
PHYSICAL REVIEW B 84, 214406 (2011)

Ferromagnetic frustrated spin systems on the square lattice: Schwinger boson study
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We study a ferromagnetic Heisenberg spin system on the square lattice, with nearest-neighbor interaction J1

frustrated by second, J2, and third, J3, neighbor antiferromagnetic interactions, using a mean-field theory for the
Schwinger boson representation of spins. For J3 = 0 we find that the boundary between the ferromagnetic and
the collinear classical phases shifts to smaller values of J2 when quantum fluctuations are included. Along the
line J2/|J1| = 1 the boundaries between the collinear and incommensurate regions are strongly shifted to larger
values with respect to the classical case. We do not find clear evidence for spin-gapped phases within the present
approximation.
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I. INTRODUCTION

Most current works on frustrated magnetic systems gen-
erally deal with competing antiferromagnetic interactions.
Recently, some frustrated systems have been discovered where
the basic interaction is ferromagnetic. In particular, some
vanadate and cuprate crystals, such as (CuCl)LaNb2O7,1

Pb2VO(PO4)2,2–6 SrZnVO(PO4)2,6–8 BaCdVO(PO4)2,3,7,9 and
PbZnVO(PO4)2,10 can be described by a two-dimensional
Heisenberg model of spin S = 1/2 with a ferromag-
netic first-neighbor interaction and antiferromagnetic further-
neighbor interactions. Other possible relevant materials
are (CuBr)LaNb2O7,11 which shows collinear order, and
(CuBr)Sr2Nb3O10,12 which shows a plateau at M = 1/3 in
the magnetization curve. As one-dimensional counterparts,
materials like LiCuVO4 (Refs. 13 and 14) and Li2ZrCuO4

(Ref. 15) can be modeled by ferromagnetic frustrated spin
S = 1/2 Heisenberg chains.

In the present work we consider such a two-dimensional
Heisenberg model on the square lattice (see Fig. 1) with
ferromagnetic nearest-neighbor interactions J1 < 0, frustrated
by next-to-nearest-neighbor antiferromagnetic interactions
J2 > 0 and also third-neighbor antiferromagnetic interactions
J3 > 0, given by the Hamiltonian

H = J1

∑
〈i,j〉1

�Si · �Sj + J2

∑
〈i,j〉2

�Si · �Sj + J3

∑
〈i,j〉3

�Si · �Sj , (1.1)

where �Si is the spin S operator at site i and the range of
the interacting neighbor sites i,j is indicated by brackets
〈i,j 〉r with r = 1,2,3. Closely related work has been done
for antiferromagnetic J1.16–18

The classical S → ∞ counterpart of these interactions is
described by the scalar product of commuting vectors, where
the lowest-energy configuration is elementarily obtained. At
any value of the exchange constants, it is described by a
planar arrangement of vectors rotated by relative angles ϑx

in the x direction and ϑy in the y direction, giving rise to the
classical phase diagram in Fig. 2 composed of four different
ordered phases:19,20 (i) F, a ferromagnetic phase, (ϑx,ϑy) =
(0,0); (ii) CAF, a collinear antiferromagnetic phase showing

antiferromagnetic order in one direction of the lattice and
ferromagnetic order in the other one, (ϑx,ϑy) = (0,π ) or (π,0);
(iii) CH, a collinear helicoidal phase showing helicoidal order
in one direction of the lattice and ferromagnetic order in the
other one, (ϑx,ϑy) = (0,q) or (q,0) with cos(q) = −J1−2J2

4J3
,

and (iv) H, a helicoidal phase composed by helicoidal order
in both directions of the lattice, (ϑx,ϑy) = (Q,Q) with
cos(Q) = −J1

2(J2+2J3) .
Opposite to the classical limit, the quantum case S = 1/2

has been recently analyzed using exact diagonalization (ED)
techniques to explore the complete phase diagram in Ref. 21,
while more detailed features of the J3 = 0 line were studied
by ED in Refs. 22–24 (and also by coupled-cluster methods in
Ref. 24). However, state-of-the-art ED computations can reach
system sizes of only up to 40 sites. Moreover, discrepancies
pointed out in Ref. 24 with earlier results call for investigating
these systems with complementary techniques.

Motivated by the above discussion, we are interested in
the effect of quantum fluctuations as introduced by large S

methods. In a first step we have computed linear spin-wave
corrections to the classical order, as derived from the Holstein-
Primakov bosonic representation for spins. While this method
provides significant shifts for the classical antiferromagnetic
J1-J2-J3 model,16 it gives very small corrections in the
present ferromagnetic case (not reported here). However,
it helped us to localize two particular areas in the phase
diagram that seem to be clearly modified by the quantum
fluctuations. These are (i) the region of the classical phase
transition between the ferromagnetic and collinear antiferro-
magnetic phases located at J3 = 0 and J2 ≈ 0.5|J1|, where
ED studies show discrepancies,24 and (ii) the region J2 ≈
|J1|, J3 > 0, where the appearance of a gapped phase was
reported.21

In the present work we analyze these two regions by means
of the Schwinger boson (SB) representation for spins. This
method does not start from any classical order (in contrast
to linear spin-wave theory) and, treated at mean-field level
(SBMFT), allows us to study quantum fluctuations in fairly
large systems. Moreover, it has been tested to give quite
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FIG. 1. (Color online) Square lattice with J1 < 0 ferromagnetic
first-neighbor couplings, J2 > 0 antiferromagnetic second-neighbor
couplings, and J3 > 0 antiferromagnetic third-neighbor couplings.

accurate results even for S = 1/2, by comparison with ED (see,
e.g., Refs. 25 and 26). Within SB theory, long-range order is
characterized by boson condensation. We classify the different
ordered phases according to the condensate momentum and
the evaluation of spin-correlation functions, finding important
shifts in the classical phase boundaries. A schematic phase
diagram with our results is shown in Fig. 3.

This paper is organized as follows: in Sec. II we present the
SBMFT methods, in Sec. III we analyze the model without J3

interactions, and in Sec. IV we analyze the J2 = |J1| line with
J3 interactions. Section V is devoted to the conclusions.

II. SCHWINGER BOSON MEAN-FIELD THEORY

The Schwinger boson approach allows us to incorporate
quantum fluctuations while keeping the rotational invariance
of the Heisenberg model (see, for instance, Ref. 27). In this

FIG. 2. Classical phase diagram. F, ferromagnetic phase; CAF,
collinear antiferromagnetic phase; CH, collinear helicoidal phase; H,
helicoidal phase. A vertical axis at J2 = |J1| is drawn for comparison
with Fig. 3.

FIG. 3. Corrections to the classical phase diagram computed from
Schwinger boson mean-field fluctuations. On the line J3 = 0 we find
the CAF phase for J2 > J F-CAF

2 = 0.41|J1|; for J2 > J ∞
2 = 0.58|J1|

self-consistent solutions are obtained for systems up to 104 sites,
while smaller system sizes are reached as J2 approaches J F-CAF

2 (open
crosses). On the line J2 = |J1| phase boundaries are strongly shifted
to larger values with respect to the classical case.

method the spin operators are written in terms of two species
of bosons, b↑ and b↓, via the relations

Sx
i = 1

2
(b†i,↓bi,↑ + b

†
i,↑bi,↓),

S
y

i = i

2
(b†i,↓bi,↑ − b

†
i,↑bi,↓), (2.1)

Sz
i = 1

2
(b†i,↑bi,↑ − b

†
i,↓bi,↓).

In order to represent spin S properly, one must locally fix the
bosonic occupation to 2S + 1 states by the constraints

b
†
i,↑bi,↑ + b

†
i,↓bi,↓ = 2S (2.2)

at each site i.
The Heisenberg Hamiltonian is then a quartic form in

bosons but can be conveniently written as quadratic in bond
operators, namely, quadratic bosonic operators including one
boson from each of the interacting bond sites. Such a factoriza-
tion is not unique, and different schemes are adopted in case of
ferromagnetic28 or antiferromagnetic frustrated29 interactions.
A mixed scheme25,30 has been shown to be better adapted to
include both antiferromagnetic and ferromagnetic short-range
correlations. It deals with more mean-field parameters but
provides quantitatively better results and is our choice to study
the present ferromagnetic frustrated system.

Bond operators A and B are defined as

Ai,j = 1
2 (bi,↑bj,↓ − bi,↓bj,↑),

(2.3)
Bi,j = 1

2 (b†i,↑bj,↑ + b
†
i,↓bj,↓).

Notice that

A
†
i,jAi,j = 1

4
(�Si − �Sj )2 − S

2
,

(2.4)

: B
†
i,jBi,j := 1

4
(�Si + �Sj )2 − S

2
,
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where : O : means the bosonic normal order of an operator
O, relate nonvanishing A to antiferromagnetic structures
and nonvanishing B to ferromagnetic structures. Moreover,
expanding the squares yields representations for the SU(2)
invariant terms �Si · �Sj . The Hamiltonian (1.1) can then be
written as

H =
∑

r=1,2,3

Jr

∑
〈i,j〉r

(: B
†
i,jBi,j : −A

†
i,jAi,j ) + Hλ, (2.5)

where the term

Hλ =
∑

i

λi(b
†
i,↑bi,↑ + b

†
i,↓bi,↓ − 2S) (2.6)

forces the local constraints, with λi being the Lagrange
multipliers.

At mean-field level, we perform a Hartree-Fock decoupling,
introducing a uniform Lagrange multiplier λ and translation-
ally invariant parameters α and β for the expectation values
of each type of bond operator present in the Hamiltonian
(as mentioned above, this decoupling is not unique). As
is known,25,28–30 the most severe approximation here is the
violation of the local boson number constraint in Eq. (2.2),
which is only respected on average. We are thus dealing
with the Lagrange multiplier λ and six α’s and six β’s as
independent variational parameters, with the latter set as
expectation values of bond operators

α1 = 〈A�r,�r+x̆〉,α̃1 = 〈A�r,�r+y̆〉,
α2 = 〈A�r,�r+x̆+y̆〉,α̃2 = 〈A�r,�r+x̆−y̆〉, (2.7)

α3 = 〈A�r,�r+2x̆〉,α̃3 = 〈A�r,�r+2y̆〉,
with similar expressions relating the β’s to 〈Bi,j 〉 expectation
values. For compact notation we write αi,j = 〈Ai,j 〉, βi,j =
〈Bi,j 〉, using site indices to indicate the range of the bond
〈i,j 〉r (r = 1,2,3) as well as the possible orientations along
the lattice described in Eq. (2.7). The mean-field Hamiltonian
then reads

HMF =
∑

r=1,2,3

Jr

∑
〈i,j〉r

(β∗
i,jBi,j + B

†
i,j βi,j − α∗

i,jAi,j − A
†
i,j αi,j )

−
∑

r=1,2,3

Jr

∑
〈i,j〉r

(|βi,j |2 − |αi,j |2) + Hλ. (2.8)

After a Fourier transform one gets momentum modes with
quadratic terms that are not particle number conserving. These
are diagonalized by a standard Bogoliubov transformation, de-
pending on the variational parameters and rendering decoupled
modes with a simple particle-number-conserving, positive,
quadratic, Hamiltonian

HMF =
∑

�k
[ω(�k)η†

�kη�k] + const, (2.9)

where

η�k =
(

d�k↑
d
†
−�k↓

)
(2.10)

contains the Bogoliubov bosonic operators, with dispersion
relation ω(�k) and where const stands for nonoperator terms.

Finally, we compute self-consistently the mean-field
parameters by minimizing the ground-state (Bogoliubov

-1 -0.5  0  0.5  1
kx/π

-1

-0.5

 0

 0.5

 1

 k
y

/π
 

 0
 0.2
 0.4
 0.6
 0.8
 1
 1.2
 1.4

FIG. 4. (Color online) Dispersion relation for J2 = 0.75|J1| and
J3 = 0 and for a system of size N = 100×100 (in arbitrary scale,
with darker zones indicating lower energy). The bosons condense at
points kx = ±π/2, ky = 0, which correspond to a CAF phase (±π,0).

vacuum) energy with respect to λ and equating αi,j and βi,j

with the ground-state expectation values of the corresponding
operators. Such a computation is done numerically on finite
lattices of N sites with periodic boundary conditions, allowing
the study of large system sizes, up to 104 sites in the present
work.

We must stress that our procedure is not suited
for the ferromagnetic phase, where parameters αi,j vanish and
the Hamiltonian in Eq. (2.8) is already particle conserving:
the Schwinger boson vacuum simply violates the constraint in
Eq. (2.2), even on average. We use then the exact energy of a
fully polarized (ferromagnetic) state, EF = 2NS2(J1 + J2 +
J3), for comparison with SBMFT energies or extrapolations
thereof to determine the ferromagnetic phase boundaries.

Once the self-consistent equations are solved, the tools
above allow us to compute any kind of observable on the
ground state. In the present work we have set S = 1/2
and studied four quantities: the dispersion relation, its gap,
the modulated magnetization M2

n (defined below), and the
spin-correlation function.

When the dispersion relation shows a zero mode, Bose
condensation indicates an ordered phase, in the sense that
the spin-structure factor shows a maximum at a pitch angle
�θ = (θx,θy) commensurate with the finite lattice, related to the
position of the zero mode of the dispersion relation �kmin by
�θ = 2�kmin.31 Notice that Bose condensation depends on boson
density, related in the SB approach to the spin S representation
by the constraint in Eq. (2.2). As we study numerically the
lowest-density case, S = 1/2, such ordered phases will also
be present for larger S. For illustration purposes, in Fig. 4 we
show the dispersion relation at coupling values J2 = 0.75|J1|
and J3 = 0 (well inside the CAF classical phase).

In the case of long-range order, the vanishing of the gap in
the thermodynamical limit is usually recovered after a finite-
size scaling analysis. Another issue arising at finite sizes is that
related to commensurability. As the gap is obtained through the
value of the minima of the dispersion relation on the reciprocal
lattice, in the case that a thermodynamical minimum does not
fit with the available momenta values at finite sizes, numerical
difficulties may show up (see Sec. IV).
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Regarding the other observables, the spin correlations
〈�Si · �Sj 〉 for any pair of sites i,j are computed on the ground
state from the bosonic representation in Eq. (2.1) and the
Bogoliubov transformation obtained numerically. We measure
modulated magnetizations by considering the �θ-dependent
susceptibility M2

n(�θ ), defined as the following average over
the lattice:

M2
n(�θ ) = 1

N (N + 2)

∑
i,j

〈 �Si · �Sj 〉ei �θ ·( �Ri− �Rj ), (2.11)

where �θ = (θx,θy) and �Ri is the position of spin �Si with
respect to some reference site. It amounts to an improved32

normalization of the spin-structure factor, which fits better
small systems and tends to moderate the weight of strong
on-site terms. It is straightforwardly computed from the spin
correlations.

III. NEAREST-NEIGHBOR FRUSTRATION J2

In this section we analyze the case J3 = 0, which is a system
with ferromagnetic first-neighbor couplings and only second-
neighbor antiferromagnetic interactions.

The classical phases on this line, shown in Fig. 2 , are F
and CAF, separated by a critical value J2

class = 0.5|J1|. The
quantum case was studied for S = 1/2: based on ED of the
model and coupled-cluster methods, Richter et al.24 predict
a simple shift of the critical coupling to lowerJ2 = 0.39|J1|,
while Shannon et al.22,23 estimate by ED a CAF phase only for
larger J2 � 0.6|J1| and predict the presence of a quadrupolar
(bond-nematic) phase in the critical area, 0.4 � J2/|J1| � 0.6.

We have studied systems of sizes ranging from N =
4 × 8 (finding excellent agreement with ED, for ground-state
energies) up to N = 100×100, using SBMFT.

As mentioned in Sec. II, our procedure does not provide
a self-consistent solution for the F phase. We first analyze
the values of J2 above which SBMFT solutions are obtained.
These values turn out to be sensitively dependent on the system
size. Above J2 ≈ 0.56|J1| we reach solutions for all explored
systems, up to 100 × 100 sites; however, approaching the F
phase we get oscillatory behavior with the system trapped in
metastable configurations, and the tractable sizes reduce to as
low as 20 × 20 at J2 ≈ 0.4|J1|. The size dependence of the
lowest couplings J2(N ) tractable within SBMFT is roughly
linear in 1/N , as shown in Fig. 5, suggesting an infinite-
size extrapolation to J2

∞ = 0.58 |J1|. Thus we estimate that,
investing enough CPU time, one can treat systems of arbitrary
size only when J2 > J2

∞.
For J2 above J∞

2 the observables computed from the
SBMFT self-consistent solutions correspond to a CAF phase,
showing staggered magnetization along one of the lattice
axes. An example of the dispersion relation, for J2 = 0.75 |J1|
and J3 = 0 in a large system of size N = 100 × 100, is the
one shown in Fig. 4. The boson modes become gapless at
momentum points �k = (±π/2,0), showing that the bosons do
condense. The condensation momenta correspond to ordering
angles �θ = (±π,0). The same pattern [alternatively with �θ =
(0, ± π )] is found for J2 > J2(N ), N = 20,40,60,80,100.

The dispersion relation gap goes clearly to zero for
N → ∞, as shown in Fig. 6 (size scaling for J2 = |J1| is

FIG. 5. (Color online) Evolution of the lowest couplings J2(N )
tractable within SBMFT along the line J3 = 0 with the inverse of the
system size. Tentative linear extrapolation realized for sizes N × N

with N = 52,56,60,68,80,100.

shown in the inset). Correspondingly, the spin-correlation
function exhibits long-range order: when �θ = (±π,0), we
observe antiferromagnetic correlations in the x direction and
ferromagnetic correlations in the y direction. For example,
in Fig. 7 we show the correlations for J2 = 0.75|J1|. The
corresponding modulated magnetization has a maximum at
(±π,0). Then M2

n(π,0), shown in Fig. 8, measures the
staggered magnetization along the x direction. In general,
M2

n(π,0) and M2
n(0,π ) can be used as order parameters for

the CAF phase.
We now discuss the region 0.4 � J2/|J1| � 0.58, which

is under controversy in the literature, where the largest sizes
studied do not provide a self-consistent solution. Notice in
Figs. 6 and 8 that in all converged solutions there is no signal
of an exotic phase but clear indications of the CAF phase.
It turns out that the finite-size available solutions scale in
this range to the same CAF phase as in the range J2

∞ <

J2 < |J1|.
The energy per site obtained from SBMFT self-consistent

solutions is very stable against system size and shows a
neat linear dependence with J2, including the region 0.4 �
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FIG. 6. (Color online) Energy gaps (minima of the dispersion
relation) for systems of different size in the CAF phase. The
extrapolated value of the gap vanishes, confirming collinear antiferro-
magnetic order. The inset shows the gap extrapolation for J2 = |J1|.
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FIG. 7. (Color online) Spin-correlation function for a system of
size N = 100 × 100 at J2 = 0.75, |J1| and J3 = 0 (corresponding to
the dispersion in Fig. 4) along both lattice axes.

J2/|J1| � 0.58 (see Fig. 9). We conclude that the lack of
convergence of SBMFT self-consistent equations at large
system size is an artifact of our present approach, presumably
due to the proximity of a ferromagnetic phase, and that
solutions obtained for small systems are good estimates of
the CAF phase in the region for 0.4 � J2/|J1| < 0.58. Then,
following the criteria in Ref. 24, we set the F-CAF phase
boundary at the intersection point between the extrapolated
CAF energy and the exact energy per site of a fully po-
larized state, EF /N = 2S2(J1 + J2) (here with S = 1/2).
Such a point J2

F-CAF(N ) appears, depending on size N , at
a quite precise value of J2/|J1| between 0.402 and 0.4078,
as shown in Fig. 10. The roughly linear dependence in
1/N suggests an extrapolated transition point at J2

F-CAF =
0.41 |J1|.

From the results in this section we conclude that, on the
J3 = 0 line, the present SBMFT approach can confirm the CAF
phase for J2 > J2

F-CAF = 0.41 |J1|. For J2 > J2
∞ = 0.58 |J1|,

this can be tested even in the thermodynamical limit. For
lower J2, although only systems of limited size could be

 0
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n
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J2/|J1|
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FIG. 8. (Color online) Staggered magnetization as the order
parameter for the CAF phase at J3 = 0.

FIG. 9. (Color online) Ground-state energy in the CAF phase
for the same system sizes shown in Fig. 5. Smaller sizes (bottom
panels) show energies obtained for couplings down to J2/|J1| ∼ 0.4,
in full agreement with extrapolated energies from the region J2/|J1| >

0.58. The exact ferromagnetic phase energy (solid line) is included
to illustrate the proposed F-CAF phase boundary.

solved, we find CAF observables until the transition to the
F phase. A linear extrapolation of the CAF ground-state
energies suggests a direct first-order transition to the F phase
at J F-CAF

2 = 0.41 |J1|, in accordance with Ref. 24.

FIG. 10. (Color online) Size dependence of J2
F-CAF(N ), the

crossing point of ferromagnetic phase energy and the extrapolated
CAF energy (smallest sizes not shown here).
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FIG. 11. (Color online) Energy gaps for systems of different size
along the line J2 = |J1| in the CH phase. The inset shows gap
extrapolation for J3 = 0.42|J1|.

IV. EFFECTS OF NEXT-TO-NEAREST-NEIGHBOR
FRUSTRATION J3

In this section we analyze the influence of third-neighbor
antiferromagnetic couplings J3 on top of the CAF phase by
fixing J2 = |J1|. We recall that, on this line, the classical phase
diagram in Fig. 2 shows collinear antiferromagnetic order
for 0 < J3 < 0.25|J1|, a continuous transition to collinear
helicoidal (q,0) [or (0,q)] order for 0.25|J1| < J3 < 0.5|J1|,
with q decreasing from π to 2

3π , and a discontinuous
transition to a helicoidal phase (Q,Q) for J3 > 0.5|J1|, with Q

increasing in a narrow window from 0.4195π to π
2 (reaching

Q = 0.4466π at J3 = |J1|, the largest value of J3 in the present
analysis).

The quantum case was studied by Sindzingre et al.21 by ED
in systems up to N = 36 sites for positive J2 and J3, both up
to |J1|. For J2 > 0.75|J1| and around the classical boundary
between collinear helicoidal and helicoidal phases, Sindzingre
et al. find signals of an exotic gapped phase, stating that it is
difficult to conclude its precise nature because of large and
irregular finite-size effects. In particular, on the line J2 = |J1|,
they find a CAF phase for J3 � 0.35|J1| and a gapped phase
for J3 > 0.35|J1|.

We have applied the SBMFT to systems of size N between
20 × 20 and 100 × 100. For 0 < J3 � 0.4|J1|, we find persis-
tence of the CAF phase: the dispersion relation remains gapless
at commensurate momenta �k = (±π/2,0) [or (0, ± π/2)], and
the �θ -dependent susceptibility has a maximum at (±π,0) [or
(0, ± π )]. This phase shows a boundary that barely depends
on system sizes and can be estimated as J3

CAF-CH ≈ 0.41|J1|.
This amounts to a shift of 0.16|J1| with respect to the classical
value.

For larger J3 the minima of the dispersion relation move to
incommensurate values of �k. It gets numerically difficult on
a finite lattice to determine the existence of gapless minima.
However, though with less precision than in the CAF phase, we
find for all studied sizes that, immediately above J3

CAF-CH(N ),
a gapless collinear helicoidal phase with �k = (q,0) [or (0,q)]
develops. A finite-size scaling for the gap in this phase is
shown in Fig. 11. The available values for q are discrete, but

FIG. 12. (Color online) Evolution of the incommensurate q in the
collinear helicoidal phase for different system sizes. For comparison,
we show the classical pitch angle ϑ(J3 − 0.16|J1|) (i.e., plotted with
respect to the SBMFT phase boundary J3

CAF-CH).

as shown in Fig. 12, the dispersion minima position evolves
in the same range as the classical ones, simply shifted in
J3 → J3 + 0.16|J1|. For each point in Fig. 12, the �θ -dependent
susceptibility shows a maximum at �θ = (q,0) [or (0,q)],
characterizing collinear helicoidal magnetization order.

The collinear helicoidal phase extends up to J3
CH−H ≈

0.56|J1|. Again, such a boundary is almost independent of the
system sizes. For even larger J3 further numerical difficulties
show up. Indeed, the dispersion seems to get gapless at
momenta (Q,Q), with Q in the same narrow window found
in the classical phase diagram for the helicoidal phase. As the
thermodynamical values of minima position in such a narrow
range may mismatch the available momenta for a given finite
lattice, it is difficult to select the minimum of the dispersion
relation among neighboring points. For this same reason, a
gap may seem to open but could be just a finite-size artifact.
A refinement was done by choosing different system sizes in
order to allow for different distributions of lattice momenta.
In general, when a clear minimum is found, it corresponds
to a gapless situation, as shown for selected sizes in Fig. 13.
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FIG. 13. (Color online) Energy gaps for systems of selected
different sizes along the line J2 = |J1| in the H phase. System sizes
suspected of commensurability difficulties are not shown. The inset
shows the gap extrapolation for J3 = 0.75|J1|.
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In such cases we find an ordering angle �θ = (Q,Q), where
0.421π < Q < 0.483π , and the order parameter M2

n(Q,Q)
remains finite, signaling a helicoidal phase. Thus, the present
method shows no clear indications of the appearance of a gap
in the excitation spectrum.

V. CONCLUSIONS

To summarize, along the line J3 = 0 and within SBMFT
we can confirm the collinear antiferromagnetic phase for J2 >

J2
F-CAF = 0.41 |J1|. For J2

F-CAF < J2 < J2
∞ = 0.58|J1| the

convergence becomes harder, presumably because of the dom-
inance of ferromagnetic correlations. However, at tractable
system sizes we find CAF observables until the transition to the
ferromagnetic phase. A linear extrapolation of the CAF-phase

ground-state energies suggests a direct first-order transition to
the ferromagnetic phase at J2

F-CAF, in good agreement with
Ref. 24.

Along the line J2 = |J1| we have found that the boundaries
between the collinear and incommensurate phases are strongly
shifted, with respect to the classical case, to larger values
of J3: J3

CAF-CH ≈ 0.41|J1| and J3
CH-H ≈ 0.56|J1|. We do not

find clear evidence of spin-gapped phases within the present
approximation.
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