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Random fan-out state induced by site-random interlayer couplings
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We study the low-temperature properties of a classical Heisenberg model with site-random interlayer couplings
on the cubic lattice. This model is introduced as a simplified effective model of Sr(Fe1−xMnx)O2, which was
recently synthesized. In this material, when x = 0.3, (πππ ) and (ππ0) mixed ordering is observed by neutron
diffraction measurements. Using Monte Carlo simulations, we find an exotic bulk spin structure that explains
the experimentally obtained results. We name this spin structure the “random fan-out state.” The mean-field
calculations provide an intuitive understanding of this phase being induced by the site-random interlayer
couplings. Since Rietveld analysis assuming the random fan-out state agrees well with the neutron diffraction
pattern of Sr(Fe0.7Mn0.3)O2, we conclude that the random fan-out state is reasonable for the spin-ordering pattern
of Sr(Fe0.7Mn0.3)O2 at the low-temperature phase.
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I. INTRODUCTION

Disorder in materials induces the frustration effect and
makes it difficult for cooperative phenomena to occur.1–6 For
example, in random magnets, conventional magnetic orders
such as ferromagnetic (FM) and Néel orders are suppressed
by the frustration that arises from disorder. Consequently,
the ordering temperature of random systems is lower than
that of pure systems and the ordered phase disappears due
to random interactions between magnetic moments in some
cases. Systems with disorder also have many features that
are not observed in pure systems. In some random magnetic
systems, interesting phases and transitions have been observed,
for example, spin glass,7–10 mixed ordering,11–16 and oblique
phase.17–19 To find phases having exotic static and dynamic
behavior, synthesis and characterization of random magnets
have been attracted attention in materials science for a long
time.

From the viewpoint of statistical physics, it is important
to explore how disorder in magnetic systems affects phase
transitions and magnetic orders. A theoretical model of random
magnets constructed by random substitution of magnetic
ions is a site-random model.12,13,15,16,20–26 Regarding a binary
magnetic alloy, we can describe a site-random model with
two types of magnetic ions, A and B. In this model, A and
B ions are placed randomly on the lattice. The interactions of
each bond depend on the combination of ions. For example,
the interaction between A ions is antiferromagnetic (AF),
whereas other interactions are FM. The Heisenberg model
using this decision rule of interactions for all directions on a
three-dimensional lattice has been investigated using Monte
Carlo simulations.12,13,15,16 This model can be considered as
a fundamental model of isotropic materials. However, we
cannot adapt this model in the present case because origins
of interaction depend on the direction in the infinite-layer
structure treated in this paper. In this case, the emergence
of disorder of interaction should depend on the direction. In
isotropic random systems, the key element is the concentration
density of each ion. In anisotropic random systems, in addition

to that, the spatial distribution of disorder is also important.
Then it is an interesting issue to investigate phase transition
and spin structure in anisotropic random systems. Since recent
developments in synthetic methodology enable us to design
the spatial structure of materials, the above-mentioned issue
has become increasingly important in materials science.

Recently, the infinite-layer iron oxide SrFeO2 was syn-
thesized by hydride reduction of SrFeO3, which has the
perovskite structure.27 From the crystal structure of SrFeO2,
the nearest-neighbor spin interaction J in a plane is due
to a Fe-O-Fe superexchange interaction, and the interlayer
interaction J ′ is due to direct through-space overlap between
Fe ions. First-principles calculations28,29 and inelastic neutron
scattering measurements30 consistently revealed that both
interactions are AF with J ∼ 3 meV and J ′ ∼ 1 meV. Owing
to these strong AF interactions, SrFeO2 exhibits (πππ )
order [see Fig. 1(a)] with a relatively high Néel temperature
TN = 473 K. Seinberg et al. studied the effect of substituting
Mn2+ ions (d5) for Fe2+ ions (d6) at room temperature
(RT).31 RT neutron diffraction and Mössbauer spectroscopy
studies on Sr(Fe1−xMnx)O2 (x = 0.0, 0.1, 0.2, 0.3) showed
that Mn substitution at Fe sites substantially destabilizes
(πππ ) order with increasing x, and Sr(Fe0.7Mn0.3)O2 be-
comes paramagnetic at RT.31 From the Goodenough-Kanamori
rule,32,33 the Fe-O-Mn superexchange intralayer interaction
must be AF. Thus the destabilization of (πππ ) order suggests
that the Fe-Mn interlayer interaction is FM and competes
with the AF Fe-Fe interlayer interaction J ′.31 From the above
facts, the material Sr(Fe1−xMnx)O2 is an anisotropic random
system. It is possible that an unusual phase transition and a
spin structure that comes from interlayer random couplings
emerge at low temperature.

This paper presents low-temperature neutron diffraction
results on Sr(Fe0.7Mn0.3)O2 as well as a theoretical inter-
pretation of those results. We find that two distinct wave
vectors, namely, (πππ ) and (ππ0), develop simultaneously
in Sr(Fe0.7Mn0.3)O2 at low temperature. The aims of our
study are to clarify the spin-ordering pattern and to explain
the mechanism whereby the (πππ ) and (ππ0) wave vectors
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FIG. 1. (Color online) (a) Schematic spin structure of (πππ )
order. (b) Schematic spin structure of (ππ0) order.

coexist. In Sec. II, we present the experimental results on the
random magnet Sr(Fe1−xMnx)O2. In Sec. III, we introduce
a classical Heisenberg model with site-random interlayer
couplings as a simplified effective model of Sr(Fe1−xMnx)O2.
In Sec. IV, we show the Monte Carlo simulation results
of finite-temperature properties of the model introduced in
Sec. III. Plotting the phase diagram of temperature versus
Mn ion concentration, we find the mixed phase, which
is characterized by wave vectors (πππ ) and (ππ0). We discuss
the spin-ordering pattern of this phase and the universality class
of each phase transition. In Sec. V, to consider the emergence
mechanism of the mixed phase observed in Monte Carlo
simulations, we investigate the effect of random interlayer
couplings by mean-field calculations. In Sec. VI, we discuss
whether the spin-ordering pattern is robust with respect to the
details of the model, such as decision rules of interactions and
easy-plane anisotropy. We also show the results of Rietveld
analysis for Sr(Fe0.7Mn0.3)O2. Section VII summarizes the
paper and our main conclusions.

II. EXPERIMENTAL RESULTS

The random magnet Sr(Fe1−xMnx)O2 (x = 0.1, 0.2,
0.3) was recently synthesized.31 The crystal structure of
Sr(Fe1−xMnx)O2 is shown in Fig. 2. As we pointed out, the
x = 0.1 and 0.2 samples exhibit (πππ ) order above RT. The

b
c

a

FIG. 2. (Color online) Crystal structure of Sr(Fe1−xMnx)O2.
Orange (large), blue (medium), and red (small) spheres indicate Mn,
Fe, and O ions, respectively. This arrangement of Fe and Mn ions is
only an illustrative example. In Sr(Fe1−xMnx)O2, Fe and Mn ions are
randomly placed on the tetragonal lattice.

transition temperatures of the two substituted compounds have
not been investigated, but the experimental results in Ref. 31
indicate that TN decreases with increasing x. Powder neutron
diffraction experiments at RT show a systematic decrease in
magnetic reflection intensity; specifically, the relative intensity
of the (1/2,1/2,1/2) reflection for x = 0.0, 0.1, and 0.2 is
1 : 0.8 : 0.4. 57Fe Mössbauer experiments at RT also reveal a
systematic decrease of hyperfine fields: 402 kOe for x = 0.0,
330 kOe for x = 0.1, and 26.1 kOe for x = 0.2. When x = 0.3,
the system is in a disordered state at RT. Thus, we performed
neutron diffraction measurements at low temperature.

Powder neutron diffraction experiments on
Sr(Fe0.7Mn0.3)O2 were carried out on a Kinken
powder diffractometer with multicounters for HERMES
(high-efficiency and high-resolution measurements) at the
Institute for Materials Research, Tohoku University, installed
at a guide hall of the JRR-3 reactor of the Japan Atomic
Energy Agency (JAEA), Tokai.34 The incident neutrons
were monochromatized to 1.8204 Å by the 331 reflection
of bent Ge crystal. A 12’-blank-sample-18’ collimation was
employed. A polycrystalline sample of 3 g was placed into
an He-filled vanadium cylinder. The sample temperature was
controlled from 10 to 273 K. The data were collected with a
step-scan procedure using 150 neutron detectors in a 2θ range
from 3◦ to 153◦ with a step width of 0.1◦.

Figure 3 shows the neutron diffraction pattern for
Sr(Fe0.7Mn0.3)O2 at 10 K. As expected from the previous
report,31 the diffraction profile has magnetic peaks such as
(1/2,1/2,1/2) and (1/2,3/2,1/2) characterized by a wave vec-
tor (πππ ), together with a nuclear reflection with a tetragonal
P 4/mmm cell (a = 4.001 Å, c = 3.441 Å). However, we
unexpectedly observed magnetic peaks such as (1/2,1/2,0)
and (1/2,1/2,1) characterized by a wave vector (ππ0) at the
same time. Plots versus temperature of the (1/2,1/2,1/2) and
(1/2,1/2,0) peaks corresponding, respectively, to the (πππ )
and (ππ0) wave vectors are shown in Fig. 4. Here, it is
seen that the two peaks lose their intensities gradual with
increasing temperature, and at and above 240 K, both peaks
disappear and the intensities decrease to the background
level. The pure SrFeO2 system exhibits (πππ ) order only,
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FIG. 3. (Color online) Powder neutron diffraction pattern of
Sr(Fe0.7Mn0.3)O2 at 10 K. Purple and blue indices correspond
to magnetic reflections of (ππ0) and (πππ ) orders, respectively.
Triangles correspond to peaks from perovskite Sr(Fe0.7Mn0.3)O3−δ

and asterisk corresponds to a peak from an unknown impurity.
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FIG. 4. (Color online) Temperature dependencies of
(1/2,1/2,1/2) and (1/2,1/2,0) peaks corresponding, respectively, to
(πππ ) and (ππ0) wave vectors for Sr(Fe0.7Mn0.3)O2. Dotted curves
are visual guides. The intensities are normalized by acquisition time.

and thus the appearance of the (ππ0) peak is caused by
the effect of substitution on Mn ions. We cannot predict
the sign of direct exchange interaction along the interlayer
direction, because the direct exchange interaction strongly
depends on the environment around it. In contrast to the
interlayer interaction, from the Goodenough-Kanamori rule,35

Fe-O-Mn and Mn-O-Mn superexchange intralayer interactions
must be antiferromagnetic. Thus the simultaneous appearance
of (πππ ) and (ππ0) wave vectors indicates that interlayer FM
interactions appear at Mn sites.

A simple explanation of the observed simultaneous (πππ )
and (ππ0) wave vectors is phase separation into the (πππ )-
type spin structure [see Fig. 1(a)] and the (ππ0)-type spin
structure [see Fig. 1(b)]. The other scenario is the emergence of
a bulk spin structure in which (πππ ) and (ππ0) wave vectors
coexist. Since Sr(Fe1−xMnx)O2 is an anisotropic random
system that has never been investigated theoretically, it is
possible that this type of bulk spin structure emerged in
Sr(Fe1−xMnx)O2. Indeed, as we will see in the following the-
oretical argument, we find a novel type of magnetic structure
that can explain the simultaneous appearance of (πππ ) and
(ππ0) wave vectors. From these considerations, in Sec. VI B,
we discuss the spin-ordering pattern in Sr(Fe0.7Mn0.3)O2 at
low temperature.

III. THEORETICAL MODEL

To investigate whether there is a bulk spin structure that
explains the simultaneous appearance of (πππ ) and (ππ0)
wave vectors without any phase separation, we construct a
simplified effective model of Sr(Fe1−xMnx)O2. We introduce
a classical Heisenberg model with site-random interlayer
couplings on the cubic lattice. This model includes the charac-
teristic features of Sr(Fe1−xMnx)O2: (i) the system consists of
two types of magnetic ions randomly placed on the lattice and
(ii) competition between FM and AF interactions exists along

TABLE I. Decision rule of interactions for combinations of ions
(J > 0).

Intralayer Interlayer

A-A +J (AF) +J (AF)
A-B +J (AF) −J (FM)
B-B +J (AF) −J (FM)

only the interlayer direction. The model Hamiltonian is given
by

H = J
∑

〈i,j〉intralayer

si · sj + J ′ ∑
〈i,j〉interlayer

σij si · sj , (1)

σij := − 1
2 {1 + (εi + εj ) − εiεj }, (2)

where si is the three-component vector spin of unit length
at the ith site on the cubic lattice, and εi is equal to −1 or
+1 for A or B ions at the ith site, respectively. Here, A and
B ions correspond to Fe and Mn ions in Sr(Fe1−xMnx)O2.
The first term of the Hamiltonian denotes the uniform AF
nearest-neighbor interaction (J > 0) in the ab plane. The sign
of the nearest-neighbor interaction in the second term depends
on the arrangement of A and B ions along the interlayer
direction (c axis): the interactions between A ions are assumed
to be AF where σij = +1, and other interactions are assumed
to be FM where σij = −1. We assume that absolute values
of the interactions are the same (J ′ = J ) for simplicity. The
interactions of this model are summarized in Table I. Under this
rule of interactions, we assume that the interlayer interaction
at B ion sites is always FM. However, there are other possible
decision rules of interactions where FM interactions exist at B
ion sites. In Sec. VI, we discuss the low-temperature properties
depending on the decision rule of interactions.

We calculate average densities of FM and AF interactions
along the interlayer direction depending on a B ion concentra-
tion, x. The probabilities of A-A, A-B, and B-B for nearest-
neighbor ions along the interlayer direction are (1 − x)2,
2x(1 − x), and x2, respectively. Thus probabilities of FM and
AF interactions are x2 + 2x(1 − x) and (1 − x)2, respectively.
The spatial average of signs of interlayer interactions, σ , is
given by

σ = 2x2 − 4x + 1, (3)

where σ is equal to 0 at x = x∗ := (2 − √
2)/2 	 0.2929. In

the case of x < x∗, the AF interaction is dominant (σ > 0)
along the interlayer direction. In contrast, the FM interaction
is dominant (σ < 0) for x > x∗.

In the site-random model, the signs of interactions along the
interlayer direction are correlated, and thus the FM correlation
between next-nearest layers (NNLs) emerges. In fact, the
effective FM interaction between NNLs exists regardless of
x in our model. The sign of the effective interaction between
next-nearest-neighbor sites is defined by

σ nnl
ik := −σijσjk, (4)

where i and k denote next-nearest-neighbor sites along the
interlayer direction through the j th site. To show that effective
interactions are always FM, we investigate the arrangements
of three ions including two interactions along the interlayer
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TABLE II. Effective interactions and probabilities of next-
nearest-neighbor spin pairs along the interlayer direction depending
on the arrangement of three ions.

Arrangement Effective interaction Probability

A-A-A FM (σ nnl
ik = −1) (1 − x)3

A-A-B AF (σ nnl
ik = +1) x(1 − x)2

A-B-A FM (σ nnl
ik = −1) x(1 − x)2

B-A-A AF (σ nnl
ik = +1) x(1 − x)2

A-B-B FM (σ nnl
ik = −1) x2(1 − x)

B-A-B FM (σ nnl
ik = −1) x2(1 − x)

B-B-A FM (σ nnl
ik = −1) x2(1 − x)

B-B-B FM (σ nnl
ik = −1) x3

direction. If the signs of both interactions are the same, that
is, σij = σjk , the effective interaction is FM (σ nnl

ik = −1). In
contrast, if one of the interactions is FM coupling and the other
is AF coupling, that is, σij = −σjk , the effective interaction
is AF (σ nnl

ik = +1). For example, the effective interactions of
arrangements A-A-A and A-A-B are FM and AF, respectively.
We summarize the effective interactions and probabilities
depending on arrangement of three ions in Table II. From
Table II, the probabilities of FM and AF effective interactions
are 1 − 2x(1 − x)2 and 2x(1 − x)2, respectively. The spatial
average of signs of effective interactions between NNLs, σ nnl,
is given by

σ nnl = 4x3 − 8x2 + 4x − 1. (5)

From this equation, it is clear that σ nnl is negative regardless
of x (0 � x � 1). Thus the effective interaction between
NNLs is always FM. From this fact, it follows that the spin
arrangement between odd-numbered (even-numbered) layers
is FM along the interlayer direction in ordered phases. Note
that the ferromagnetic correlation between NNLs exists in
not only collinear spin structures but also noncollinear spin
structures. This is because thermal and disorder fluctuations
cause the ferromagnetic effective interaction regardless of spin
structure.

To compare the properties of site-random model and bond-
random (BR) model where FM and AF interactions are placed
randomly on each bond, we analyze the effective interactions
for bond-random model in a similar way. The spatial average
of signs of interlayer interactions σbr and that of effective
interaction between NNLs σ nnl

br are given by

σbr = 1 − 2y, (6)

σ nnl
br = 4y2 − 4y + 1, (7)

where y is the concentration of FM bonds along the interlayer
direction, and σbr is 0 at y = y∗ := 1/2. Since σ nnl

br is equal to
0 at y = y∗, the bond-random model does not have long-range
order in the interlayer direction at y = y∗. Thus the existence
of the FM effective interaction between NNLs regardless of
x is a characteristic feature of the site-random model and is
crucial for obtaining a finite transition temperature even at
x = x∗ in our model.

IV. SIMULATION RESULTS

We study the finite-temperature properties of the classi-
cal Heisenberg model with site-random interlayer couplings
defined by Eq. (1) on an N = L × L × L simple cubic
lattice with a periodic boundary condition. We use Monte
Carlo simulations in which the standard heat-bath method is
adopted. Before starting the simulations, we specify the B
ion concentration x such that the number of B ions (NB :=
N × x) is an integer. In each simulation, we prepare random
configurations of A and B ions and set the interaction of each
bond according to Table I.

A. Phase diagram

In this section, we draw the phase diagram of temperature
T/J versus B ion concentration x. To determine transition
temperatures, we calculate the Binder ratio U4(q) of magneti-
zation vector m(q) characterized by wave vector q:

m(q) := 1

N

∑
i

sie
iq·r i , (8)

U4(q) :=
[ 〈|m(q)|4〉
〈|m(q)|2〉2

]
av

. (9)

Here, 〈· · · 〉 is the thermal average and [· · · ]av is the random
average over arrangements of ions. Hereafter, r i represents
the position vector of the ith site. We prepare 64–1024
random configurations of ions. The transition temperature
is determined at the crossing point of U4(q) by using L =
12–32 data. The phase diagram obtained from Monte Carlo
simulations is shown in Fig. 5. There are three ordered phases
in the phase diagram. Here, we determine each phase structure
according to the structure factor:

S(q) := N [〈|m(q)|2〉]av. (10)

In the (πππ ) and (ππ0) ordered phases, the structure factor
has peaks only at each corresponding wave vector. In the
mixed phase, structure factor peaks at two distinct wave vectors
(πππ ) and (ππ0) develop. There are two phase boundaries

0
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FIG. 5. (Color online) Phase diagram of temperature T/J vs B
ion concentration x obtained from Monte Carlo simulations. Asterisk
and arrow denote parameters used in Secs. IV B (see Fig. 6) and IV C
(see Fig. 10), respectively. In the mixed phase, (πππ ) and (ππ0)
orders coexist, and the spin-ordering pattern is the random fan-out
state as shown in Fig. 9.
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in the phase diagram. The blue circles and red pentagons in
Fig. 5 are determined by U4(πππ ) and U4(ππ0), respectively.

B. Spin-ordering pattern in mixed phase

We next investigate the spin-ordering pattern in the mixed
phase. In the mixed phase, peaks of structure factors at (πππ )
and (ππ0) develop; namely, Néel order appears in each layer.
To clarify the spin structure along the interlayer direction, we
calculate a correlation function between two spins along the
interlayer direction (c axis), which is defined by

Gc(rc) := 1

N

[∑
i

〈s(r i) · s(r i + rcec)〉
]

av

. (11)

Here, ec is a unit vector in the interlayer direction and rc is
the distance between two spins. Furthermore, s(r i) denotes
the spin at position r i , which is the same as si . We adopt x =
19/64 = 0.296875, which is slightly larger than x∗ 	 0.2929.
Figure 6 shows the dependence of distance rc of Gc(rc) for L =
24 at T/J = 0.1, which is below the transition temperature.
The spin correlation along the interlayer direction is FM for an
even number of rc. This result is consistent with the expectation
based on the effective interaction between NNLs discussed in
Sec. III. In contrast, the spin correlation is nearly zero for an
odd number of rz. This means that the angle between nearest-
neighbor spin pairs along the interlayer direction is nearly
π/2. The value of spin correlation for an odd number of rc

corresponds to the angle between spins belonging to odd-
numbered and even-numbered layers. Next, we consider the x

dependence of this angle.
We calculate the x dependence of the angle θ between the

staggered magnetization vector of an odd-numbered layer mo

and that of an even-numbered layer me in the ground state.
The magnetization vectors mo, me, and angle θ are defined by

mo := 2

N

∑
r i ∈ odd-numbered

layer

eiq·r i si , (12)

me := 2

N

∑
r i ∈ even-numbered

layer

eiq·r i si , (13)

-1

-0.5

0

 0.5
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0 4 8  12  16  20  24

G
c  (

r c
)

rc

x=0.296875
T/J=0.1
L=24

FIG. 6. Correlation function between two spins along the inter-
layer direction (c axis) for L = 24 at T/J = 0.1 obtained from Monte
Carlo simulations. Dotted line is visual guide.
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FIG. 7. (Color online) (a) Dependence on concentration x of the
angle θ/π in the ground state. (b) Dependence on concentration x

of magnitude of magnetization mav := (|mo| + |me|)/2 in the ground
state.

θ :=
[

cos−1

〈
mo · me

|mo||me|
〉]

av

, (14)

where q = (ππ0). We obtain the spin configuration in the
ground state by the steepest descent method corresponding to
zero-temperature simulation. We prepare 64 random configu-
rations of ions and use the snapshot obtained from Monte Carlo
simulations at T/J = 0.1 as the initial spin configuration.
Figure 7(a) shows the x dependence of the angle θ/π in
the ground state. As the value of x increases, the value of
θ/π changes from 1 corresponding to the (πππ ) order to
0 corresponding to the (ππ0) order. Figure 7(b) shows the
x dependence of mav := (|mo| + |me|)/2 in the ground state.
The value of mav is less than 1 in the mixed phase. This means
that the spin arrangement of each layer is not perfect Néel
order. Spin directions are distributed in a fan-shape around
each magnetization axis owing to the effect of random fields
from neighboring layers. This fan-shaped distribution of spins
can be seen in the snapshot of spin directions (see Fig. 8),
which are projections onto the plane perpendicular to the
vector mo × me. Thus |mo| and |me| indicate the shape of
the spreading spin fan. Note that the absolute values of mo

and me should be the same, |mo| 	 |me|, because of the
symmetry. This fact is adopted in the mean-field analysis as
an assumption, which is discussed in Sec. V.

From these results, the schematic spin configuration in the
mixed phase can be depicted as shown in Fig. 9. Figure 9(a)
shows a schematic configuration of spin axes mo and me.
The direction of each arrow is the actual “average” magnetic
direction. In this configuration, the spins are grouped into four
sublattices according to whether they belong to an even/odd
layer and which of the two sublattices in each layer. Each
sublattice corresponds to a distinct average spin direction as
shown in Fig. 9(a). Individual spins spread in the shape of
fan around the average direction as shown in Fig. 9(b). From
these features, we refer to this bulk spin-ordering pattern in
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FIG. 8. (Color online) Snapshots of spin directions for x =
0.296875 and 0.53125 when the lattice size is L = 12 in the ground
state. Coordinates (sx,sy) define the orthogonal plane of the vector
mo × me.

the mixed phase as the “random fan-out state.” This random
fan-out state is an exotic bulk spin ordering that explains the
simultaneous appearance of (πππ ) and (ππ0) wave vectors
without any phase separation. In this model, the ferromagnetic
correlation between NNLs exists as explained in Sec. III.

C. Universality classes of phase transitions

We study the universality classes of phase transitions of
our model. In the phase diagram (see Fig. 5), there are two
types of phase boundaries. To make clear the universality
classes of each phase transition, x is set to 3/16 = 0.1875 such
that transition temperatures are separated sufficiently. For this
parameter, the intermediate phase is the (πππ ) ordered phase
(see the dotted arrow in Fig. 5).

First, we investigate the higher-temperature phase transition
from the paramagnetic phase to the (πππ ) ordered phase.
From the Harris criterion,36 we expect that the higher-
temperature phase transition belongs to the three-dimensional
Heisenberg universality class. This is because the critical
exponent α is negative in the three-dimensional Heisenberg
model, and thus the disorder should not affect the universality
class. To obtain the transition temperature and confirm the
critical exponents, we calculate the correlation function Gc(rc),

a

b

c

(a) (b)

Random Fan-Out Stateθ

θ

FIG. 9. (Color online) (a) “Average” spin directions in the spin
configuration of the random fan-out state. In each layer (ab plane),
Néel order appears. Along the interlayer direction (c axis), the angle
θ between nearest-neighbor “average” spin pairs changes from π to
0 with increasing x as shown in Fig. 7(a). The correlation between
NNLs is FM. (b) Individual spins are randomly directed around the
average direction.

which is defined by Eq. (11). The finite-size scaling relations
of d-dimensional systems are given by

Gc(L/2)

Gc(L/4)
∝ �(tL1/ν), (15)

Gc(L/2) ∝ L−d+2−η�(tL1/ν), (16)

where � and � are scaling functions and t := T − Tc.37

We determine the transition temperature Tc as the crossing
point of Gc(L/2)/Gc(L/4) using L = 20–32 data and obtain
Tc/J = 1.085(5). This transition temperature is consistent
with the one found for U4(πππ ) in Sec. IV A. The finite-size
scaling using the critical exponents of the three-dimensional
Heisenberg universality class (ν = 0.704, η = 0.025)38 are
shown in Fig. 10(a). Since the data are well fitted by
scaling relations, we conclude that the higher-temperature
phase transition belongs to the three-dimensional Heisenberg
universality class in accord with the Harris criterion.

Next, we investigate the lower-temperature phase transition
from the (πππ ) ordered phase to the mixed phase. The (πππ )
ordered phase is translationally symmetric with the O(3) spin
rotation symmetry broken down the spin rotation symmetry
U(1). In the mixed phase, both the translational symmetry and
the U(1) spin rotation symmetry are broken. Thus we expect
that the transition to the mixed phase is characterized by the
breaking of U(1) spin rotation symmetry. In other words, we
expect that the lower-temperature phase transition belongs to
the three-dimensional XY universality class. To obtain the
transition temperature and confirm the critical exponents, we
calculate the magnetization vector m(ππ0) defined by Eq. (8).
The finite-size scaling relations are given by

U4(q) = 〈|m(q)|4〉
〈|m(q)|2〉2

∝ f (tL1/ν), (17)

χ (q) = N
〈|m(q)|2〉

T
∝ L2−ηg(tL1/ν), (18)

where f and g are scaling functions, and q = (ππ0). We
determine the transition temperature as the crossing point of
U4(ππ0) using L = 20–32 data and obtain Tc/J = 0.4585(5).
The finite-size scaling using the critical exponents of the three-
dimensional XY universality class (ν = 0.672, η = 0.038)39

are shown in Fig. 10(b). Although we obtain a reasonably
good fit, it is not good enough to detect the small difference
between XY critical exponents and the other critical exponents
in a three-dimensional system. However, from the viewpoint
of spin rotation symmetry, we can deduce that the lower-
temperature phase transition belongs to the three-dimensional
XY universality class.

V. MEAN-FIELD CALCULATIONS

In this section, to obtain an intuitive understanding of the
emergence mechanism of the mixed phase, we investigate
the effect of random interlayer couplings by mean-field
calculations. For simplicity of notation, we study the system
where the intralayer interactions are FM. Under the gauge
transformation at alternating sites, this model is equivalent to
our model given by Eq. (1) in the case of no external field. By
applying the inverse of the gauge transformation to this model,
we can obtain the same results as from the original model.
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FIG. 10. (Color online) (a) Finite-size scaling plots of the higher-temperature phase transition from the paramagnetic phase to the (πππ )
ordered phase. We adopt the critical exponents of three-dimensional Heisenberg universality class (ν = 0.704, η = 0.025). (b) Finite-size
scaling plots of the lower-temperature phase transition from the (πππ ) ordered phase to the mixed phase. We adopt the critical exponents of
three-dimensional XY universality class (ν = 0.672, η = 0.038).

In this section, we define mo as the uniform magnetization
vector of an odd-numbered layer and me as that of an
even-numbered layer. The magnitudes of these magnetization
vectors are assumed to be the same (m := |mo| = |me|), which
is a reasonable assumption as stated in Sec. IV B. Here,
let θ be the angle between mo and me. In this mean-field
calculation, to consider a simpler explanation, we focus on one
odd-numbered layer with molecular fields from neighboring
layers. This is because the circumstances of odd-numbered
layer and even-numbered layer are the same, and thus it is
enough to investigate either layer. The molecular field from
neighboring layers at the ith site in an odd-numbered layer is
given by

hi = −2J ′σime, (19)

where J ′ (>0) denotes the nearest-neighbor interaction along
the interlayer direction, and σi denotes the sign of interaction
with neighboring interlayer sites. Note that we have replaced
the spins on the neighboring layers with the average spins me

and neglected the fluctuation, and the contributions of upper
and lower layers are assumed to be the same. Here, we separate
σi into the spatial average σ and the deviation σi from σ

depending on the site (σi = σ + σi). The random average
of deviation [σi]av = 0 is assumed. Accordingly, hi can be
separated into

hi = h
‖ + h‖

i + h⊥
i , (20)

where

h
‖

:= −2J ′m cos θσ e‖
e, (21)

h‖
i := −2J ′m cos θσie‖

e, (22)

h⊥
i := −2J ′m sin θσie⊥

e . (23)

The symbols e‖
e and e⊥

e , respectively, are unit vectors that are
parallel and perpendicular direction of me to mo. Here, we

did not include the uniform transverse component h
⊥

in the

definition of hi , because h
⊥

does not contribute to the free
energy.

The excess free energy of a one-layer system from the
effects of molecular fields hi is given by

δF (θ ) = −1

2

∑
i

∑
j

thiχij hj −
∑

i

h
‖ · mi , (24)

where i and j denote site indexes on one layer, and the
susceptibility tensor is defined as

χij = ∂mi

∂hj

, (25)

and mi is the magnetization vector at the ith site. The random
average of the product of deviations is expressed as

[σiσj ]av = (1 − σ 2)δij =: σ 2δij . (26)

Hence, we obtain the free energy per site by taking the random
average as the following expression:

δf := [δF (θ )]av/N

= − 1

2N

{∑
i

∑
j

χ
‖
ij (h

‖
)2 +

∑
i

χ
‖
ii[(h‖

i )2]av

+
∑

i

χ⊥
ii [(h⊥

i )2]av

}
− 1

N

∑
i

h
‖ · mi

= 2J ′m2{J ′[−χ
‖
uniformσ 2

− (χ‖
local − χ⊥

local)σ 2] cos2 θ

+ σ cos θ − J ′χ⊥
localσ 2}, (27)

where N is the number of sites in one layer. The symbols
χ

‖
uniform, χ

‖
local, and χ⊥

local represent the uniform longitudinal
susceptibility, the local longitudinal susceptibility, and the lo-
cal transverse susceptibility, respectively: χ

‖
uniform := ∑

j χ
‖
ij ,

χ
‖
local := χ

‖
ii , and χ⊥

local := χ⊥
ii for all i. In the mean-field

approximation, the magnitude of magnetization m in the field
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h along the magnetization vector is given by the Langevin
function:

L(βh) = coth(βh) − 1

βh
= m. (28)

The molecular field from the same layer is given by

hMF = 4Jm. (29)

Thus the susceptibilities obtained by mean-field approxima-
tion are calculated by using

χ
‖
uniform = χ

‖
local

1 − (hMF/m)χ‖
local

, (30)

χ
‖
local = ∂L(βh)

∂h

∣∣∣∣
h=hMF

, (31)

χ⊥
local = m

hMF
. (32)

We calculate the angle θ that minimizes the excess free energy
expressed by Eq. (27). The magnitude of the magnetization m

is obtained from the self-consistent equation:

m = L(βhMF). (33)

The phase diagram of temperature T/J versus B ion con-
centration x for J = J ′ is shown in Fig. 11(a). In this phase
diagram, there is a phase corresponding to the mixed phase
where mo and me are not parallel or antiparallel to each other.
We use the molecular field from the same layer only when
we calculate the magnitude of magnetization m. Then, in
the mean-field calculations, the transition temperatures of the
higher-temperature transition are clearly the same regardless
of x. To examine the properties of this phase, we calculate
the x dependence of θ/π in the ground state [see Fig. 11(b)].
As the value of x increases, the value of θ/π changes from
1 corresponding to the (πππ ) order to 0 corresponding to
the (ππ0) order. Since the phase diagram and the behavior
of θ obtained from mean-field calculations are qualitatively
consistent with the Monte Carlo simulation results, we expect
that the emergence mechanism of the mixed phase is explained
by mean-field calculations.

Next, we consider the stabilization mechanism of the mixed
phase. From Eq. (27), when χ⊥

local > χ
‖
local and (h⊥)2 > 0,

the excess free energy is minimized when θ/π �= 1 or 0. Thus,
we conclude that the mixed phase emerges by the following
mechanism. (i) In the presence of finite magnetization, spins
are more susceptible to transverse field than longitudinal field,
which is physically natural. (ii) Transverse fields from neigh-
boring layers exist as random fields h⊥, which come from
the fluctuation of random interactions σ 2. This condition is
realized by the existence of random interlayer couplings. Thus
we clarify that the mixed ordering, in which the magnetization
vectors of neighboring layers are not parallel or antiparallel, is
induced by random interlayer coupling.

VI. DISCUSSION

In this section, we examine whether the random fan-out
state is robust with respect to the decision rules of interactions
and anisotropy. We also show the results of Rietveld analysis of
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T
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FIG. 11. (Color online) (a) Phase diagram of temperature T/J

vs B ion concentration x for J = J ′ obtained from mean-field
calculations. (b) Dependence on concentration x of angle θ/π

between mo and me in the ground state. The points denote the
simulation results for L = 12 and 24, which are the same results
shown in Fig. 7(a).

Sr(Fe0.7Mn0.3)O2 using the spin configuration obtained from
Monte Carlo simulations at low temperature.

A. Robustness of random fan-out state

In this section, we discuss the relationship between decision
rules of interactions and the spin-ordering pattern. In general,
the spatial average of interlayer random interactions J and its
fluctuation J corresponding to the random fields depend on
the signs and absolute values of interactions:

J = JAA(1 − x)2 + 2JABx(1 − x) + JBBx2, (34)

J =
√

J 2
AA(1 − x)2 + 2J 2

ABx(1 − x) + J 2
BBx2 − J

2
, (35)

where JAA, JAB, and JBB denote the interactions between A-
A, A-B, and B-B along the interlayer direction, respectively.
Then, the spatial average of effective interaction between the
NNLs, J nnl, is given by

J nnl ∝ −J 2
AA(1 − x)3 − 2JAAJABx(1 − x)2

− J 2
ABx(1 − x) − 2JABJBBx2(1 − x) − J 2

BBx3. (36)

Here, we assume that JAA is always AF and the absolute values
of interactions are the same or zero. Then, the four rules in
Table III are all possible decision rules of interactions where
FM and AF interactions exist and J nnl < 0 regardless of x.
Note that rule 1 is adopted in the previous sections. Under
these rules and using Monte Carlo simulations and mean-
field calculations, we find the appearance of the mixed phase,
where the spin-ordering pattern is the random fan-out state.
Furthermore, we also find that (πππ ) and (ππ0) magnetic
peaks develop at the same temperature and the angle between
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TABLE III. Decision rules of interactions along the interlayer direction. Rule 1 is adopted in Secs. III, IV, and V.

JAA JAB JBB J/J J/J J nnl/J ∝ x∗

Rule 1 +J (AF) −J (FM) −J (FM) 2x2 − 4x + 1 (1 − J
2
)

1
2 4x(1 − x)2 − 1 (2 − √

2)/2

Rule 2 +J (AF) −J (FM) 0 3x2 − 4x + 1 (1 − x2 − J
2
)

1
2 3x3 − 6x2 + 4x − 1 1/3

Rule 3 +J (AF) +J (AF) −J (FM) −2x2 + 1 (1 − J
2
)

1
2 −4x3 + 4x2 − 1 1/

√
2

Rule 4 +J (AF) 0 −J (FM) −2x + 1 (1 − 2x + 2x2 − J
2
)

1
2 −3x2 + 3x − 1 1/2

the staggered magnetization vectors of neighboring layers is
π/2 at x = x∗ for all rules shown in Table III.

Next, we consider the effect of easy-plane anisotropy. We
study the finite-temperature properties of the XY spin version
of our model by using Monte Carlo simulations. Using rule 1 in
Table III, we find the mixed phase where spin-ordering pattern
is the random fan-out state. Thus we conclude that the random
fan-out state is not prohibited by the effects of easy-plane
anisotropy. In contrast, the random fan-out state is prohibited
by the effects of easy-axis anisotropy because the energy is
raised when mo and me are not parallel or antiparallel to each
other.

From these discussions, the random fan-out state is robust
with respect to the details of our model, which satisfies the
following conditions: (i) the random FM-AF interactions exist
along the interlayer direction, (ii) the effective FM interaction
between NNLs exists regardless of x, and (iii) there is no
easy-axis anisotropy.

B. Relation with experiments

We discuss the spin structure in the low-temperature state of
Sr(Fe0.7Mn0.3)O2. In neutron diffraction measurements, mag-
netic peaks at (πππ ) and (ππ0) develop at low temperatures
as stated in Sec. II. This result can be explained by two possible
scenarios—phase separation or a bulk spin structure that is the
random fan-out state. In the former case, from the ratio of
intensities at (πππ ) and (ππ0), we can determine the volume
fraction of each phase. In the latter case, the angle θ between
the staggered magnetization vectors of neighboring layers can
be estimated from the ratio of intensities at (πππ ) and (ππ0).
Therefore, an important contrast between the two scenarios lies
in the ordering temperature. In the phase separation scenario,
ordering of the two magnetic phases should occur at different
temperatures because the absolute values of each interaction
of Sr(Fe0.7Mn0.3)O2 should be different. On the other hand,
in the bulk spin scenario, even when the absolute values of
each interaction are different, there should be a cross point of
the phase boundary between the (πππ ) and (ππ0) orders
in the phase diagram. Based on experimental data, Fig. 4
shows that the magnetic peaks at (πππ ) and (ππ0) lose their
intensities at nearly the same temperature, which is a strong
indication that the low-temperature state of Sr(Fe0.7Mn0.3)O2

is likely to be the random fan-out state. At the cross point,
the angle θ between the staggered magnetization vectors of
neighboring layers should be nearly π/2 and the two magnetic
peaks should disappear at nearly the same temperature. Thus,
if the angle θ obtained by Rietveld structural refinement is
nearly π/2, the simultaneous emergence of the two types
of wave vectors can be naturally explained by the bulk spin

structure scenario. To determine the angle θ in the random
fan-out state, we perform Rietveld structural refinement of
Sr(Fe0.7Mn0.3)O2 using the random fan-out state. The results
of Rietveld structural refinement of the neutron diffraction data
and full details of the refined parameters are shown in Fig. 12
and Table IV, respectively. The neutron diffraction pattern is
well fitted by using the random fan-out state with θ = 84◦ in
Fig. 12. Thus we conclude that it is highly possible that the
mixed ordering in Sr(Fe0.7Mn0.3)O2 is due to the bulk spin
structure, which we call the random fan-out state.

Since the spin-ordering pattern in Sr(Fe0.7Mn0.3)O2 at
low temperature is explained by our model, we expect that
the x − T phase diagram of Sr(Fe1−xMnx)O2 will agree
with the theoretical phase diagram (see Fig. 5) qualitatively.
Indeed, it appears that the transition temperature from the
paramagnetic phase to the (πππ ) ordered phase TN decreases
with increasing x when x = 0.0, 0.1, and 0.2 as stated in
Sec. II. This behavior of TN is consistent with the theoretical
phase diagram (see Fig. 5). If this theoretical phase diagram is
valid for Sr(Fe1−xMnx)O2, it will be observed that the (ππ0)
peaks in Sr(Fe1−xMnx)O2 for x = 0.1 and 0.2 develop at
low temperatures. In future work, we will perform neutron
diffraction measurements on Sr(Fe1−xMnx)O2 for several x

in addition to x = 0.3 at low temperature. Moreover, we
will study the relationship with the theoretical interpretation
discussed in this paper.
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FIG. 12. (Color online) Observed (crosses), calculated (lines),
and difference plots from the structural refinements of powder neutron
diffraction data for Sr(Fe0.7Mn0.3)O2 at 10 K. The calculated data
(lines) denote the intensity of the random fan-out state. The upper
and lower ticks represent the positions of the calculated chemical and
magnetic reflections, respectively.
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TABLE IV. Rietveld refinement for Sr(Fe0.7Mn0.3)O2. All the
refinements were performed by using the P 4/mmm space group
with Sr on 1d (1/2,1/2,1/2), (Fe0.7Mn0.3) on 1a (0, 0, 0), and O on 2f
(1/2, 0, 0).

10 K RTa

a (Å) 4.0014(1) 4.0055(1)
c (Å) 3.4406(1) 3.4553(1)
B in Sr (Å) 1.31(4) 0.42(7)
B in (Fe0.7Mn0.3) (Å) 1.08(4) 0.21(6)
B in O (Å) 1.51(5) 0.91(5)
Moment (μB) 2.0 0
Angle θ (degrees) 84 0
Rwp (%) 15.6 9.11
Rp (%) 15.2 7.01
χ 2 3.85 3.77

aThe refinement for RT is from Ref. 31.

VII. SUMMARY AND CONCLUSION

This paper is summarized as follows. In Sec. II, we have
reported the neutron diffraction pattern of Sr(Fe0.7Mn0.3)O2.
We have observed that magnetic peaks corresponding to
(πππ ) and (ππ0) wave vectors emerge simultaneously at
TN = 240 K.

In Sec. III, to investigate whether there is a bulk spin struc-
ture that explains the simultaneous appearance of (πππ ) and
(ππ0) wave vectors, we have introduced the classical Heisen-
berg model with site-random interlayer couplings on the cubic
lattice as a simplified effective model of Sr(Fe1−xMnx)O2.
This model consists of two types of magnetic ions, labeled A
and B, that correspond to Fe and Mn ions. The interactions in a
plane have been assumed to be uniform antiferromagnetic. The
interactions along the interlayer direction between A ions have
been assumed to be antiferromagnetic, and other interactions
have been assumed to be ferromagnetic. In this decision
rule of interactions, the ferromagnetic effective interaction
between next-nearest layers along the interlayer direction
exists regardless of the B ion concentration x. This is a
characteristic feature of site-random interlayer couplings.

In Sec. IV, by performing Monte Carlo simulations, we have
shown the existence of a bulk spin structure that explains the
simultaneous appearance of (πππ ) and (ππ0) wave vectors
without any phase separation. In this spin structure, called
the random fan-out state, there are three features: (i) the
arrangement of spins in each layers is Néel order, (ii) the
correlation between next-nearest layers is ferromagnetic, and
(iii) the magnetization vector in odd-numbered layers and that
in even-numbered layers are not parallel or antiparallel to each
other. As the value of x increases, the angle between these
ordering vectors changes from π corresponding to the (πππ )
order to 0 corresponding to the (ππ0) order. Moreover, we
have constructed the phase diagram of temperature versus B
ion concentration. In the phase diagram, the successive phase
transitions have been observed. We have also found the critical
exponents of each phase transition.

In Sec. V, to clarify the emergence mechanism of the
mixed phase, we have investigated the effects of random
interlayer couplings by using mean-field calculations. It is
important for the existence of a mixed phase that spins be more

susceptible to transverse field than longitudinal field. Since the
transverse component of the random field from neighboring
layers becomes large in the mixed phase, the magnetization
vectors of neighboring layers are not parallel or antiparallel.

In Sec. VI, we have discussed whether the random fan-out
state is robust with respect to the details of the model. We
have clarified that the random fan-out state becomes stable
when random ferromagnetic-antiferromagnetic interactions
exist and the ferromagnetic effective interaction between next-
nearest layers exists regardless of x. Furthermore, we have
determined that the random fan-out state is not prohibited by
the effects of easy-plane anisotropy. We have also performed
Rietveld structural refinement of Sr(Fe0.7Mn0.3)O2. The neu-
tron diffraction pattern is well fitted by using the random
fan-out state. Thus we conclude that the random fan-out state
is a reasonable spin-ordering pattern of Sr(Fe0.7Mn0.3)O2 at
low temperature.

In this research, we have found a bulk spin structure
called the random fan-out state that explains the simultaneous
appearance of (πππ ) and (ππ0) wave vectors without any
phase separation. The model has been introduced as a sim-
plified effective model of Sr(Fe1−xMnx)O2, and the neutron
diffraction pattern of Sr(Fe0.7Mn0.3)O2 is well fitted by using
this spin structure. In our model, we have introduced a decision
rule of interactions that induces disorder of interaction along
only the interlayer direction. Thus the spatial distribution of
frustration in this model is different from that in systems having
an isotropic crystal structure. Indeed, in a plane, since frustra-
tion does not exist, Néel order appears. In contrast, random
ferromagnetic-antiferromagnetic interactions exist along the
interlayer direction. Thus the effect of frustration appears
only between layers. At low temperature, a spin structure
appears in which the angles between the neighboring layer
magnetization axes are the same. This structure is reminiscent
of the spiral spin structure induced by the effects of frustration.
However, in our site-random model, the interactions along
the interlayer direction are correlated, and ferromagnetic
correlation between next-nearest layers appears. Thus a spiral
spin structure characterized by a single wave vector does not
appear, but an unusual spin-ordering pattern expressed by two
wave vectors appears. Furthermore, in our model, the spin-fan
structure exists in the ground state without an external field. In
frustrated magnetic systems, the well-known spin-fan structure
is realized by applying an external field along the direction
parallel with the spiral plane.40–42 However, since the spin-fan
structure of our model arises from an intrinsic effect of site-
random couplings, the emergence mechanism of the spin-fan
structure is different from that of the conventional one.40–42

In our model, by the fluctuation of random interactions, the
random fields from neighboring layers exist depending on the
site, and thus spin directions have a fan-shaped distribution
around each magnetization axis.

The random fan-out state is a novel type of spin-ordering
pattern that comes from site-random interlayer couplings.
Thus, it is important to investigate the response to magnetic
field or other external fields and spin-wave excitation of
this spin structure. Recently, many exotic physical properties
induced by competition and harmonization between spin
structure and other degrees of freedom have been reported,43–48

and thus the search for new physical properties hidden in
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the random fan-out state is extremely important from the
perspective of materials science.

In statistical physics, the phase transition and characteristic
spin structure in anisotropic random systems will also be im-
portant areas of investigation. Although dynamical properties
in random-spin systems have been studied for a long time, the
relation between the dynamics and spatial distribution of dis-
order has not been established yet to the best of our knowledge,
and thus remains a challenging problem to be investigated.
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