
ized by the matrix

Pk = 1√
2

⎛
⎜⎜⎜⎝

1 1 0 0

−bk bk 0 0

0 0 1 1

0 0 −bk bk

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

Ck,1 0 Sk,1 0

0 Ck,2 0 Sk,2

Sk,1 0 Ck,1 0

0 Sk,2 0 Ck,2

⎞
⎟⎟⎟⎠ .

Here, we have defined bk ≡ β∗
k/|βk|. We take the other entries

to be hyperbolic functions given by Ck,n = cosh κk,n and
Sk,n = sinh κk,n, with n = 1,2. With this definition, this matrix
Pk satisfies the pseudounitarity condition PkσP

†
k = σ , where

σ = diag{1,1, − 1, − 1}. To diagonalize the Hamiltonian
matrix Mk, we set

tanh 2κk,1 = βk/(C − βk),
(B1)

tanh 2κk,2 = −βk/(C + βk).

With this choice, the matrix Pk diagonalizes the Hamiltonian,

P
†
kMkPk = diag{λk,1,λk,2,λk,1,λk,2}, (B2)

where λk,1/2 are as defined in the body of the text. We transform
the triplet operators defined in Eq. (16) into new quasiparticle
operators using⎛

⎜⎜⎜⎜⎝
tk,A,u

tk,B,u

t
†
−k,A,u

t
†
−k,B,u

⎞
⎟⎟⎟⎟⎠ = Pk

⎛
⎜⎜⎜⎜⎝

ϑk,1,u

ϑk,2,u

ϑ
†
−k,1,u

ϑ
†
−k,2,u

⎞
⎟⎟⎟⎟⎠ . (B3)

The ϑ operators are the triplon quasiparticles. Compared
to the square lattice case, the quasiparticle operators have
an additional index on account of the sublattice degree of
freedom. We can express our original triplet operators as

follows:

tk,A,u =
∑

f =1,2

(Ck,f ϑk,f,u + Sk,f ϑ
†
−k,f,u),

(B4)
t−k,B,u =

∑
f =1,2

(−1)f b∗
k(Ck,f ϑ−k,f,u + Sk,f ϑ

†
k,f,u).

The bilinears defined in Eq. (28) can be evaluated as

ρ = 2

3N⊥

∑
k

〈t†k,A,vtk,B,v〉γk

= 1

6N⊥

∑
k

|γk|
[
−C − |βk|

λk,1
+ C + |βk|

λk,2

]
, (B5)


 = 2

3N⊥

∑
k

〈t†k,A,vt
†
−k,B,v〉γk

= −1

6N⊥

∑
k

|γk|
[ |βk|

λk,1
+ |βk|

λk,2

]
. (B6)

APPENDIX C: SPIN OPERATOR EXPRESSIONS
INCLUDING QUINTET TERMS

Including triplet and quintet operators, the complete ex-
pression for the spin operators on the two layers of the bilayer
are24

S+
i,�=1,2 = (−1)�

√
2S(S + 1)

3
s̄(ti,−1 − t

†
i,1)

+(−1)�
√

(2S − 1)(2S + 3)

5

[
(t†i,−1qi,−2 − q

†
i,2ti,1)

+
√

1

2
(t†i,0qi,−1 − q

†
i,1ti,0) +

√
1

6
(t†i,1qi,0 − q

†
i,0ti,−1)

]

+
√

1

2
(t†i,1ti,0 + t

†
i,0ti,−1) +

√
3

2
(q†

i,1qi,0 + q
†
i,0qi,−1)

+q
†
i,2qi,1 + q

†
i,−1qi,−2, (C1)

with S−
i,�=1,2 being its Hermitian conjugate, while

Sz
i,�=1,2 = (−1)�

√
S(S + 1)

3
s̄(ti,0 + t

†
i,0)

+(−1)�
√

(2S − 1)(2S + 3)

5

[√
1

3
(t†i,0qi,0 + q

†
i,0ti,0)

+1

2
(t†i,1qi,1 + q

†
i,1ti,1 + t

†
i,−1qi,−1 + q

†
i,−1ti,−1)

]

+1

2
(t†i,1ti,1 − t

†
i,−1ti,−1 + q

†
i,1qi,1 − q

†
i,−1qi,−1)

+q
†
i,2qi,2 − q

†
i,−2qi,−2. (C2)

APPENDIX D: SQUARE BILAYER: INCLUSION
OF QUINTETS

Using the spin operators in Eq. (C1) and (C2), we now
give explicit expressions for R̂ttq(S2). In the main text, we
defined R̂ttq(S2) in terms of triplet bilinears T̂

[n]
i,i+δ . Here, we
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give expressions for T̂
[n]
i,i+δ in momentum space. We use the

Fourier transform convention

ti,u∈{x,y,z} = 1√
N⊥

∑
k

tk,ue
ik·ri . (D1)

The operator T̂
[n]
i,i+δ is composed of bilinears of the

form ti,u(ti+δ,v ± t
†
i+δ,v). Using the Fourier transform, this

generic bilinear may be written as (1/N⊥)
∑

k,p t−k+p,u(tk,u ±
t
†
−k,u)eik·δeip·ri .

Thus, we may write∑
δ

T̂
[n]
i,i+δ = M

N⊥

∑
k,p

T̂
[n]
−k+p,ke

ip·ri ηk, (D2)

where ηk = ∑
δ eik·δ = 2(cos kx + cos ky) and the coefficient

M =
√

S(S+1)(2S−1)(2S+3)
30 . The explicit forms of T̂

[n]
−k+p,k are

T̂
[−2]
−k+p,k = t̃−k+p,x(tk,x + t

†
−k,x) − t̃−k+p,y(tk,y + t

†
−k,y)

+it̃−k+p,x(tk,y + t
†
−k,y) + it̃−k+p,y(tk,x + t

†
−k,x),

T̂
[−1]
−k+p,k = t̃−k+p,z(tk,x + t

†
−k,x) + t̃−k+p,x(tk,z + t

†
−k,z)

+it̃−k+p,z(tk,y + t
†
−k,y) + it̃−k+p,y(tk,z + t

†
−k,z),

T̂
[0]
−k+p,k =

√
2

3
[−t̃−k+p,x(tk,x + t

†
−k,x) (D3)

−t̃−k+p,y(tk,y + t
†
−k,y) + 2t̃−k+p,z(tk,z + t

†
−k,z)],

T̂
[−1]
−k+p,k = −t̃−k+p,z(tk,x + t

†
−k,x) − t̃−k+p,x(tk,z + t

†
−k,z)

+it̃−k+p,z(tk,y + t
†
−k,y) + it̃−k+p,y(tk,z + t

†
−k,z),

T̂
[2]
−k+p,k = t̃−k+p,x(tk,x + t

†
−k,x) − t̃−k+p,y(tk,y + t

†
−k,y)

−i t̃−k+p,x(tk,y + t
†
−k,y) − it̃−k+p,y(tk,x + t

†
−k,x).

We have denoted some triplet operators as t and some as t̃ .
For the purposes of the square lattice, this distinction can be
ignored. We will use these same expressions in the context of
the honeycomb lattice also. For the honeycomb case, t and t̃

operators will act on different sublattices.
The energy correction due to coupling to quintets is given in

Eq. (36). Using the Fourier transformed expression in Eq. (D2),
we rewrite the energy as


E
S>1/2� = M2s̄2

N⊥

∑
m=−2,...,2

∑
p

E[m]
p , (D4)

where p is the momentum of the intermediate state. The
quantity E[m]

p is given by

E[m]
p =

∑
ν �=0

|〈ν| ∑k T̂
[n]
−k+p,kηk|0〉|2

E0 − Eν

. (D5)

Here, (−p) is the momentum of the intermediate state |ν〉.
As described in Sec. VII A, the intermediate states |ν〉 that
contribute have two triplon quasiparticle excitations and one
quintet excitation. In the triplet sector, an intermediate state
with momentum (−p) may be represented as

|νtwo triplon〉 = τ
†
q−p,u′τ

†
−q,v′ |0〉. (D6)

With this parametrization, the sum over intermediate states |ν〉
may be written as∑

ν �=0

−→
∑

q

∑
u′,v′∈{x,y,z}

. (D7)

Evaluating the matrix elements using this parametrization of
the intermediate state, we find that the energy contribution
E[m]

p is the same from every m sector, i.e., E[m]
p = Ep for all

m. The quantity Ep is given by

Ep = −2
∑

q

[
sinh2(θq)η2

p−q{cosh(2θp−q) + sinh(2θp−q)} + sinh2(θp−q)η2
q{cosh(2θq) + sinh(2θq)}]

εq − μ + λ−q + λ−p+q
. (D8)

APPENDIX E: HONEYCOMB BILAYER: INCLUSION
OF QUINTETS

In the main text, we defined R̂ttq(S2) in terms of triplet
bilinears Â

[n]
i,i+δ and B̂

[n]
i−δ,i . Here, we give expressions for Â

[n]
i,i+δ

and B̂
[n]
i−δ,i in momentum space. We use the Fourier transform

convention

ti,α∈{A,B},u∈{x,y,z} = 1√
N⊥/2

∑
k

tα,k,ue
ik·ri . (E1)

(i) The terms in Â
[n]
i,i+δ are of the form ti,A,u(ti+δ,B,v +

t
†
i+δ,B,v). Using our Fourier transform convention, we may

write ∑
δ

Â
[n]
i,i+δ = M

N⊥/2

∑
k,p

Â
[n]
−k+p,ke

ip·ri γk, (E2)

where γk = ∑
δ eik·δ = 1 + e−ikb + e−ika−ikb and the coeffi-

cient M =
√

S(S+1)(2S−1)(2S+3)
30 is the same as that defined for

the square lattice case. The explicit forms of Â
[n]
−k+p,k are the

same of those of T̂
[n]
−k+p,k given in Eq. (D3) with the following

redefinition:

t̃k,u ≡ tA,k,u, tk,u ≡ tB,k,u. (E3)

(ii) The terms in B̂
[n]
i,i−δ are of the form ti,B,u(ti−δ,A,v ±

t
†
i−δ,A,v). Using our Fourier transform convention, we write

∑
δ

B̂
[n]
i,i−δ = M

N⊥/2

∑
k,p

B̂
[n]
−k+p,ke

ip·ri γ−k. (E4)
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Explicit expressions for B̂
[n]
−k+p,k are the same as those of

T̂
[n]
−k+p,k given in Eq. (D3) but with the following redefinition:

t̃k,u ≡ tB,k,u, tk,u ≡ tA,k,u. (E5)

The quintet energy correction on the honeycomb lattice may
be rewritten as


E(q) = M2s̄2

N⊥/2

∑
p

∑
m

[(
A[m]

p

) + (
B[m]

p

)]
, (E6)

where (
A[m]

p

) =
∑
ν �=0

|〈ν| ∑k Â
[m]
−k+p,kγk|0〉|2

E0 − Eν

,

(E7)(
B[m]

p

) =
∑
ν �=0

|〈ν| ∑k B̂
[m]
−k+p,kγ−k|0〉|2

E0 − Eν

.

The only intermediate states |ν〉 that contribute to the energy
are states with two triplon quasiparticle excitations. A generic
intermediate state with momentum (−p) may be characterized
as

|νtwo triplon〉 = ϑ
†
−q,f,uϑ

†
q−p,g,v|0〉. (E8)

Using this parametrization of a generic state, the sum over
intermediate states in Eq. (E7) becomes∑

ν �=0

−→ 1

2

∑
q

∑
f,g∈{1,2}

∑
u,v∈{x,y,z}

. (E9)

There is a factor of 1/2 to account for double counting as
(q′ = p − q,f ′ = g,g′ = f ) corresponds to the same state as
(q,f,g). Evaluating the necessary overlaps, we find that the
contribution from each m is the same, (A[m]

p ) = (B[m]
p ) = Ep

for m = −2, . . . ,2. The quantity Ep is given by

Ep = −2
∑
q,f,g

[
Sq,f (−1)g(S−p+q,g + Cp−q,g)|γp−q| + Sp−q,g(−1)f (S−q,f + Cq,f )|γq|

]2

εq − μ + λ−q,f + λq−p,g

. (E10)

By plugging these expressions into Eq. (E6), the correction to ground-state energy may be computed.
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