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Valence-dependent analytic bond-order potential for magnetic transition metals
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We extend the analytic bond-order potentials for transition metals [Phys. Rev. B 74, 174117 (2006)] to include
ferro, antiferro, and noncollinear magnetism and charge transfer. This is achieved by first deriving a suitable
tight-binding model through the expansion of the spin-density energy functional to second order with respect
to magnetic and charge fluctuations. The tight-binding model is then approximated locally by the bond-order
potential expansion, where the variational property of the bond-order potential expansion allows us to derive
analytic expressions for the forces and torques on the atoms. From the bond-order potentials we then extract a
hierarchy of multispin interactions beyond the conventional Heisenberg model. The explicit valence dependence
of the bond-order potentials enables us to characterize the magnetic properties of the 3d transition metals and to re-
produce the trend from antiferromagnetic spin ordering close to the center of the d band through noncollinear spin
configurations to ferromagnetic ordering toward the edges of the d band. The analytic representation of the energy
within the bond-order potentials is then further expanded in the form of a Ginzburg-Landau expansion, deriving the
prefactors explicitly from tight-binding and bond-order potentials. Thus, in this paper we present a coherent sim-
plification from fundamental to empirical models of magnetism through coarse graining the electronic structure
from spin-density functional theory to tight binding to bond-order potentials to the Ginzburg-Landau expansion.
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I. INTRODUCTION

While the nonmagnetic isovalent 4d and 5d transition
metal elements ruthenium and osmium take a hexagonal
close-packed structure, the magnetic 3d transition metal iron
takes the bcc α phase as its ground state. This stability of
the bcc phase of iron is due to a magnetic contribution to
the binding energy of the bcc structure of 0.5 eV/atom1

compared to only small magnetic contributions for the energy
of the close-packed fcc and hcp structures. The sensitivity
of magnetism to the crystal structure and local environment
manifests itself in other properties of Fe: the 〈110〉 dumbbell
self-interstitial defect in iron carries a spin that is suppressed
by 90% and antiferromagnetic to the host lattice,2,3 similarly
to the magnetic behavior of the close-packed γ phase of iron.

The microstructure of iron is driven by magnetism through
the stabilization of grain boundary structures4 or the modified
behavior of nanocrystalline iron compared to crystalline
iron.5 The structural dependence of the magnetic free energy
also governs the iron phase diagram.6 Unlike Ni and Co,
whose atomic magnetic moments collapse in the magnetically
disordered state, the atomic moments in Fe contribute to the
free energy also in the disordered state.7,8

Electronic structure methods such as density functional
theory or the tight-binding (TB) method are able to capture
the magnetic behavior across the 3d transition metal series. A
robust tight-binding bond model of magnetism in Fe9–11 within
the framework of numerical bond-order potentials has been
developed only recently,12 where the numerical bond-order
potentials are an O(N) approximation to tight binding.13,14

Although the numerical bond-order potentials provide an
analytic representation of the Green’s function, a numerical
integration of the density of states is required for the evaluation
of the bond energy such that no explicit magnetic interatomic
potential may be obtained. Possibly for this reason, until
recently, studies of interatomic potentials have tried to capture

magnetism implicitly by fitting equilibrium properties that
included magnetic contributions15,16 and only Dudarev and
Derlet have proposed a second-moment potential that explicitly
accounted for magnetism.17 While this potential takes into
account the ferromagnetic energy in a reference structure such
as bcc α iron explicitly and is suitable for large-scale atomistic
simulations due to its computational efficiency, it is unable
to describe the subtle structural dependence of the magnetic
energy that is driven by higher-moment contributions. The
latter, fourth, fifth, sixth, and so on, moment contributions to
the local density of states are important for modeling defect
energies as well as the phase diagram of iron.6,18,19

In 2006 the present authors20 presented an analytic
interatomic bond-order potential (BOP) that predicted the
ferromagnetic moments of different structures in iron in good
agreement with tight-binding calculations.18,21,22 While the
numerical and the analytic BOPs provide a representation
of the energy that is of the same quality for close-packed
transition metals,23 the analytic BOPs20 also provide an
explicit, analytic representation of the energy. This allows
for a direct interpretation of the structural energy in terms of
band-filling-dependent many-body interactions.24 In addition,
the gradients of the energy may also be calculated analytically
such that large-scale molecular dynamics (MD) simulations
become possible while the approximate Hellmann-Feynman-
type forces of the numerical BOPs are not sufficient in accuracy
for MD at low-moment expansions.14

In this paper we extend the analytic bond-order potential
developed in Ref. 20 to take into account antiferromagnetic
(AFM) and noncollinear (NCM) spin configurations in ad-
dition to ferromagnetic (FM) states. The resulting analytic
BOPs allow direct contact to be made to classical models of
magnetism such as the Heisenberg model or the Ginzburg-
Landau expansion.

The approximation introduced by the BOP expansion
means that the usual self-consistent solution to the Kohn-Sham
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equations does not correspond to a stationary point of the
total energy functional. Therefore, an approach for optimizing
the energy that differs from the usual self-consistency has to
be used. We will therefore review the derivation of the TB
approximation from spin-density functional theory (SDFT) in
view of a direct optimization of the total energy that does not
rely on the self-consistent iteration of the charge density. This
will also lead to the extension of the tight-binding bond model
to include noncollinear magnetism and charge transfer as well
as nonorthogonal basis functions.

The outline of the paper is as follows. In Sec. II the
second-order expansion of spin-density functional theory is
reviewed. Detailed literature exists on this topic,11,25–33 so here
only the aspects necessary for the development of the analytic
bond-order potentials are presented. In particular, a functional
form for the total energy of the tight-binding model is derived,
which is suitable for a subsequent BOP expansion. In Sec. III
TB models are linked directly to the second-order expansion
of SDFT. In particular, a TB model suitable for noncollinear
magnetism is obtained that is of similar format to the TB
models presented in Refs. 27 and 34. This TB model is then
cast in the form of a TB bond model that is suitable for the
BOP expansion in the following section. In Sec. IV the BOP
expansion of the TB bond model is carried out and extended
to include magnetism and charge transfer. The analytic forces
and the gradients required for the minimization of the energy
functional are discussed. In Sec. V the hierarchy of multispin
interactions is discussed and shown in its simplest form to
approximate the Heisenberg model. In Sec. VI the analytic
magnetic BOP is used to discuss trends in magnetic stability
across the 3d transition metal series, thereby making contact
with the Ginzburg-Landau expansion of the magnetic energy.
In Sec. VII we conclude.

II. SECOND-ORDER EXPANSION OF SPIN-DENSITY
FUNCTIONAL THEORY

A. Overview

In this section we briefly summarize as much as required
of SDFT35–37 in order to carry out the second-order expansion
with respect to charge and magnetic fluctuations in a basis of
localized orbitals. This will lead us directly to a TB model that
forms a suitable framework for the magnetic BOPs.

In spin-density functional theory the effective one-particle
eigenstates are written as two component spinors

ψn(rrr) =
[

ψn↑(rrr)

ψn↓(rrr)

]
. (1)

The 2 × 2 spin density is obtained from the sum of the products
of the spinors

ρμν(rrr) =
occ∑
n

ψ∗
nμ(rrr)ψnν(rrr), (2)

where the sum is taken over all occupied eigenstates n. The
components of the spin density are calculated from the spinors
by projecting on the Pauli matrices σσσ = (σx,σy,σz)

mmm(rrr) =
occ∑
n

∑
μν

ψ∗
nμ(rrr)σσσμνψnν(rrr). (3)

The charge density is given by

n(rrr) = ρ↑↑ + ρ↓↓ = Tr(ρρρ), (4)

such that the spin-density matrix may be written as a function
of charge density n and spin density mmm

ρρρ(rrr) = 1
2n(rrr)111 + 1

2mmm(rrr)σσσ , (5)

wheremmmσσσ = mxσx + myσy + mzσz. The total energy in SDFT
may be written as

U [ρρρ] = T KS[ρρρ] + UH [n] + UXC[ρρρ] + Uext + Unuc, (6)

with the Kohn-Sham kinetic energy of the noninteracting
electrons

T KS[ρρρ] =
occ∑
n

〈ψn| − h̄2

2m
�|ψn〉. (7)

In the presence of a magnetic field BBB the external potential is
given by

WWWext = V (rrr)111 + μBBBB(rrr)σσσ , (8)

so the external potential energy takes the form

Uext =
∫

Tr(ρρρWWW ) d	

=
∫

[n(rrr)V (rrr) + μBmmm(rrr)BBB(rrr)]d	, (9)

where the Hartree energy is denoted by UH [n] and UXC[ρρρ]
stands for the exchange-correlation energy and Unuc is the
electrostatic interaction between the nuclei.

The ground-state energy is obtained by minimizing the
SDFT total energy with respect to the spin-density matrix

δρρρ

[
U [ρρρ] − μ

∫
Tr(ρρρ) d	

]
= 0, (10)

where charge conservation is taken into account with the
Lagrange multiplier μ. Variation of the energy leads to an
effective one-particle Schrödinger equation[

− h̄2

2m
� + WWWeff(rrr)

]
ψn(rrr) = εnψn(rrr), (11)

with the effective potential matrix

WWWeff(rrr) = VH (rrr)111 + WWWXC(rrr) + WWWext(rrr), (12)

where the Hartree potential is VH and the exchange-correlation
potential is given by

WWWXC(rrr) = δUXC

δρρρ
. (13)

B. Second-order expansion of the exchange-correlation energy

The exchange-correlation energy UXC must be invariant
with respect to unitary transformations of the spin-density
matrix. As ρρρ is a 2 × 2 matrix, its eigenvalues are fully
characterized by its trace Tr[ρρρ] and determinant Det[ρρρ]. A
second-order expansion of the energy with respect to mmm and
n must also be obtained from invariants of ρρρ or invariants of
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products of ρρρ. The only contributions that are of second order
with respect to mmm and n are

Tr[ρρρ] = n, (14)

Det[ρρρ] = 1
4 [n2 − mmm2], (15)

Tr[ρρρ(rrr)ρρρ(rrr ′)] = 1
2 [n(rrr)n(rrr ′) + mmm(rrr)mmm(rrr ′)]. (16)

If we assume a local approximation to correlation and
exchange and neglect gradient terms with respect to the
spin-density matrix, then the second-order approximation of
UXC is given by

U
(2)
XC =

∫
KXC(rrr)n(rrr)d	

+ 1

2

∫ ∫
JXC(rrr,rrr ′)n(rrr)n(rrr ′)d	d	′

− 1

4

∫ ∫
IXC(rrr,rrr ′)mmm(rrr)mmm(rrr ′)d	d	′, (17)

where KXC , JXC , and IXC are the expansion coefficients such
that for rrr �= rrr ′, IXC(rrr,rrr ′) = −2JXC(rrr,rrr ′) to satisfy Eq. (16)
and where the factor of −2 between IXC and JXC was chosen
in order to arrive at the usual Stoner representation of the
exchange energy. For the homogenous electron gas Eq. (17)
would simplify to UXC = K̄XCn + 1

2 J̄XCn2 − 1
4 ĪXCmmm2, where

K̄XC , J̄XC , and ĪXC are obtained from the integration of KXC ,
JXC , and IXC .

Unsurprisingly, the spin density only contributes in invari-
ant terms of the order of mmm2, mmm4, and so on, which means that
the lowest-order term that explicitly relates the charge and the
spin density n × mmm2 is of third order.

C. Expansion in a basis

In order to make contact to tight-binding theory, in the
following we rewrite the SDFT with respect to a set of basis
functions {|ϕiν〉} with the two-component basis spinors

ϕi↑ =
(

ϕi

0

)
; ϕi↓ =

(
0

ϕi

)
. (18)

The basis spinors are orthogonal in spin space but not
necessarily orthogonal in real space

〈ϕjμ|ϕiν〉 = Sij δμν, (19)

where for a linear combination of atomic orbitals (LCAO) the
index i combines atom and orbital index. In the following
a nonorthogonal basis set is used in the same way as an
orthogonal basis set by employing covariant and contravariant
basis functions38 ∣∣ϕj

μ

〉 =
∑

i

|ϕiμ〉(S−1)ij (20)

because 〈
ϕjμ

∣∣ϕk
μ

〉 =
∑

i

〈ϕjμ|ϕiμ〉(S−1)ik = δkj . (21)

The eigenspinors may be expanded in this basis

ψn(rrr) =
∑
iμ

c
(n)
iμ ϕi

μ(rrr) =
∑
iμ

c(n)i
μ ϕiμ(rrr), (22)

with the expansion coeffcients

c
(n)
iμ = 〈ϕiμ|ψn〉, c(n)i

μ = 〈
ϕi

μ

∣∣ψn

〉
(23)

and

c
(n)
iμ =

∑
j

Sij c
(n)j
μ . (24)

In the basis, the charge and spin density are written as

n(rrr) =
∑
ij

n
j

i χ
i
j , (25)

mmm(rrr) =
∑
ij

mmm
j

i χ
i
j , (26)

with

χi
j = ϕi∗(rrr)ϕj (rrr). (27)

The expansion coefficients of the spin-density matrix

ρ
j

iμν =
occ∑
n

c
∗(n)
iμ c(n)j

ν , (28)

determine the coefficients of the charge and spin density
through

n
j

i = ρ
j

i↑↑ + ρ
j

i↓↓, (29)

mmm
j

i =
∑
μν

ρ
j

iμνσσσμν. (30)

The total energy Eq. (6) may now be expanded to second or-
der using the expansion of the exchange-correlation functional
Eq. (17),

U =
∑
ij

n
j

i T
i
j +

∑
ij

n
j

i V
i
j +

∑
ij

n
j

i K
i
j +

∑
ij

mmm
j

i BBB
i
j

+ 1

2

∑
ij

∑
i ′j ′

J
jj ′
ii ′ ni

jn
i ′
j ′ − 1

4

∑
ij i ′j ′

I ii ′
jj ′mmm

j

i mmm
j ′
i ′ + Unuc.

(31)

The matrix elements of the kinetic energy are given by

T i
j = 〈ϕi |T̂ KS|ϕj 〉, (32)

and the Hartree energy

UH = e2

2

∫
n(rrr)n(rrr ′)
|rrr − rrr ′| d	d	′

=
∑
ij

∑
i ′j ′

1

2
n

j

i n
j ′
i ′ J

jj ′
Hii ′ , (33)

with

J
jj ′
Hii ′ = e2

∫
χ

j

i (rrr)χj ′
i ′ (rrr ′)

|rrr − rrr ′| d	d	′. (34)

The expansion coefficient J
jj ′
Hii ′ is grouped with the second-

order contribution from the exchange-correlation functional

J
jj ′
ii ′ = J

jj ′
Hii ′ + J

jj ′
XCii ′ . (35)

For simplicity in the following we will refer to J
jj ′
ii ′ as the

Coulomb integral rather than the screened Coulomb integral
and to the energy associated with J

jj ′
ii ′ as the Coulomb energy.
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Similarly, we will refer to I
jj ′
ii ′ = I

jj ′
XCii ′ as the exchange integral

and the associated exchange energy. The complete expressions
for the matrix elements are summarized in Appendix A.

The matrix elements of the Hamiltonian are obtained from
the derivative of the energy with respect to the spin-density
matrix

Hi
jμν = ∂U

∂ρ
j

iμν

. (36)

From Eq. (31) the Hamiltonian matrix elements are given by

Hi
jμν = (

T i
j + V i

j + Ki
j

)
δμν + BBBi

jσσσμν

+
∑
i ′j ′

J ii ′
jj ′n

j ′
i ′ δμν −

∑
i ′j ′

1

2
I ii ′
jj ′mmm

j ′
i ′ σσσμν. (37)

By making use of the Hamiltonian matrix elements, the energy
Eq. (31) may be rewritten in the usual form29 as the sum of the
band energy

Uband =
∑
ij

∑
μν

H i
jμνρ

i
jμν (38)

and double counting terms

U = Uband − 1

2

∑
ij

∑
i ′j ′

J ii ′
jj ′n

j ′
i ′ n

j

i

+ 1

4

∑
ij

∑
i ′j ′

I ii ′
jj ′mmm

j ′
i ′ mmm

j

i + Unuc. (39)

D. Variational properties and self-consistent solution

In the following the matrix indices are dropped and mixed
co- and contravariant matrix elements are assumed every-
where. The variational optimization of the energy Eq. (10) may
be written as

0 = ∂

∂c∗(n)

[
U −

occ∑
n

εn(c∗(n)c(n))

]
= (H − εn) c(n), (40)

where the Lagrange multipliers εn ensure that the one-particle
wave functions are normalized and we made use of Eq. (37).

Often the optimization of the total energy with respect to
charge and magnetic density is not carried out directly but in
an iterative, self-consistent way.37 To this end, one generates
a suitable trial spin density ρ(out) for the evaluation of the
energy U (out) = U [ρ(out)]. The trial spin density is obtained
according to Eq. (2) from wave functions that diagonalize
the Hamiltonian Ĥ (in) and, therefore, ρ(out) = ρ(out)[Ĥ (in)].
Through the variational principle of SDFT, the ground-state
energy U0 is lower than U (out),

U (out) � U0. (41)

We use Eq. (37) for Ĥ (in),

H (in) = (T + V + K) + BBBσσσ + Jn(in) − 1
2Immm(in)σσσ , (42)

where n(in) and mmm(in) are obtained from a suitably chosen trial
spin density ρ(in). Clearly, the diagonalization of H (in) results
in a spin-density matrix ρ(out) = ρ0 that fulfills Eq. (40) if

ρ(out) = ρ(in), (43)

i.e., the variational state corresponds to the self-consistent
solution.

The energy Eq. (31) obtained from ρ(out) is given by

U (out) = (T + V + K)n(out) + BBBmmm(out) + 1
2Jn(out)n(out)

− 1
4Immm(out)mmm(out) + Unuc. (44)

Using the Hamiltonian matrix H (in), the trial energy is written
as

U (out) = H (in)ρ(out) + 1
2J [n(out)n(out) − 2n(in)n(out)]

− 1
4I [mmm(out)mmm(out) − 2mmm(in)mmm(out)] + Unuc. (45)

This form of U (out) is not satisfactory, as the (in) and (out)
spin-density matrix elements are used simultaneously.25 By
expanding around a reference charge density n(0) and spin
density mmm(0)

n(in) = n(0) + δn(in), n(out) = n(0) + δn(out), (46)

mmm(in) = mmm(0) + δmmm(in), mmm(out) = mmm(0) + δmmm(out), (47)

and splitting H (in) accordingly

H (in) = H (0) + V + BBBσσσ + Jδn(in) − 1
2Iδmmm(in)σσσ , (48)

a more useful expression for U (out) is obtained

U (out) = H (0)ρ(out) + 1
2Jδn(out)δn(out) − 1

4Iδmmm(out)δmmm(out)

+V n(out) + BBBmmm(out) − 1
2Jn(0)n(0)

+ 1
4Immm(0)mmm(0) + Unuc. (49)

Similar expressions for the energy were obtained in Refs. 25,
27, and 29. As U (out) may be written as a functional of (out)
quantities alone, any valid spin-density matrix ρ(out) may be
used in a variational optimization of U (out). Therefore, we may
view δn(in) and δmmm(in), or, equivalently, ρ(in), as parameters that
may be used to generate suitable trial spin densities ρ(out) =
ρ(out)[H (in)] from Eq. (48). The direct minimization of the
energy U (out) with respect to ρ(in),

∂U (out)

∂ρ(in)
= ∂U (out)

∂H (in)

∂H (in)

∂ρ(in)
= 0, (50)

is therefore equivalent to solving Eq. (40) or the self-consistent
solution Eq. (43). As we will see in Sec. IV, for working with
bond-order potentials, it is most convenient to use Eq. (50)
because the approximate representation of the electronic
structure within bond-order potentials breaks the equivalence
between the variational optimization of Eq. (40) and the self-
consistent solution of the Kohn-Sham equations, Eq. (43), such
that the self-consistent solution within the BOP approximation
does not correspond to a stationary point of the total energy.

III. MAGNETIC TIGHT BINDING

A. From spin-density functional theory
to the tight-binding approximation

The tight-binding approximation to the energy is obtained
from Eq. (49) by choosing an atomiclike minimal basis
{|φiαμ〉} for the expansion of the one-electron wave functions
and by identifying n(0) as the charge density of overlapping
free atomlike charge densities. The basis function |φiαμ〉 is
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centered on atom i, the different orbitals on atom i are labeled
by α, and μ indicates the spin-up ↑ or spin-down ↓ character
of the basis function.

Typically, one assumes that the reference spin-density
is zero, mmm = 0, such that δmmm corresponds to the full spin
density. If we drop the (out) indices from Eq. (49) with the
understanding that the energy is written in terms of (out)
quantities only, then the energy of the TB model may be written
as

U = H (0)n + 1
2Jδnδn − 1

4Immmmmm + V n + BBBmmm

− 1
2Jn(0)n(0) + Unuc, (51)

while the reference Hamiltonian is nonmagnetic,

H (0) = (T + K)n(0) + Jn(0). (52)

Because n(0) is given by overlapping free atomlike charge
densities, H (0) is obtained from the corresponding overlapping
free atomlike potentials.

For many practical applications of TB Eq. (51) is further
simplified. Writing all indices explicitly, the second-order term
of the Coulomb and exchange energies are given by

UC = 1

2
Jδnδn = 1

2

∑
iα,i ′α′

J iαi ′α′
iαi ′α′ δn

i ′α′
i ′α′δn

iα
iα

+ 1

2

iα �=jβ,i ′α′ �=j ′β ′∑
iα,i ′α′,jβ,j ′β

J iαi ′α′
jβj ′β ′δn

j ′β ′
i ′α′ δn

jβ

iα , (53)

UX = −1

4
Immmmmm = −1

4

∑
iα,i ′α′

I iαi ′α′
iαi ′α′ mmm

i ′α′
i ′α′mmm

iα
iα

− 1

4

iα �=jβ,i ′α′ �=j ′β ′∑
iα,i ′α′,jβ,j ′β

I iαi ′α′
jβj ′β ′mmm

j ′β ′
i ′α′ mmm

jβ

iα , (54)

where we separated the diagonal contributions δniα
iα from the

off-diagonal contributions δn
jβ

iα . As a first simplification it is
often assumed that the contribution of the bond charge19 to the
Coulomb and exchange energies, which is associated with the
off-diagonal contributions δn

jβ

iα , may be neglected, such that

J iαi ′α′
jβ,j ′β ′ = Jjβj ′β ′δiα,jβδi ′α′,j ′β ′ , (55)

I iαi ′α′
jβ,j ′β ′ = Ijβj ′β ′δiα,jβδi ′α′,j ′β ′ . (56)

By noting that the diagonal element δniα
iα corresponds to the

Mulliken charge of orbital |iα〉,
qiα = δniα

iα =
∑
jβ

Siαjβδnjβiα, (57)

and a similar definition for the atomic magnetic moments

mmmiα = mmmiα
iα =

∑
jβ

Siαjβmmm
jβiα, (58)

the Coulomb and exchange energies take a much simpler form,

UC = 1

2

∑
iα,jβ

Jiαjβqjβqiα, (59)

UX = −1

4

∑
iα,jβ

Iiαjβmmmjβmmmiα. (60)

At this level of approximation, different orbitals that belong
to the same angular momentum quantum number may be
populated with different numbers of electrons. For example,
the five d orbitals on an atom or the three p orbitals on an
atom may all carry different Mulliken charges. Therefore, the
charge distribution on an atom will, in general, not be spherical
but will in essence correspond to a multipole expansion of the
charge density.39

Finally, the simplest approximation to the Coulomb and
exchange energies assumes that only the total charges and
magnetic moments are relevant and, therefore,

UC = 1

2

∑
ij

Jij qjqi, (61)

UX = −1

4

∑
ij

Iijmmmjmmmi, (62)

with

qi =
∑

α

qiα, mmmi =
∑

α

mmmiα. (63)

It is then sometimes further assumed that this approximation
also implies a spherical distribution of the charge on each
atom.27,34

In the following we will work with the Coulomb and
exchange energies in the form of Eqs. (59) and (60), such
that the energy is simplified to

U =
∑
iαjβ

H
(0)iα
jβ n

jβ

iα + 1

2

∑
iα,jβ

Jiαjβqiαqjβ

− 1

4

∑
iα,jβ

Iiαjβmmmiαmmmjβ +
∑
iα

ViαNiα +
∑
iα

BBBiαmmmiα

− 1

2

∑
iα,jβ

JiαjβN
(0)
iα N

(0)
jβ + Unuc, (64)

where we assumed

V i ′α′
iα = Viαδiαi ′α′ , (65)

BBBi ′α′
iα = BBBiαδiαi ′α′ , (66)

and write the number of electrons in orbital α on atom i as
the sum of the orbital Mulliken charges and the number of
electrons in orbital α in the reference charge density n(0)

Niα = qiα + N
(0)
iα . (67)

From Eq. (48) the corresponding Hamiltonian matrix is given
by

H
jβ

iαμν = H
(0)jβ
iα δμν+

⎛
⎝∑

kγ

Jiαkγ qkγ δμν−1

2

∑
kγ

Iiαkγmmmkγσσσμν

+Viαδμν + BBBiασσσμν

⎞
⎠ δiαjβ . (68)

The approximation that the bond charge does not enter the
Coulomb and exchange energies Eqs. (59) and (60) means that
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only the diagonal elements of the Hamiltonian are modified
by charge and magnetism

Eiαμν = Hiα
iαμν = E

(0)
iα δμν +

∑
kγ

Jiαkγ qkγ δμν

− 1

2

∑
kγ

Iiαkγmmmkγσσσμν + Viαδμν + BBBiασσσμν, (69)

where E
(0)
iα = H

(0)iα
iα . Equations (64) and (69) are given in

mixed covariant and contravariant matrix elements. When
transformed to contravariant indices with the help of Eqs. (20),
(64) and (69) correspond to an extension of the expressions
obtained in Refs. 27 and 34 to include noncollinear magnetism.
This is discussed in more detail in Appendix B.

The tight-binding model [Eq. (64)] differs from traditional
tight-binding band models that represent the energy as the sum
of the band energy and an empirical potential, the repulsive
energy.25,40 It is evident that such a representation of the tight-
binding energy is not amenable to the optimization of the
energy as the energy does not fulfill any variational principle.
Therefore, in contrast to the tight-binding model [Eq. (64)], the
traditional, empirical tight-binding band models do not fulfill
the force theorem.11,41,42

B. Tight-binding bond model

1. Intersite representation of the bond energy

The tight-binding bond model9,11 allows for an intuitive
and transparent decomposition of the energy into various
contributions relevant to the formation of the intersite chemical
bonds and the associated binding energy. Here we show
how the tight-binding model [Eq. (64)] may be written in
the form of a tight-binding bond model, thereby extending
the tight-binding bond model to include charge transfer
and noncollinear magnetism as well as nonorthogonal basis
functions.

We start by introducing the bond energy as

Ubond =
∑

iαμjβν

H
jβ

iαμνρ
iα
jβνμ −

∑
iαμν

Eiαμνρ
iα
iαμν, (70)

where we subtract the diagonal elements from the band energy,
Eq. (38), which guarantees that the bond energy is independent
of the choice of the zero of the energy axis.

Because only the diagonal elements of the Hamiltonian in
Eq. (69) are modified by charge transfer and magnetism, the
bond energy [Eq. (70)] in the intersite representation may be
written as

Ubond =
∑
iαjβ

H
(0)iα
jβ n

jβ

iα −
∑
iα

E
(0)
iα Niα

=
i �=j∑
iαjβ

H
(0)iα
jβ n

jβ

iα +
α �=β∑
iαβ

H
(0)iα
iβ n

iβ

iα, (71)

where we made use of Eq. (29). The second term of the right-
hand-side equation is sometimes separated from the first as it
relates two orbitals on the same atom and is, therefore, not
strictly related to the formation of bonds between atoms,29,43

but we keep this term formally with the bond energy as this is
required for the transformation of the bond energy in the onsite

representation that will be discussed in Sec. III B 3. Also, in
most tight-binding parametrizations, the off-diagonal terms of
the onsite matrix elements are neglected such that H

(0)iα
iβ =

E
(0)
iα δαβ and the last term on the right-hand side vanishes.
We further introduce the electron transfer energy as the

energy that is associated to the transfer of electrons from
their reference distribution of the nonmagnetic free atom to
their actual occupation numbers with respect to the reference
levels E

(0)
iα ,

Utrans =
∑
iα

E
(0)
iα qiα. (72)

For neutral systems this contribution corresponds to the usual
promotion energy that is required to create sp3 hybrid orbitals
from s2p2 free atomic states, for example. For nondegenerate
ionic systems, such as an AB s-valent alloy, this term
corresponds to the negative linear driving term for charge flow
from the higher- to lower-level sites. We have also defined the
preparation energy as

Uprep =
∑
iα

(
E

(0)
iα − E

(at)
iα

)
N

(0)
iα , (73)

with the energy levels E
(at)
iα of nonmagnetic free atoms and

the occupation of these levels with N
(0)
iα electrons. The shift

of the atomic levels from E
(at)
iα to E

(0)
iα is driven by different

contributions. Typically, the main contribution is due to the
overlap of the atomic orbitals which introduces repulsive
upward shifts of the atomic levels. The overlapping atomic
potentials also lead to the splitting of the degenerate atomic
levels by crystal field effects, associated with a typically small
and negative crystal field energy. There is also a sizable shift
due to the renormalization of the atomiclike local orbitals.21,44

The latter is due to the increase in kinetic energy of the
atomiclike orbitals that have to contract under compression in
order to satisfy the virial theorem. In particular, for transition
metals the d-overlap contribution to the shift of the atomic
levels is much smaller than the shift associated with the
contraction of the atomiclike orbitals as the overlap of the
d orbitals is small.

We see immediately that the sum

Ubond + Utrans + Uprep =
∑
iαjβ

H
(0)iα
jβ n

jβ

iα −
∑
iα

E
(at)
iα N

(0)
iα

(74)

equals the difference between the first term of Eq. (64) and the
band energy of nonmagnetic free atoms.

The binding energy UB is defined with respect to nonmag-
netic free atoms, whose energy is given by

Uatoms =
∑
iα

E
(at)
iα N

(0)
iα − 1

2

∑
iαβ

JiαiβN
(0)
iα N

(0)
iβ , (75)

where the latter contribution is the double-counting Coulomb
energy of the free atom. It follows from Eq. (64) that the
binding energy UB = U − Uatoms may be written as

UB = Ubond + Utrans + Urep + UC + UX + Uext, (76)
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where the bond, electron transfer, Coulomb, and exchange
energies are given by Eqs. (70), (72), (73), (59), and (60),
respectively. The repulsive energy is defined by

Urep = −1

2

i �=j∑
iαjβ

JiαjβN
(0)
iα N

(0)
jβ + Uprep + Unuc, (77)

where the preparation energy term Uprep has been grouped
into the repulsive energy as in the original TB bond model.11

In the absence of nonorthogonality contributions, Urep would
thus correspond to the physical Coulomb interaction between
the frozen free atoms arranged on the bulk sites. Including the
overlap contribution (HS)ii in the preparation energy ensures
that Urep is positive (apart from a small attractive contribution
at large interatomic separation) and decays monotonically as
a function of distance between the atoms.44,45 Further, we see
that the repulsive energy is independent of the electron transfer
qiα or the magnetic moments mmmiα and therefore independent
of the electronic state of the system. Therefore, it may be
parameterized as a function of the interatomic positions. In
most practical TB simulations Urep is approximated by a simple
pairwise potential.

The external energy is given by

Uext =
∑
iα

ViαNiα +
∑
iα

BBBiαmmmiα. (78)

The binding energy UB , Eq. (76), is independent of the
energy of the free atoms because every term in Eq. (76)
vanishes individually when the atoms of a molecule or a
solid are separated into uncharged and nonmagnetic free
atoms. Therefore, in practical TB calculations, each of the
contributions to Eq. (76) may be analyzed separately regarding
its role in the formation of chemical bonds.

Furthermore, by writing the contributions of the tight-
binding bond model in mixed covariant and contravariant
notation, an extension of the tight-binding bond model to
nonorthogonal basis functions has been achieved. A simple
transformation inverse to Eq. (20), i.e., the multiplication with
the overlap matrix S, leads to an explicitly nonorthogonal
generalization of the density of states, the bond energy, and
the remaining contributions to the binding energy. We give the
explicitly nonorthogonal representation of the TB bond model
in Appendix B, where the resulting formulas are also compared
to the expressions obtained by Fähnle and coworkers,43,46

Finnis29 and Paxton.30

2. The binding energy in the tight-binding bond model

In the following we will illustrate the bond formation among
atoms within the TB bond model with three exemplary cases: a
nonmagnetic system where charge transfer may be neglected, a
system where ionic contributions are important for the binding
energy, and, finally, a magnetic system.

(a) Local charge neutrality. Many metals and alloys are well
described by assuming that the atoms remain charge neutral,
such that for the simplest model of the Coulomb energy UC =
0 from Eq. (61). If the system at hand is also nonmagnetic,
then UX = 0, and we may drop the magnetic indices μ,ν in
the following. The onsite levels Eiα are adjusted to fulfill the

condition of local charge neutrality.14 The bond energy in this
system may be written as

Ubond =
∑
iαjβ

βjβiα�iαjβ, (79)

with the bond order � and the bond integrals19

βiαjβ = Hiαjβ − 1
2 (Eiα + Ejβ)Siαjβ, (80)

as given by Eq. (B10) in Appendix B. If the TB basis functions
are orthogonal, then the bond energy Ubond coincides with the
definition of the covalent bond energy Ucov in the TB bond
model.11 The electron transfer energy Utrans reduces to the
conventional promotion energy, i.e., the repopulation of the
atomic levels by electron transfer between the atomic states

Uprom =
∑
iα

E
(0)
iα qiα, (81)

with
∑

α qiα = 0 for all atoms i. As the occupation of the
atomic levels in the free atom corresponds to the minimum
of the energy, the modification of the population of the levels
increases the energy and Uprom � 0. The promotion energy
corresponds to the energy required to create hybrid orbitals.
The complete binding energy for the locally charge-neutral
system is given by

U
(LCN)
B = Ubond + Uprom + Urep. (82)

Because both the promotion energy and the repulsive energy
are positive, the attraction between the atoms is due to the bond
energy.

(b) Including charge transfer. The electron transfer energy
may be decomposed into two contributions, the energy
associated with the flow of the charge qi = ∑

α qiα to or from
atom i that drives the formation of ions and the promotion
energy associated with the formation of hybrid orbitals. The
charge qi that is transferred from or to the atom is taken from
or placed on the neutral atom in such a way that the energy of
the atom is modified as little as possible, which means that the
charge qi is taken out of the highest occupied states or placed
in the lowest partly or unoccupied states. Hence, if we break
the electron transfer energy into two steps, in the first step the
occupation numbers of the charge-neutral atom are changed
by an amount �qiα with qi = ∑

α �qiα in such a way that the
associated energy is minimal. In the second step the remaining
electrons are exchanged between the atomic levels in such a
way that the charge of the atom remains constant. The electron
transfer energy may be written accordingly as

Utrans =
∑

i

Ēiqi + Uprom, (83)

with

Ēi =
∑

α E
(0)
iα �qiα

qi

, (84)

and the modified expression for the promotion energy

Uprom =
∑
iα

E
(0)
iα (qiα − �qiα). (85)

As
∑

α(qiα − �qiα) = 0, we may view the promotion energy
as the energy associated with the repopulation of the atomic
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levels in the charged atom, from which we also conclude that
Uprom � 0. On the other hand, the Coulomb contribution UC

to the binding energy may be split in an onsite term and an
intersite term

UC = 1

2

∑
i

Jiiq
2
i + 1

2

i �=j∑
ij

Jij qiqj , (86)

where the first, self-energy, term is strictly positive and the
second, Madelung-type, term in general will be negative. For
simplicity, we adopt the approximation that only the total
atomic charges are relevant for the energy as in Eq. (61).

The final expression for the binding energy [Eq. (76)] now
becomes

UB = Ubond + Uprom + Urep +
∑

i

(
Ēiqi + 1

2
Jiiq

2
i

)

+ 1

2

i �=j∑
ij

Jij qiqj + Uext. (87)

Therefore, including charge transfer in the expression for the
binding energy of the locally charge-neutral atoms, Eq. (82),
modifies the expression for the binding energy in two ways.
First, the charging of the atoms leads to a parabolic change
of the energy. While the term Ēiqi will contribute to drive
the charge transfer in multicomponent systems similarly to an
effective electronegativity difference between the atoms, the
second term 1/2Jiiq

2
i will counteract the charge transfer from

or to the atom and is referred to as the chemical hardness, such
that the sum and difference of the two terms may be related to
the electron affinity or ionization potential, respectively [see,
for example, Eqs. (103) and (104) of Ref. 47]. We therefore
denote this term as the energy to form ions,

Uion =
∑

i

(
Ēiqi + 1

2
Jiiq

2
i

)
. (88)

Second, the term 1/2Jij qiqj associated to the electrostatic
energy will usually be negative and, hence, contribute to a
lowering of the binding energy. It will be denoted as the
electrostatic energy,

Ues = 1

2

i �=j∑
ij

Jij qiqj . (89)

For the approximation that Jij falls off as 1/R this term
(normalized by the number of ion pairs in the system) reduces
to the well-known Madelung energy.

It should be noted that, in general, charge transfer will
affect the density matrix/bond order. For the simplest case of
an s-valent heteronuclear dimer, the stronger the degree of
ionicity, the weaker the degree of covalency and vice versa
(see, for example, Sec. 3.2 of Ref. 19).

(c) Including magnetism. The exchange contribution to the
energy UX is typically dominated by the onsite contribution
− 1

4Iiim
2
i while the intersite terms − 1

4Iijmmmimmmj are small.
Therefore, if we approximate the exchange contribution to
the energy as

UX = −1

4

∑
i

Iiim
2
i , (90)

we see that an increase of the magnetic moments may
contribute to lowering the binding energy, which now is given
by

UB = Ubond + Uprom + Urep + Uion + Ues + UX + Uext.

(91)

The lowering of the energy by the exchange energy is coun-
terbalanced by an increase in the bond energy as the chemical
bonds between the atoms are weakened when the magnetic
moments increase because of the associated increase of the
kinetic energy of the electrons. Therefore, the magnetic energy
contains negative contributions from the exchange energy and
positive contributions from the increase of the bond energy.
The balance between the exchange energy and the increase of
the bond energy determines whether stable magnetic moments
are formed. If the sum of the two contributions is negative,
a magnetic state will be favored, otherwise, the material will
be nonmagnetic. As will be discussed in detail in Secs. V and
VI, the bond energy depends on the relative direction of the
magnetic moments and induces an interatomic spin interaction
even if the exchange energy contains only onsite terms48 as in
Eq. (90).

The increase of the bond energy on formation of a
magnetic moment may be understood directly from the onsite
representation of the bond energy that is discussed in the next
section.

3. Onsite representation of the bond energy

The bond energy [Eq. (70)] may alternatively be written
in an onsite form by subtracting off the diagonal elements
of the Hamiltonian from the band energy Uband. This onsite
representation of the bond energy forms the basis for the bond-
order potential expansion of the bond energy in the next section
and therefore will be briefly introduced here. To obtain the
onsite representation we start with the band energy Eq. (38)

Uband =
∑

iαμjβν

H
jβ

iαμνρ
iα
jβνμ.

Diagonalization of the Hamiltonian matrix results in the eigen-
values εn and the expansion coefficients of the eigenspinsors
[Eq. (22)]. By using the normalization of the eigenspinors∑

iαν(c(n)
iαν)∗c(n)iαν = 1, a local decomposition of the band

energy may be achieved,

Uband =
occ∑
n

εn =
∑
iαν

∫ EF

E niαν(E) dE, (92)

where the summation in the first equation runs over all
occupied states and EF is the Fermi energy. The local density
of states is given by

niαν(E) =
∑

n

(
c

(n)
iαν

)∗
c(n)iα
ν δ(E − εn), (93)

and the number of electrons associated with orbital |iαν〉 is
obtained from

Niαν =
∫ EF

niαν(E) dE. (94)
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By choosing a local coordinate system for each atom and
orbital parallel to the direction of the magnetic moment eeez =
sssiα with

sssiα = mmmiα

miα

, (95)

from Eq. (5) the matrix elements of the spin density ρiα
iανμ are

diagonal such that

Niα↑ = ρiα
iα↑↑, Niα↓ = ρiα

iα↓↓, (96)

and

ρiα
iα↑↓ = ρiα

iα↓↑ = 0. (97)

In this coordinate system the charge and magnetic moment
may be obtained from the local density of states as

qiα = (Niα↑ + Niα↓) − N
(0)
iα , (98)

mmmiα = (Niα↑ − Niα↓)sssiα = miαsssiα, (99)

and the bond energy Eq. (70) may now be given in the onsite
representation

Ubond =
∑
iα

∫ EF

(E − Eiα↑)niα↑(E) dE

+
∑
iα

∫ EF

(E − Eiα↓)niα↓(E) dE, (100)

with Eiα↑ = Eiα↑↑ and Eiα↓ = Eiα↓↓.
As the tight-binding bond model [Eq. (76)] is derived

from the second-order expansion of the spin-density functional
energy, the variational property in the form of Eq. (50) may be
used for the optimization of the energy and for the evaluation
of the binding energy. Because from Eq. (69) only the diagonal
matrix elements of H (in) vary, this means that Eq. (50) may be
slightly modified and the binding energy UB for a set of given
spin directions {sssi} may be obtained by minimizing Eq. (76)
with respect to the onsite levels Eiα↑ and Eiα↓,

∂UB

∂Eiαν

= 0. (101)

Therefore, within the approximation of Eqs. (59) and (60), the
onsite levels may be viewed as free parameters with respect
to which the energy is minimized. We will use Eq. (101) for
the optimization of the binding energy within the bond-order
potential approximation in Sec. IV C. But, first, we will briefly
review the analytic bond-order potentials and discuss their
extension to include magnetism and charge transfer.

IV. MAGNETIC BOND-ORDER POTENTIALS

A. Summary of nonmagnetic bond-order potentials

In Ref. 20 we developed an expansion that allowed us to
approximate the local density of states and to integrate the
bond energy analytically. In this section we briefly summarize
the theory developed in Ref. 20 before extending it to include
magnetism. The moments of the local density of states

μ
(n)
iα =

∫
Enniα(E) dE, (102)

may be evaluated without explicit knowledge of the density of
states by relating the moment of order n to the self-returning
hopping paths of length n that start and end on orbital |iα〉,49,50

μ
(n)
iα =

∑
i1α1,i2α2,...,in−1αn−1

〈iα|Ĥ |i1α1〉〈i1α1|Ĥ |i2α2〉

× · · · 〈in−1αn−1|Ĥ |iα〉, (103)

where we assumed that the basis functions are orthonormal.
Closely related to the evaluation of the moments in terms

of hopping paths is the representation of a Hamiltonian in
the form of a semi-infinite one-dimensional chain with onsite
matrix elements an and nearest-neighbor hopping matrix
elements bn; see, for example, Eqs. (13) and (14) in Ref. 20.
Any Hamiltonian may be mapped onto the form of a semi-
infinite 1d chain by using the Lanczos recursion algorithm.51

The Lanczos recursion algorithm also generates associated
polynomials that form an orthogonal and complete set if the
density of states is used as a weight function in the definition
of the scalar product.51 Hence, if the density of states of a
reference Hamiltonian is known, the associated polynomials
may be used for expanding the density of states of a different
Hamiltonian.

A particular attractive reference Hamiltonian is provided
by the semi-infinite chain with constant matrix elements an =
a

(∞)
iα , bn = b

(∞)
iα (see section 12 of Ref. 51). The resulting

semielliptic density of states,

niα0(ε) = 2

π

√
1 − ε2, (104)

represents a single band of states between ε = ±1,
where ε = (E − a

(∞)
iα )/(2b

(∞)
iα ). Correspondingly, niα0(E) =

niα0(ε)/(2b
(∞)
iα ) between E = a

(∞)
iα ± 2b

(∞)
iα . The Finnis-

Sinclair second-moment interatomic potential52 corresponds
to taking a

(∞)
iα = aiα0, b

(∞)
iα = biα1, so the resultant bond

energy is proportional to biα1 =
√
μ

(2)
iα , the square root of the

second moment about site i.
We have generalized the second-moment approximation for

a nonmagnetic system by writing the local density of states in
the form20,51,53

niα(ε) = niα0(ε) + δniα(ε). (105)

The semielliptic form of niα0(ε) suggests expanding δniα(ε) in
terms of Chebyshev polynomials of the second kind,54 Pn(ε),
since they are the polynomial eigenstates of the semi-infinite
constant chain and are, thus, orthonormal with respect to the
weight function 2

π

√
1 − ε2,

2

π

∫ 1

−1
Pn(ε)Pm(ε)

√
1 − ε2dε = δnm, (106)

and, therefore,

niα(ε) = 2

π

√
1 − ε2

[∑
m=0

σ
(m)
iα Pm(ε)

]
. (107)

Approximate representations of the density of states may be
obtained by terminating the expansion at a maximum nmax,

n
(nmax)
iα (ε) = 2

π

√
1 − ε2

[
nmax∑
m=0

σ
(m)
iα Pm(ε)

]
. (108)
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The expansion coefficients σ
(m)
iα may be evaluated from20

σ
(m)
iα =

m∑
n=0

pmnμ̂
(n)
iα (109)

which follows from expanding the Chebyshev polynomials of
the second kind explicitly as

Pm(ε) =
m∑

n=0

pmnε
n. (110)

The dimensionless moments μ̂
(n)
iα may be obtained directly

from the moments μ
(n)
iα of the local density of states niα(ε).

Substituting ε = (E − a
(∞)
iα )/(2b

(∞)
iα ) into Eq. (102) and per-

forming the binomial expansion, one arrives at

μ̂
(n)
iα = 1(

2b
(∞)
iα

)n

n∑
l=0

(
n

l

)
(−1)l

(
a

(∞)
iα

)l
μ

(n−l)
iα . (111)

The expansion of the density of states Eq. (108) may be
integrated analytically. In particular, one finds for the number
of electrons in orbital |iα〉 in a nonmagnetic material

N
(nmax)
iα = 2

∫ EF

n
(nmax)
iα dE = 2

nmax∑
m=0

σ
(m)
iα χ̂

m+1 (φF,iα), (112)

where the Fermi phase is given by φF,iα = cos−1[(EF −
a

(∞)
iα )/(2b

(∞)
iα )] and

χ̂1 = 1 − φF

π
+ 1

2π
sin(2φF ), (113)

and for n � 2 the dimensionless response functions take the
canonical form

χ̂
n
(φF ) = 1

π

[
sin(n + 1)φF

n + 1
− sin(n − 1)φF

n − 1

]
. (114)

Similarly, the nonmagnetic bond energy may expanded as

U
(nmax)
iα,bond = 2b

(∞)
iα

nmax∑
m=0

σ
(m)
iα [χ̂

m+2 (φF,iα)

− γ0iαχ̂
m+1 (φF,iα) + χ̂

m
(φF,iα)], (115)

with γ0iα = (Eiα − a
(∞)
iα )/b(∞)

iα and χ̂0 = 0.

B. Magnetic bond-order potentials with charge transfer

Charge transfer and magnetism modifies the local moments
of the density of states. As in Eq. (100), we assume that the
local coordinate system on atom i and orbital α has been
rotated so the z axis is parallel to the local moment. Therefore,
we need to characterize the up- and down-spin density of
states only, for which the evaluation of the ↑↑ and ↓↓ matrix
elements of the moments of the total Hamiltonian is sufficient,
namely

μ
(n)
iαν =

∫
Enn(E)iανdE = 〈iαν|Ĥ n|iαν〉. (116)

By adapting Eq. (108) to up- and down-spin channels,
the bond energy [Eq. (115)] for a magnetic system may be
calculated from

Ubond =
∑
iα

∑
ν=↑,↓

Ubond,iαν, (117)

where

Ubond,iαν =
∫ EF

(E − Eiαν)niαν(E) dE

= b
(∞)
iαν

nmax∑
m=0

σ
(m)
iαν [χ̂

m+2 (φF,iαν) − γ0iαν χ̂m+1 (φF,iαν)

+ χ̂
m
(φF,iαν)] (118)

with

γ0iαν = (
Eiαν − a

(∞)
iαν

)/
b

(∞)
iαν . (119)

The local magnetic Fermi phase is given by

φF,iαν = cos−1
[(

EF − a
(∞)
iαν

)/(
2b

(∞)
iαν

)]
, (120)

and the magnetic expansion coefficients by

σ
(m)
iαν =

m∑
n=0

pmnμ̂
(n)
iαν . (121)

The reduced moments take the form,

μ̂
(n)
iαν = 1(

2b
(∞)
iαν

)n

n∑
l=0

(
n

l

)
(−1)l

(
a

(∞)
iαν

)l
μ

(n−l)
iαν , (122)

where, in general, a
(∞)
iαν and b

(∞)
iαν depend on the spin state

and the environment of atom i. Expressions for the magnetic
moment and charge on atom i are obtained by integrating the
up- and down-spin density of states,

Niαν =
∫ EF

niαν(E) dE =
nmax∑
m=0

σ
(m)
iαν χ̂

m+1 (φF,iαν). (123)

C. Binding energy, forces, and torques

The binding energy, equilibrium charges, and magnetic
moments are obtained by minimizing the energy with respect
to the onsite levels according to Eq. (101). In the following,
we derive the expressions for the gradient of the energy with
respect to the onsite levels that are required for the optimization
of the total energy. As these expressions are similar to the
expressions for the evaluation of the forces and torques, we
first discuss the derivative of the energy with respect to an
abstract parameter. In the following, we assume that the energy
depends on the parameter � and develop the expressions for
the derivative of the binding energy with respect to �. Later,
we will then replace d

d�
with the derivative with respect to

an onsite level d
dEjβμ

or the gradient ∇j with respect to the
displacement of atom j or the derivative with respect to spin
rotation d

dsssjα
.

In the following, we will obtain the derivative dUB

d�
of the

binding energy [Eq. (76)] by discussing the derivatives of the
individual contributions to UB . The derivative of the bond
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energy in the onsite representation [Eq. (100)] with respect to
� may be written as

dUbond,iαν

d�
= (EF − Eiαν)niαν(EF )

dEF

d�

+
∫ EF

(E−Eiαν)
dniαν(E)

d�
dE − Niαν

dEiαν

d�
.

(124)

Similarly, the derivative of the number of electrons associated
with orbital |iαν〉 may be written from Eq. (94) as

dNiαν

d�
= niαν(EF )

dEF

d�
+

∫ EF dniαν(E)

d�
dE. (125)

The derivative of the Fermi energy that is required in the
two previous equations may be worked out by using charge
conservation,

0 = dN

d�
=

∑
iαν

dNiαν

d�
, (126)

once we have an expression for
∫ EF dniαν (E)

d�
dE, which will

be obtained in the next section from the analytic bond-order
potentials. It thus follows from Eqs. (125) and (126) that the
derivative of the band energy Uband = ∑

iαν

∫ EF Eniαν(E)dE

may be written as

dUband

d�
=

∑
iαν

∫ EF

(E − EF )
dniαν(E)

d�
dE. (127)

The gradient of the binding energy requires the derivative of
functions of the type

∑
iαν fiανNiαν with constant factors fiαν .

Using charge conservation leads to the following identity:

∑
iαν

fiαν

dNiαν

d�
=

∑
iαν

[
fiαν −

∑
jβμ fjβμnjβμ(EF )∑

jβμ njβμ(EF )

]

×
∫ EF dniαν(E)

d�
dE. (128)

The gradient of the bond energy Eq. (124) may now be written
as

dUbond

d�
=

∑
iαν

∫ EF

(E − EF )
dniαν(E)

d�
dE

−
∑
iαν

[
Eiαν −

∑
jβμ Ejβμnjβμ(EF )∑

jβμ njβμ(EF )

]

×
∫ EF dniαν(E)

d�
−

∑
iαν

Niαν

dEiαν

d�
. (129)

The derivative of the electron transfer energy Eq. (72) is
obtained as

dUtrans

d�
=

∑
iαν

[
E

(0)
iα −

∑
jβμ E

(0)
jβ njβμ(EF )∑

jβμ njβμ(EF )

]

×
∫ EF dniαν(E)

d�
dE, (130)

the derivative of the Coulomb energy Eq. (59) is obtained as

dUC

d�
=

∑
iαν

⎡
⎣∑

kγ

Jkγ iαqkγ −
∑

jβkγ Jkγjβqkγ

∑
μ njβμ(EF )∑

jβμ njβμ(EF )

⎤
⎦

×
∫ EF dniαν(E)

d�
dE + 1

2

∑
iαjβ

dJiαjβ

d�
qjβqiα, (131)

and the derivative of the exchange energy Eq. (60) is written
as

dUX

d�
= −1

2

∑
iαν

⎡
⎣(−1)ν

∑
kγ

Ikγ iαmmmkγsssiα

−
∑

jβμ(−1)μ
∑

kγ Ikγjβmmmkγsssjβnjβμ(EF )∑
jβμ njβμ(EF )

⎤
⎦

×
∫ EF dniαν(E)

d�
dE − 1

2

∑
iαjβ

Iiαjβmmmjβmiα

dsssiα

d�

− 1

4

∑
iαjβ

dIiαjβ

d�
mmmjβmmmiα, (132)

where, in the evaluation for the derivative of UX , we took ν = 0
for the up-spin ↑ component and ν = 1 for the down-spin ↓
component. The derivatives of the external energy Uext follow
along the same lines.

We see above that the evaluation of the gradient of the
binding energy [Eq. (76)] requires expressions of the type∫ EF dniαν (E)

d�
dE to be evaluated. By using the analytic BOP

expansion [Eq. (123)], the gradients may be written as

∑
iαν

giαν

∫ EF dniαν(E)

d�
dE

=
∑
iαν

giαν

d

d�

nmax∑
m=0

σ
(m)
iαν χ̂

m+1 (φF,iαν)

=
∑
iαν

giαν

nmax∑
m=0

nmax∑
n=0

(
∂σ

(m)
iαν

∂μ
(n)
iαν

χ̂
m+1 + σ

(m)
iαν

∂χ̂
m+1

∂μ
(n)
iαν

)
dμ

(n)
iαν

d�
,

(133)

where giαν are the prefactors of
∫ EF dniαν (E)

d�
dE in Eqs. (129)–

(132). Note that the response functions χ̂
m+1 depend on the

local moments μ
(n)
iαν through the dependence of the Fermi phase

Eq. (120) on a
(∞)
iαν and b

(∞)
iαν . Therefore, by using the analytic

BOP expansion explicit analytic expressions for the gradients
∂σ

(m)
iαν

∂μ
(n)
iαν

and
∂χ̂

m+1

∂μ
(n)
iαν

may be obtained. The total gradient of the

binding energy, thus, may be calculated analytically.
The first line of Eq. (129) may be written in a similar way as

a gradient with respect to the local moments μ
(n)
iαν , such that the

total gradient of the binding energy may be written in the form

dUB

d�
=

∑
iαν

nmax∑
n=0

w
(n)
iαν

dμ
(n)
iαν

d�

−
∑
iαν

Niαν

dEiαν

d�
+ 1

2

∑
iαjβ

dJiαjβ

d�
qjβqiα
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− 1

2

∑
iαjβ

Iiαjβmmmjβmiα

dsssiα

d�
− 1

4

∑
iαjβ

dIiαjβ

d�
mmmjβmmmiα

+ dUrep

d�
, (134)

and where the prefactors w
(n)
iαν are obtained from the

analytic BOP expansion. They are given explicitly in the
accompanying paper where it will be shown that the analytic
forces are identical to the numerical forces obtained from
small displacements of the atoms and the numerical efficiency
of the analytical forces compared to the numerical forces will
be demonstrated.55

In essence the gradient of the binding energy Eq. (76)
therefore has been reduced to finding the gradients of the

local moments dμ
(n)
iαν

d�
weighted by the factors w

(n)
iαν . Before

Eq. (134) may be applied to the calculation of the equilibrium
binding energy, charges, and magnetic moments, as well as
the forces and torques, an efficient evaluation of the gradient
of the local moments of the density of states is still required.
This will be addressed in the next section, where also explicit
expressions for the calculation of forces and torques will be
given.

D. Hellmann-Feynman-type forces

For the evaluation of forces and torques the derivatives
dμ

(n)
iαν

d�
need to be evaluated in a numerically efficient way. This

is achieved by writing the moments explicitly in terms of
self-returning products of the Hamiltonian matrix elements,
so the first contribution on the right-hand side of Eq. (134)
becomes

dUb

d�
=

nmax∑
n=0

∑
i1α1ν1

w
(n)
i1α1ν1

dμ
(n)
i1α1ν1

d�
=

nmax∑
n=0

∑
i1i2...in

∑
α1α2...αn

∑
ν1ν2...νn

w
(n)
i1α1ν1

dHi1α1ν1i2α2ν2

d�
Hi2α2ν2i3α3ν3 . . . Hinαnνni1α1ν1

+
nmax∑
n=0

∑
i1i2...in

∑
α1α2...αn

∑
ν1ν2...νn

w
(n)
i1α1ν1

Hi1α1ν1i2α2ν2

dHi2α2ν2i3α3ν3

d�
. . . Hinαnνni1α1ν1

+ · · · +
nmax∑
n=0

∑
i1i2...in

∑
α1α2...αn

∑
ν1ν2...νn

w
(n)
i1α1ν1

Hi1α1ν1i2α2ν2Hi2α2ν2i3α3ν3 . . .
dHinαnνni1α1ν1

d�
, (135)

using the product rule for evaluating the derivatives with respect to �. As each of the sums is taken over all orbitals |iαν〉 in the
system, we may rearrange the summations in a more suitable way

dUb

d�
=

nmax∑
n=0

∑
i1i2...in

∑
α1α2...αn

∑
ν1ν2...νn

Hi1α1ν1i2α2ν2Hi2α2ν2i3α3ν3 . . . w
(n)
inαnνn

dHinαnνni1α1ν1

d�

+ · · · +
nmax∑
n=0

∑
i1i2...in

∑
α1α2...αn

∑
ν1ν2...νn

Hi1α1ν1i2α2ν2w
(n)
i2α2ν2

Hi2α2ν2i3α3ν3 . . .
dHinαnνni1α1ν1

d�

+
nmax∑
n=0

∑
i1i2...in

∑
α1α2...αn

∑
ν1ν2...νn

w
(n)
i1α1ν1

Hi1α1ν1i2α2ν2Hi2α2ν2i3α3ν3 . . .
dHinαnνni1α1ν1

d�
. (136)

Therefore, instead of taking the gradient of the Hamiltonian matrix elements from left to right as in Eq. (135), we shift the
weights w

(n)
iαν from right to left. This may be written in a more compact form by introducing

�
(n−1,m)
i1α1ν1inαnνn

=
∑

i2i3...in−1

∑
α2α3...αn−1

∑
ν2ν3...νn−1

(
n∑

l=1

w
(m)
ilαlνl

)
Hi1α1ν1i2α2ν2Hi3α2ν2i3α3ν3 . . . Hin−1αn−1νn−1inαnνn

. (137)

The gradients may be written in the form of Hellmann-
Feynman-type forces

dUb

d�
=

∑
iανjβμ

�̃iανjβμ

dHjβμiαν

d�
, (138)

where we defined a bond-order type term

�̃iανjβμ =
nmax∑
n=1

�
(n−1,n)
iανjβμ . (139)

If nmax → ∞ and the bond-order expansion of UB approaches
the TB energy, �̃iαjβ becomes the usual bond order and Eq.
(138) corresponds to the normal expression for the Hellman-
Feynman gradients.56,57

By making use of Eq. (138) the expressions for the forces
and torques now may be further simplified. From Eq. (134)
the gradient of the energy with respect to the onsite levels
is obtained by replacing � with Ejβμ and by dropping all
contributions that do not depend on the onsite levels. This
leads to a more intuitive formula for the gradients

∂UB

∂Ejβμ

= �̃jβμjβμ − Njβμ, (140)

214114-12



VALENCE-DEPENDENT ANALYTIC BOND-ORDER . . . PHYSICAL REVIEW B 84, 214114 (2011)

such that in equilibrium from Eq. (101) Njβμ = �̃jβμjβμ. In
a similar way, the expression for the forces is obtained by
replacing d

d�
with ∇k in Eq. (134), which in equilibrium

[Eq. (101)] leads to

∇kUB =
iα �=jβ∑
iανjβμ

�̃iανjβμ∇kHjβμiαν + 1

2

∑
iαjβ

(∇kJiαjβ)qjβqiα

− 1

4

∑
iαjβ

(∇kIiαjβ)mmmjβmmmiα + ∇kUrep. (141)

The torques are obtained along the same lines and are given
by

dUB

dssskγ

= 1

2

(∑
νμ

�̃kγ νkγμσσσμν�kγ −
∑
iα

Iiαkγmmmiαmkγ

)
,

(142)

with �kγ = Ekγ↑ − Ekγ↓ and σσσ = (σx,σy,σz).
The bond-order �̃iανjβμ may be evaluated recursively in a

similar way to the calculation of interference paths20

ξ
(n)
iανjβμ = 〈iαν|Ĥ (n)|jβμ〉 =

∑
kγ τ

Hiανkγ τ ξ
(n−1)
kγ τjβμ. (143)

This is trivially rearranged to

ξ
(n)
iανjβμ =

∑
kγ τ

ξ
(l)
iανkγ τ ξ

(n−l)
kγ τjβμ, (144)

with n � l � 0. To illustrate the recursive evaluation of the
forces, we introduce the transfer matrices

T
(n−1,m)
iανjβμ = �

(n−1,m)
iανjβμ − w

(m)
iανξ

(n−1)
iανjβμ. (145)

Similarly to the interference paths [Eq. (143)], the transfer
matrices may be calculated iteratively,

T
(n,m)
iανjβμ =

∑
kγ τ

Hiανkγ τ T
(n−1,m)
kγ τjβμ + w

(m)
iανξ

(n)
iανjβμ, (146)

and a product rule similar to that of Eq. (144) also holds,

T
(n−1,m)
iανjβμ =

∑
kγ τ

T
(l−1,m)
iανkγ τ ξ

(n−l)
kγ τjβμ +

∑
kγ τ

ξ
(l−1)
iανkγ τ T

(n−l,m)
kγ τjβμ . (147)

With the help of Eqs. (146) and (147), a numerically efficient
implementation of the gradients of Eq. (138) becomes possible,
as will be demonstrated in Ref. 55 for the gradients and
forces.

V. BEYOND THE HEISENBERG INTERACTION

In this section we will establish a hierarchy of multispin
interactions beyond the classical Heisenberg model through
the BOP expansion of the binding energy [Eq. (76)]. In
order to separate geometrical interactions of the atomic
magnetic moments from the contributions due to changes in the
magnitude of the moments during spin rotation, we initially
discuss a material where we may assume that the magnetic
moments maintain constant values while the spins are rotated

(and that the number of electrons in each orbital Niαν remains
constant). The change of the bond energy [Eq. (100)] on spin
rotation then is given by the change of the band energy alone
as, through Eq. (69), the onsite levels also remain unchanged,
so

�Ubond = �Uband . (148)

Because the band energy may be written as a function of the
average local density of states, niα(E) = niα↑(E) + niα↓(E),
Eq. (92),

Uband,iα =
∫ EF

E[niα↑(E) + niα↓(E)] dE,

the band energy may be obtained from the moments of the
average local density of states,

μ
(n)
iα = μ

(n)
iα↑ + μ

(n)
iα↓ =

∫
En[niα↑(E) + niα↓(E)] dE, (149)

using the relation between the band energy and the bond energy
in Eq. (70) and the BOP expansion for the bond energy in
Eq. (115) from Sec. IV. Furthermore, as the BOP expansion
[Eq. (115)] is a linear function of the local moments of the
density of states for constant values of a

(∞)
iαν and b

(∞)
iαν , the

modification of the average local moments on spin rotation
contributes directly to the energy change when the spins are
rotated. Therefore, an analysis of the local moments of the
density of states that enter the analytic BOP expansion allows
us to extract the nature of the multispin interactions in the
tight-binding bond model.

The analysis of the local moments of the density of states
is simplified by noting that, from Eq. (69), only the onsite
elements of the Hamiltonian are modified by electron transfer
and magnetism. We next separate the magnetic from the
nonmagnetic contributions in the onsite levels by rewriting
Eq. (69) in the form of a 2×2 matrix in spin space

EEEiα = �
(nm)
iα 111 + �

(m)
iα (sssiασσσ ). (150)

The coefficient �
(nm)
iα comprises all contributions to the

onsite levels that are independent of magnetism, while �
(m)
iα

summarizes the contributions that depend on magnetism. As
the Hamiltonian matrix elements between different atoms
are diagonal in spin space, HHHiαjβ = Hiαjβ111, the spin-space
products of HHHiαjβ and EEEiα commute and the products of the
type EEEiαEEEjβ may be analyzed separately.

Because for the evaluation of the band energy only the
average moments of the spin-up and -down densities of
states is required, it is sufficient to characterize the sum of
the up- and down-spin contributions together. The trace of
the 2×2 spin-space matrices for the first four products is
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given by

Tr[EEEiα]/2 = �
(nm)
iα , (151)

Tr[EEEiαEEEjβ]/2 = �
(nm)
iα �

(nm)
jβ + �

(m)
iα �

(m)
jβ (sssiαsssjβ), (152)

Tr[EEEiαEEEjβEEEkγ ]/2 = �
(nm)
iα �

(nm)
jβ �

(nm)
kγ + �

(nm)
iα �

(m)
jβ �

(m)
kγ (sssjβssskγ ) + �

(nm)
jβ �

(m)
kγ �

(m)
iα (ssskγ sssiα) + �

(nm)
kγ �

(m)
iα �

(m)
jβ (sssiαsssjβ), (153)

Tr[EEEiαEEEjβEEEkγEEElδ]/2 = �
(nm)
iα �

(nm)
jβ �

(nm)
kγ �

(nm)
lδ + �

(nm)
iα �

(nm)
jβ �

(m)
kγ �

(m)
lδ (ssskγ ssslδ) + �

(nm)
iα �

(nm)
kγ �

(m)
jβ �

(m)
lδ (sssjβssslδ)

+�
(nm)
jβ �

(nm)
kγ �

(m)
iα �

(m)
lδ (sssiαssslδ) + �

(nm)
iα �

(nm)
lδ �

(m)
jβ �

(m)
kγ (sssjβssskγ ) + �

(nm)
jβ �

(nm)
lδ �

(m)
iα �

(m)
kγ (sssiαssskγ )

+�
(nm)
kγ �

(nm)
lδ �

(m)
iα �

(m)
jβ (sssiαsssjβ) + �

(m)
iα �

(m)
jβ �

(m)
kγ �

(m)
lδ [(sssiαsssjβ)(ssskγ ssslδ)

+ (sssiαssslδ)(sssjβssskγ ) − (sssiαssskγ )(sssjβssslδ)]. (154)

For the particular case that �(nm) and �(m) are identical for all atoms and orbitals, the expressions for the three and four-spin
products are simplified considerably. We give these expressions explicitly as the structure of the products becomes clearer in this
simplified case,

Tr[EEEiαEEEjβEEEkγ ]/2 = �(nm)�(nm)�(nm) + �(nm)�(m)�(m)[(sssjβssskγ ) + (ssskγ sssiα) + (sssiαsssjβ)], (155)

Tr[EEEiαEEEjβEEEkγEEElδ]/2 = �(nm)�(nm)�(nm)�(nm)

+�(nm)�(nm)�(m)�(m)[(ssskγ ssslδ) + (sssjβssslδ) + (sssiαssslδ) + (sssjβssskγ ) + (sssiαssskγ ) + (sssiαsssjβ)]

+�(m)�(m)�(m)�(m)[(sssiαsssjβ)(ssskγ ssslδ) + (sssiαssslδ)(sssjβssskγ ) − (sssiαssskγ )(sssjβssslδ)]. (156)

The products [Eqs. (152)–(154)] are obtained by making use
of the following properties of the Pauli matrices:

Tr[(sssiασσσ )(sssjβσσσ )]/2 = (sssiαsssjβ), (157)

Tr[(sssiασσσ )(sssjβσσσ )(ssskγσσσ )]/2 = 0, (158)

Tr[(sssiασσσ )(sssjβσσσ )(ssskγσσσ )(ssslδσσσ )]/2

= (sssiαsssjβ)(ssskγ ssslδ) + (sssiαssslδ)(sssjβssskγ )

−(sssiαssskγ )(sssjβssslδ), (159)

where, on the right-hand side, we left out the contributions that
are canceled if the products are carried out in reverse order.
A detailed derivation of the expressions for the products of
the Pauli matrices and the onsite matrix elements is given in
Appendix C.

It is obvious from Eq. (152) that only moments that
involve a minimum of two onsite hops may contribute to a
direct geometrical interaction between the spins. The shortest
possible self-returning paths that fulfill this condition are part
of the fourth moment

μ
(4)
iα = μ

(4)
iα↑ + μ

(4)
iα↓ =

∑
jβ

Tr[EEEiαHHHiαjβEEEjβHHHjβiα]

+
∑
jβ

Tr[HHHiαjβEEEjβHHHjβiαEEEiα] + μ
(4,nm)
iα , (160)

where the contributions to the fourth moment that are
independent of magnetism μ

(4,nm)
iα have not been given

explicitly here. Therefore, from Eq. (152), the change of
the fourth moment as a function of spin direction is given
by a Heisenberg-type (sssiαsssjβ) ∝ cos θ dependence. If the
magnitude of the local magnetic moments remains unchanged
when the spins are rotated, then from the BOP expansion
we know that the dependence of the moment on the spin
directions translates directly into the dependence of the energy
on the spin directions. Thus, to lowest order, the interaction

induced through the Stoner term leads to a Heisenberg
interaction between the spins. This is graphically illustrated
in Fig. 1.

The lowest moment that potentially could contribute to
three-spin interactions is the sixth moment, with terms of
the type Tr[EEEiαHHHiαjβEEEjβHHHjβkγEEEkγHHHkγ iα]. From Eq. (153),
however, it is clear that there are no direct three-spin interac-
tions from the product of three onsite levels as the product of
three onsite levels may be represented as the sum of pairwise
Heisenberg-like (sssiαsssjβ) terms. If �(nm) = 0 in a system where
all atoms are equivalent, then, according to Eq. (155), the
product of three spins vanishes and cannot contribute anything
to the interaction of the spins.

In fact, from Eq. (154), the lowest moment that may
contribute to a direct geometrical interaction of more than
two spins, namely four spins, must contain four onsite hops.
In addition to the four onsite hops, a minimum of four intersite
hops are required to reach four different atoms. Therefore,
the lowest moment that contributes to a direct four-spin

iα

iα

iα

jβ

jβ

jβ

kγ

kγ

lδ

(a) (b) (c)

FIG. 1. (Color online) Illustration of spin interactions: (a) the
fourth-moment contribution leads to Heisenberg (sssiαsssjβ ) interactions
between spins. (b) The eighth-moment interaction is the lowest
moment to contribute to four-spin interactions of type (sssiαsssjβ )(ssskγ ssslδ).
(c) Eighth-moment contributions that hop through the same atom
twice contribute to three-spin interactions of type (sssiαsssjβ )(sssiαssskγ ).
These diagrams are the analogous spin interactions to cluster
interactions in nonmagnetic binary alloys.58–60
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interaction is given by the eighth moment with terms of the
form Tr[EEEiαHHHiαjβEEEjβHHHjβkγEEEkγHHHkγ lδEEElδHHHlδiα]. As can be
seen from Eq. (154), the four-spin interaction is of the form
(sssiαsssjβ)(ssskγ ssslδ).

The four-spin interaction also includes direct three-spin
interactions that are generated by visiting one atom twice and
that are part of the eighth moment. From Eq. (154) if an orbital
is visited twice, the contribution to the energy is of the form
(sssiαsssjβ)(sssiαssskγ ). The three-spin interactions are schematically
illustrated in Fig. 1(c).

Thus, our analysis of the magnetic interaction results in a
magnetic extension of the cluster expansion for nonmagnetic
alloys58,61,62 with spin interactions of the form63

�U =
∑
iαjβ

Kiαjβ(sssiαsssjβ) +
∑

iαjβkγ

Kiαjβkγ (sssiαsssjβ)(sssiαssskγ )

+
∑

iαjβkγ lδ

Kiαjβkγ lδ(sssiαsssjβ)(ssskγ ssslδ) + · · · , (161)

where we have shown that the expansion coefficients K

are given by the BOP expansion. Because the expansion
coefficients depend on the Fermi level and bandfilling through
the oscillatory response functions χ̂

n
, Eq. (114), it is, however,

difficult to make general statements about the relative strength
of the two-, three-, and four-spin expansion coefficients. As,
however, the lowest moment that contributes to the four-spin
interactions is the eighth moment, and as the energy that
is typically associated with the eighth moment is much
smaller than the energy associated with the fourth moment,
one could expect that for systems where the magnitude of
the moments remains constant on rotation of the spins, the
interaction between the spins is dominated by the Heisenberg
interaction and that the magnitude of the four-spin interac-
tions is significantly smaller. As the three-spin interaction
coefficients are obtained from subsets of hopping paths that
contribute to the four-spin interactions, one could further
assume that the three-spin interactions are smaller than the
four-spin interactions, although one has to be careful with such
simplified arguments as the angular dependence of the hopping
paths may change the sign of the individual contributions to the
moments. The hierarchy of the multispin interactions expected
from these simplified considerations has recently been found
by a spin-cluster expansion of ab initio data for bcc and fcc
iron.64

However, as we will see in the next section, the approxima-
tion of a constant atomic magnetic moment on spin rotation
is rarely valid. Typically, the number of up- and down-spin
electrons are modified when the spins are rotated. This then
changes the onsite levels and, in general, affects the up- and
down-spin density of states in different ways. The modification
of the energy of Eq. (76) has to be calculated from the bond
energy of Eq. (118), where the moments of the up- and
down-spin density of states μ

(n)
iα↑ and μ

(n)
iα↓ have to be handled

individually. The relevant expressions for the evaluation of
the multispin interactions are given in Appendix C. These
expressions are more complicated and cumbersome to analyze
than the trace of the moments. We will therefore, in the
next section, discuss the simplest situation, namely the self-
consistent fourth-moment approximation. This approximation
suffices to show clearly that in situations where the magnitude

of the spin changes on rotation, the Heisenberg model is not
a valid approximation, but terms of the type (sssiαsssjβ)2 and
multispin interactions can play a dominant role.

VI. GINZBURG-LANDAU EXPANSION

In this section we derive a Ginzburg-Landau (GL)
expansion65,66 for the magnetic energy of 3d-valent transition
metals within the fourth-moment approximation. We work
with the averaged density of states ni(E) = (

∑5
α=1 niα)/5 of

the d valence, use local charge neutrality, and assume that the
Stoner exchange parameter is diagonal Iij = Iiδij , which is a
good approximation for the 3d metals, such that the binding
energy Eq. (76) reduces to

UB(���) = Ubond − 1

4

∑
i

Iim
2
i + Urep. (162)

From Eq. (101) for a given set of spin directions sssi the
equilibrium magnetic moments and the energy are obtained
by minimizing the energy with respect to �i = Ei↑ − Ei↓
for every atom i while the average onsite level (E↑

i + E
↓
i )/2

is varied to ensure local charge neutrality. We normalize the
energy ε = (E − a∞)/(2b∞) by half the bandwidth W/2 =
2b∞ and center it on a∞ independent of the spin channel,
so the BOP expansion [Eq. (118)] leads to the following
expression for the atomic bond energy and magnitude of the
atomic moment:

Ubond = b∞
2

∑
n=0

σn↑(χn+2 − γ0↑χn+1 + χn)

+ b∞
2

∑
n=0

σn↓(χn+2 − γ0↓χn+1 + χn), (163)

m =
∑
n=0

(σn↑ − σn↓)χn+1, (164)

where γ0↑ = (E↑ − a∞)/b∞. We have dropped the atom
index i as in the following we will assume that all atoms
are crystallographically equivalent, as, for example, in an
unfrustrated, magnetically ordered crystal where the spins on
the two sublattices point in different directions sssA and sssB

such that cos θ = (sssAsssB) between all neighboring atoms. If
the expansion [Eq. (163)] is taken up to the second moment
n = 2, the expansion leads to the square-root embedding
term of the Finnis-Sinclair potential52 as σ (1) = σ (2) = 0. The
fourth-moment expansion with maximum n = 4 is the lowest
order of approximation that is able to differentiate between
bcc and the close-packed fcc and hcp structure types, while the
sixth-moment expansion resolves the small energy differences
between the fcc and hcp phases.19,20 In this section we use
the fourth-moment model as the basis for the GL expansion
of the magnetic energy as a minimum of four moments are
required to distinguish among ferromagnetic FM, noncollinear
magnetic NCM, and antiferromagnetic AFM configurations.
The GL expansion discussed in the following paragraphs may,
however, in principle, be applied to an arbitrary number of
moments.

We analyze an elemental crystal with equivalent positions
that provides no three-member ring contributions such that
the third moment of the density of states vanishes through

214114-15



RALF DRAUTZ AND D. G. PETTIFOR PHYSICAL REVIEW B 84, 214114 (2011)

Eq. (103) and the first four moments of the nonmagnetic
density of states are given by

μ(0) = 1, μ(1) = 0, μ(2) = b2
1,

(165)
μ(3) = 0, μ(4) = (1 + s)b4

1,

where s is the bimodal shape parameter s = μ(4)/(μ(2))2 − 1.
In the magnetic state the up- and down-spin levels split by
±�̂ = ±�/(2b1) and the moments of the density of states
become

μ(0) = 1, (166)

μ(1)/b1 = ±�̂, (167)

μ(2)/b2
1 = 1 + �̂2, (168)

μ(3)/b3
1 = ±[(2 + cos θ )�̂ + �̂3], (169)

μ(4)/b4
1 = (1 + s) + 2(2 + cos θ )�̂2 + �̂4, (170)

where θ is the angle included between the atomic magnetic
moments on two neighboring atoms i and j , cos θ = (sssisssj ).
By choosing a∞ = 0 and b∞ =

√
μ(2) = b1(1 + �̂2) this leads

to a straightforward expression for the bond energy

Ubond/b1 = 1√
(1 + �̂2)3

[(1 + �̂)2χ2 − (1 − s − cos θ�̂2)χ4

− (1 − s − 2 cos θ�̂2 + �̂4)χ6] (171)

and the magnitude of the magnetic moment

m = 2�̂√
(1 + �̂2)3

[(1 + �̂2)χ2 − (�̂2 − cos θ )χ4]. (172)

As expected from the discussion in the previous section,
the fourth moment leads to a cos θ interaction between the
spins in Ubond. Furthermore, Ubond is a symmetric function
of �, such that Ubond(�) = Ubond(−�) while the magnetic
moment changes sign with the exchange-level splitting,
m(−�) = −m(�). The Fermi level EF that is required for the
evaluation of the response functions in the bond energy and
the magnetic moment depends on the magnetic state because
the modification of the onsite levels through �̂ leads to a
deformation of the density of states. The modification of the
Fermi energy EF on spin rotation may be obtained by taking
into account charge conservation

N = 2χ1 − 1 − s − 2 cos θ�̂2 + �̂4

(1 + �̂2)2
χ5 . (173)

In Fig. 2 the most stable phase obtained from Eq. (162)
with the BOP expansion [Eqs. (171) and (172)] is displayed
as a function of the number of valence electrons N and the
Stoner exchange parameter I . Compared are the nonmagnetic
(NM), FM, and AFM phases and NCM spin configurations
with cos θ varying in steps of 1/4 between FM and AFM.
The lines correspond to the onset of magnetism for the FM,
AFM, and disordered (DIS, cos θ = 0) phases. As the diagram
is symmetric about N = 5, only the region from five to nine
valence electrons is shown. A shape factor s = 1 was used
for the evaluation of the diagram and the exchange splitting
was limited to values |�̂| < 1/2 to avoid unphysically large
distortions of the single-banded density of states.

5 6 7 8 9
0.1

0.2

0.3

0.4

number of d electrons N

AFM

NCM

FM

NM

-3/4 -1/2 -1/4  0  1/4  1/2  3/4

I/W

cos θ

FIG. 2. (Color online) Phase stability diagram showing the most
stable phase as a function of the number of valence electrons N and
the Stoner exchange integral I (NM, green; AFM, red; FM, black;
NCM, cos θ in steps of 1/4). The lines show the onset of magnetism
for the AFM, FM, and disordered magnetic configurations according
to A = 0 [Eq. (179)].

The stability diagram agrees qualitatively with an earlier
diagram obtained by of one of us,7 where the density of states
was explicitly approximated by a (skewed) rectangular band
model. The Stoner exchange parameter required to stabilize
the AFM or DIS magnetic phase increases from the center
of the band outward. Heine and Samson noted that a suitable
fourth-moment response function must have two nodes in order
to drive the stability from AFM in the center of the band to FM
toward the band edges.67 As displayed in Fig. 2, the analytic
fourth-moment response function χ̂4 , Eq. (114), behaves in
exactly this manner and by coupling to cos θ in Eq. (171)
changes the stability from AFM ordering at half-full band to
FM ordering at nearly full band.

Between the AFM and FM stability at a valence electron
count of approximately 7, noncollinear spin configurations
are more stable than either the FM or AFM ordering. In our
simple model the noncollinear spin configurations cannot be
stabilized by a simple Heisenberg-type cos θ dependence, as
a linear dependence of the energy on cos θ would mean that
the minimum of the energy would be at the extrema of the
cosine function and therefore correspond either to FM or to
AFM ordering. Hence, the noncollinear states are stabilized
by non-Heisenberg interactions of the type cos2 θ . These
non-Heisenberg interactions are induced by changes in the
magnetic moment as a function of θ that have their origin
in deformations of the density of states that differ for the
up and down density of states. This leads from Eq. (172)
to a cos2 θ contribution in the magnetic exchange energy
in Eq. (163).

The behavior between 7 and 8 valence electrons is shown
in more detail in Fig. 3. At N = 7 the parallel alignment of
the FM phase has a larger energy than any other rotation angle
θ . The minimum of the energy is found at θ ≈ 6/10π . On
increasing the valence electron count, the minima of the energy
shifts toward smaller angles θ and turns to FM ordering at
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FIG. 3. (Color online) Magnetic contribution to the energy as a
function of the angle θ between spins on neighboring atoms. The
graph shows the energy at a number of valence electrons between
N = 7 and N = 8. It was evaluated for I/b1 = 0.32. Valence electron
numbers for which the FM state is the most stable configuration are
indicated by a solid line.

N ≈ 7.4. At this electron count, the AFM phase can no longer
be stabilized and the magnetic moment collapses such that the
magnetic energy vanishes. This behavior is well established
for Ni, where the magnetic moments practically collapse in
antiferromagnetic spin orientation.68

The non-Heisenberg spin interactions may also be dis-
cussed in the view of the Ginzburg-Landau expansion, which
we will derive from the fourth-moment BOP model next.
The magnetic contribution to the energy Eq. (162) may be
parameterized as a function of the d-onsite energy splitting
�. For � = 0 the material is nonmagnetic, so we may use
�̂ = �/(2b1) as the order parameter in the GL expansion

U (GL)/b1 = U (0)/b1 + A�̂2 + B�̂4, (174)

where U (0) corresponds to the nonmagnetic energy. As a first
step to obtaining the expansion coefficients A and B, the

fourth-moment BOP expansion of the binding energy Eq. (171)
is expanded with respect to �̂, resulting in

A(0) = 1
2 [−χ2 + (3(1 − s) + 2 cos θ )χ4

+ (3(1 − s) + 4 cos θ )χ6] − I (χ2 + cos θχ4)2, (175)

B(0) = 1
8 [3χ2 − (15(1 − s) + 12 cos θ )χ4

− (23 − 15s + 24 cos θ )χ6]

+ I (χ2 + cos θχ4)(χ2 + (2 + 3 cos θ )χ4), (176)

where the superscript (0) indicates that the expansion was
carried out at the Fermi level of the nonmagnetic state. The
expansion coefficient A(0) is a quadratic function of cos θ ;
therefore, the condition for the onset of magnetism A(0) = 0
may be reached by a noncollinear spin configuration at a lower
energy than an FM or AFM spin configuration. Differing from
the usual GL expansion, where the magnetic moment is used
as the order parameter, the fourth-order expansion coefficient
B(0) depends on the Stoner exchange parameter I because of
the nonlinear dependence of the magnetic moment Eq. (172)
on �.

The dependence of the Fermi phase φF on the magnetic
state �̂ may be established to fourth order

φF = φ
(0)
F + a�̂2 + b�̂4, (177)

where φ
(0)
F is the Fermi phase of the nonmagnetic state.

Analytic expressions for a and b may be obtained from
Eq. (173), the expression for a is given by

a = (1 − s + cos θ )
(
3 sin 4φ

(0)
F − 2 sin 6φ

(0)
F

)
6(−1 + cos 2φ

(0)
F + (1 − s)

(
cos 4φ

(0)
F − cos 6φ

(0)
F

) .

(178)

By inserting the expansion of the Fermi energy Eq. (177)
into A(0) and B(0) and expanding the resulting expressions to
fourth order in �̂, the GL expansion for the magnetic energy
is completed.

As for A(0), the dependence of A on θ does not follow
a simple Heisenberg interaction but includes quadratic terms
cos2 θ

A = 2 sin3 ϕ

1575π
{1200 − 675s + 1200(1 − s) cos 2ϕ + 750(1 − s) cos 4ϕ + cos θ (690 + 1110 cos 2ϕ + 300 cos 4ϕ)

−I [1050 sin ϕ − 350 sin 3ϕ + cos θ (700 sin 3ϕ − 420 sin 5ϕ) + cos2 θ (210 sin ϕ + 154 sin 3ϕ + 42 sin 5ϕ − 126 sin 7ϕ)]}.
(179)

Nonlinear terms in cos θ are also observed in B. The critical
value of I for the onset of magnetism evaluated from A = 0
is shown in Fig. 2 for the onset of the ferromagnetic, the
antiferromagnetic and disordered magnetic state.

As expected the GL expansion Eq. (174) is only valid for
small values of �̂ � 1. This is seen in Fig. 4 and leads to
the inability of the GL expansion to predict the complete
phase diagram of Fig. 2 as the expansion predicts the wrong
sequence of magnetic ordering for large values of �̂. In Fig. 4
the deviations of the GL expansion from the BOP reference

are illustrated. While the overall behavior remains intact even
for relatively large values of �̂, the equilibrium values of the
magnetic energy are predicted incorrectly as compared to the
BOP reference.

This is the first time that the prefactors A and B for a mag-
netic GL expansion have been predicted from first principles.
Even though the dependence of the fourth moment on the spin
directions follows a simple Heisenberg interaction, because of
the relaxation of the magnitude of the magnetic moment as
a function of angle between the spins, both A and B depend
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FIG. 4. (Color online) Magnetic contribution to the energy as
a function of the exchange-level splitting �̂ for different values of
the Stoner exchange integral. The graph shows the energy at N = 5
electrons and AFM spin orientation. The black lines correspond to
the fourth-moment analytic BOP expansion of the energy [Eq. (162)],
and the dashed lines correspond to the fourth-order GL expansion
[Eq. (174)].

on cos2 θ . Therefore, a Heisenberg model cannot describe the
energy correctly. In fact, in our unfrustrated nearest-neighbor
model the Heisenberg interaction alone is unable to stabilize
noncollinear spin configurations, the stability of the NCM
phase depends critically on the non-Heisenberg cos2 θ term.
Because of the O(4) expansion of the Ginzburg-Landau model,
it is unable to reproduce the fourth-moment BOP expansion for
stable, saturated magnetic moments that do not fulfill �̂ � 1,
such that the GL expansion is unable to model the stability
of competing magnetic phases in iron, for example. Thus,
although the maximum and minimum DFT energy values as
a function of � can be fitted by a fourth-order GL expansion,
the curvatures are wrong due to the neglect of higher-order
contributions (see, e.g., Fig. 3 in Ref. 69).

VII. SUMMARY

From a second-order expansion of the DFT energy func-
tional an extension of the tight-binding bond model to include
noncollinear magnetism and charge transfer was derived.
Within the framework of bond-order potentials, an analytic
approximation of the magnetic TB energy was developed
and the necessary gradients for self-consistency, forces, and
torques were established. A discussion of the moments
expansion then showed that atomic magnetic moments with
a fixed length are expected to interact with a Heisenberg-type
interaction, while four-spin interactions are introduced only by
the eighth and higher moments. We, furthermore, showed that
the GL expansion of the magnetic energy may be obtained
analytically from the TB and BOP representation of the
electronic structure. At the fourth-moment level, the analytic
magnetic bond-order potential predicts the correct sequence
of magnetic ordering in agreement with earlier work. The GL
expansion reproduces the BOP predictions for small values of
�̂ but deviates significantly for larger values and is therefore
not suitable for the comparison of the stability of different

magnetic phases. From our expansion we also predict that
Heisenberg interactions of the type (sssisssj ) are not adequate for
the description of spin interactions if the magnitude of the
atomic magnetic moments is altered significantly when the
spins are rotated.

APPENDIX A: MATRIX ELEMENTS
OF THE SDFT ENERGY

The second-order expansion of Eqs. (6) and (31),

U =
∑
ij

n
j

i T
i
j +

∑
ij

n
j

i V
i
j +

∑
ij

n
j

i K
i
j +

∑
ij

mmm
j

i BBB
i
j

+1

2

∑
ij

∑
i ′j ′

J
jj ′
ii ′ ni

jn
i ′
j ′ − 1

4

∑
ij i ′j ′

I ii ′
jj ′mmm

j

i mmm
j ′
i ′ ,

contains the following matrix elements. The kinetic energy
Eq. (7) is given by

T KS =
∑
ij

n
j

i T
i
j , (A1)

with

T i
j = 〈ϕi |T̂ KS|ϕj 〉. (A2)

The external energy is given by

Uext =
∫

Tr(ρρρ(rrr)WWW (rrr))d	

=
∫

n(rrr)V (rrr)d	 +
∫

μBBBBmmmd	

=
∑
ij

n
j

i

∫
V i

j d	 + μB

∑
ij

mmm
j

i

∫
BBBχi

jd	

=
∑
ij

n
j

i V
i
j +

∑
ij

mmm
j

i BBB
i
j , (A3)

with

V i
j =

∫
χi

jV (rrr)d	 (A4)

and

BBBi
j = μB

∫
χi

jBBB(rrr)d	, (A5)

and the Hartree energy by

UH = e2

2

∫
n(rrr)n(rrr ′)
|rrr − rrr ′| d	d	′ =

∑
ij

∑
i ′j ′

1

2
n

j

i n
j ′
i ′ J

jj ′
Hii ′ ,

(A6)

with

J
jj ′
Hii ′ = e2

∫
χi

j (rrr)χi ′
j ′(rrr ′)

|rrr − rrr ′| d	d	′. (A7)

The second-order expansion of the exchange-correlation
energy is written as

U
(2)
XC =

∑
ij

n
j

i K
i
j + 1

2

∑
ij i ′j ′

n
j

i n
j

i ′J
ii ′
XCjj ′ − 1

4

∑
ij i ′j ′

m
j

i m
j

i ′I
ii ′
jj ′ ,

(A8)
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with

Ki
j =

∫
χi

jKXC(rrr)d	, (A9)

J ii ′
XCjj ′ =

∫
χi

j (rrr)χi ′
j ′(rrr ′)JXC(rrr,rrr ′)d	, (A10)

I ii ′
jj ′ =

∫
χi

j (rrr)χi ′
j ′ (rrr ′)IXC(rrr,rrr ′)d	. (A11)

APPENDIX B: EXPLICITLY NONORTHOGONAL
TIGHT-BINDING BOND MODEL

In Sec. III B we provide the contributions to the binding
energy in the tight-binding bond model in mixed co- and con-
travariant notation, which looks very similar to an orthogonal
TB model. Here we list the expressions for the equivalent but
explicitly nonorthogonal representation of the TB bond model,

starting from the expressions for the Mulliken charges and the
local magnetic moments, Eqs. (57) and (58),

qiα = δniα
iα =

∑
jβ

Siαjβδnjβiα,

mmmiα = mmmiα
iα =

∑
jβ

Siαjβmmm
jβiα.

From this the expressions for the Coulomb and exchange
energy, Eqs. (59) and (60), are given by

UC = 1

2

∑
iα,jβ

Jiαjβ

∑
kγ

Siαkγ δnkγ iα
∑
lδ

Sjβlδδn
lδjβ, (B1)

UX = −1

4

∑
iα,jβ

Iiαjβ

∑
kγ

Siαkγmmm
kγ iα

∑
lδ

Sjβlδmmm
lδjβ . (B2)

The Hamiltonian [Eq. (68)] is given by

Hiαμjβν = H
(0)
iαjβδμν +

⎡
⎣∑

lδ

Skγ lδ

⎛
⎝∑

kγ

Jiαkγ δnlδkγ δμν − 1

2

∑
kγ

Iiαkγmmm
lδkγσσσμν

⎞
⎠ + Viαδμν + BBBiασσσμν

⎤
⎦ Siαjβ, (B3)

similarly to the expression obtained in Ref. 34. Differing from
the mixed co- and contravariant notation, the modification of
the Hamiltonian by electron transfer, magnetism, or external
fields is no longer diagonal but proportional to the overlap
matrix Siαjβ .

The intersite representation of the bond energy Eq. (70) is
given by

Ubond =
∑

iαμjβν

(Hiαμjβν − EiαμνSiαjβ )ρjβiα
νμ . (B4)

The electron transfer energy Eq. (72) may be represented as

Utrans =
∑
iαjβ

E
(0)
iα Siαjβδnjβiα (B5)

and the preparation energy is given by Eq. (73) as

Uprep =
∑
iα

(
E

(0)
iα − E

(at)
iα

)
N

(0)
iα ,

where we used Siαiα = 1 and the fact that the reference density
matrix is diagonal,

n(0)jβiα = N
(0)
iα δjβiα. (B6)

The sum of the bond energy, electron transfer energy, and
preparation energy adds up to

Ubond + Utrans + Uprep =
∑
iαjβ

H
(0)
jβiαniαjβ −

∑
iα

E
(at)
iα N

(0)
iα .

The expressions for the energy of free atoms and the repulsive
energy, Eqs. (75) and (77), remain as they are, while the
expressions for the external energy Uext follow from the
transformations of qiα and mmmiα .

The onsite representation of the bond energy may also be
given in a nonorthogonal basis. The spectrally resolved density
matrix20

njβiα
νν (E) =

∑
n

(
c(n)jβ
ν

)∗
c(n)iα
ν δ(E − εn), (B7)

may be related to the density of states30

niαν(E) =
∑

n

∑
jβ

Siαjβ

(
c(n)jβ
ν

)∗
c(n)iα
ν δ(E − εn). (B8)

The number of electrons associated with orbital |iαν〉 is
obtained from

Niαν =
∫ EF

niαν(E) dE ,

and the bond energy Eq. (B4) in the onsite representation is
given by Eq. (100),

Ubond =
∑
iα

∫ EF

(E − Eiα↑)niα↑(E) dE

+
∑
iα

∫ EF

(E − Eiα↓)niα↓(E) dE .

1. Expressions used in Refs. 46 and 43

While from Eq. (70) a generalization of the bond energy of
orbital |iαν〉 would read

Ubond,iαν =
∑
jβν

(Hiαμjβν − EiαμνSiαjβ)ρjβiα
νμ , (B9)
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one may prefer an explicitly symmetric separation of the bond
energy. This is known as a the covalent bond energy,43,46 which
we give in a magnetic generalization as follows:

Ucov,iανjβμ = [
Hiαμjβν − 1

2 (Eiαμν + Ejβμν)Siαjβ

]
ρjβiα

νμ .

(B10)

Bester and Fähnle, in Ref. 43, refer to the diagonal terms i = j

as the polarization energy Upolar,iανiβμ = Ucov,iανiβμ. Clearly,
if one takes the sum over all bonds, the sum of the covalent
bond energy and the polarization energy corresponds to the
bond energy,

Ubond =
i �=j∑

iανjβμ

Ucov,iανjβμ +
∑

iανβμ

Upolar,iανiβμ. (B11)

The electron transfer energy Eq. (72) is identical to the
expression given for the promotion energy in Ref. 43 if one
makes the approximation that the reference atomic levels E

(0)
iα

coincide with the atomic energy levels E
(at)
iα such that the

preparation energy is zero.

2. Expressions used in Refs. 29 and 30

In his book Finnis29 follows the definition of the promotion
energy given in Ref. 43. Eq. (7.37) of Ref. 29 reads

U (7.37)
prom =

∑
iα

E
(at)
iα qiα, (B12)

which coincides with our definition of the electron transfer
energy Eq. (72),

Utrans =
∑
iα

E
(0)
iα qiα,

if E
(at)
iα = E

(0)
iα such that the preparation energy contribution

is zero as discussed above and where one has to be careful
with the comparison as Finnis defines qiα as the total number
of electrons Niα in orbital |iα〉, while we use the charges as
the difference between the number of electrons in an orbital
to the number of electrons of a free atom in the same orbital,
qiα = Niα − N

(0)
iα . Paxton30 uses the same definition of the

promotion energy.
However, Finnis then introduces a modification of

this expression, given in Eq. (7.39) of Ref. 29, that
includes the preparation energy. In our notation this

reads

U (7.39)
prom =

∑
iαβ

(
H

(0)
iαiβniαiβ − E

(at)
iα N

(0)
iα

)
, (B13)

and may be identified as

U (7.39)
prom = Uprep + Utrans +

α �=β∑
iαβ

H
(0)iα
iβ n

iβ

iα, (B14)

where the last term on the right-hand side corresponds to the
atom-diagonal contribution of the bond energy, Eq. (71).

As Finnis in Eq. (7.14) and also Paxton introduce the bond
energy as strictly defined between two different atoms

U
(7.14)
bond =

i �=j∑
iαjβ

H
(0)
iαjβniαjβ, (B15)

we recover

U
(7.14)
bond + U (7.39)

prom = Ubond + Utrans + Uprep

=
∑
iαjβ

H
(0)
jβiαniαjβ −

∑
iα

E
(at)
iα N

(0)
iα , (B16)

such that the sum of the contributions is identical to our
expressions. Finnis then continues to modify the expression
for the energy in Sec. 7.5.3 of Ref. 29. Thereby he uses a
modification of the covalent bond energy and changes the
separation of the energy in different terms. He explicitly
defines a crystal field term Ucfs and a term UMq that is closely
related to our definition of the electron transfer energy. These
two terms are then integrated into the repulsive energy. In this
way the repulsive energy becomes dependent on the charge and
density matrix, which is in contrast to the usual parametrization
of the repulsive energy as a potential function. Finnis is aware
of this and argues that the relevant terms are small.

APPENDIX C: MULTIPLICATION OF ONSITE MATRICES

The evaluation of the local moments may be simplified by
exploiting that the magnetic contribution to the Hamiltonian is
diagonal in real space and off-diagonal in spin space, Eq. (69),
while the nonmagnetic contributions are off-diagonal in real
space and diagonal in spin space. As the onsite matrix elements
are given as linear combination of Pauli matrices, we start by
analyzing the products of multiple Pauli matrices.

The multiplication of up to four Paul matrices may be
simplified by using the following identities:

σσσn1σσσn2 = δn1n2111 + √−1εn1n2n3σσσn3 , (C1)

σσσn1σσσn2σσσn3 = √−1εn1n2n3111 + δn1n2σσσn3 + δn2n3σσσn1 − δn1n3σσσn2 , (C2)

σσσn1σσσn2σσσn3σσσn4 = (
δn1n2δn3n4 − δn1n3δn2n4 + δn1n4δn2n3

)
111 + √−1

(
δn1n2εn3n4n5 + δn3n4εn1n2n5

)
σσσn5

−
√−1

2

(
εn2n3n4σσσn1 − εn1n3n4σσσn2 + εn1n2n4σσσn3 − εn1n2n3σσσn4

)
, (C3)

where we used the Einstein summation convention. Using these relations, the products of the form (sssiασσσ )(sssjβσσσ ) · · · that are
required for the evaluation of the moments become

(sssiασσσ )(sssjβσσσ ) = (sssiαsssjβ)111 + √−1(sssiα × sssjβ)σσσ, (C4)

(sssiασσσ )(sssjβσσσ )(ssskγσσσ ) = √−1[sssiα,sssjβ,ssskγ ]111 + (sssiαsssjβ)(ssskγσσσ ) + (sssjβssskγ )(sssiασσσ ) − (sssiαssskγ )(sssjβσσσ ), (C5)
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(sssiασσσ )(sssjβσσσ )(ssskγσσσ )(ssslδσσσ )

= [(sssiαsssjβ)(ssskγ ssslδ) + (sssiαssslδ)(sssjβssskγ ) − (sssiαssskγ )(sssjβssslδ)]111 + √−1[(sssiαsssjβ)(ssskγ × ssslδ)σσσ + (ssskγ ssslδ)(sssiα × sssjβ)σσσ ]

−
√−1

2
{(sssiασσσ )[sssjβ,ssskγ ,ssslδ] − (sssjβσσσ )[sssiα,ssskγ ,ssslδ] + (ssskγσσσ )[sssiα,sssjβ,ssslδ] − (ssslδσσσ )[sssiα,sssjβ,ssskγ ]}, (C6)

where [sssiα,sssjβ,ssskγ ] is the determinant and Eq. (C4) is a
well-known property of Pauli matrices. The above products
are complex. However, for the evaluation of the moments, each
hopping path is evaluated in forward and backward directions.
For example, if a path contains the product (sssiασσσ )(sssjβσσσ )(ssskγσσσ ),
then the equivalent backward path will contain the product
(ssskγσσσ )(sssjβσσσ )(sssiασσσ ). This means that for the further evaluation
of the moments we may drop all contributions of the above
products that add up to zero when a given product of
Hamiltonian matrix elements is calculated in forward and
backward directions. For example,

(sssiα × sssjβ) + (sssjβ × sssiα) = 0 , (C7)

and, therefore, contributions from cross products or determi-
nants do not need to be taken into account. We see that all
contributions that are premultiplied by

√−1 drop out, so, as
expected, we are left with only real contributions. Thus, we
obtain the much simplified expressions

[(sssiασσσ )(sssjβσσσ ) + (sssjβσσσ )(sssiασσσ )]/2 = (sssiαsssjβ)111, (C8)

[(sssiασσσ )(sssjβσσσ )(ssskγσσσ ) + (ssskγσσσ )(sssjβσσσ )(sssiασσσ )]/2

= (sssiαsssjβ)(ssskγσσσ ) + (sssjβssskγ )(sssiασσσ ) − (sssiαssskγ )(sssjβσσσ ),

(C9)

[(sssiασσσ )(sssjβσσσ )(ssskγσσσ )(ssslδσσσ ) + (ssslδσσσ )(ssskσσσσ )(sssjβσσσ )(sssiασσσ )]/2

= [(sssiαsssjβ)(ssskγ ssslδ) + (sssiαssslδ)(sssjβssskγ ) − (sssiαssskγ )(sssjβssslδ)]111.

(C10)

Equations (157)–(159) follow directly as Tr[σi] = 0 for all
Pauli matrices i = x,y,z and where, for simplicity of notation,
we did not write down the backward path explicitly on the
left-hand side. We do this from now on, whereby the left-hand
side of the following equations implicitly corresponds to the
average of the forward and the backward products.

Because we are only interested in the ↑↑ and ↓↓ matrix
elements for the calculation of the moments on atom n and
orbital κ , only the Pauli matrix σσσ z can contribute. By denoting
the z axis on orbital |nκ〉 as sssnκ = eeez, we arrive at the following
expressions, where ν =↑= + and ν =↓= −,

〈nκν|(sssiασσσ )(sssjβσσσ )|nκν〉 = (sssiαsssjβ), (C11)

〈nκν|(sssiασσσ )(sssjβσσσ )(ssskγσσσ )|nκν〉 = ±[(sssiαsssjβ)(ssskγ sssnκ ) + (sssjβssskγ )(sssiαsssnκ ) − (sssiαssskγ )(sssjβsssnκ )], (C12)

〈nκν|(sssiασσσ )(sssjβσσσ )(ssskγσσσ )(ssslδσσσ )|nκν〉 = (sssiαsssjβ)(ssskγ ssslδ) + (sssiαssslδ)(sssjβssskγ ) − (sssiαssskγ )(sssjβssslδ). (C13)

With the decomposition of the onsite Hamiltonian according to Eq. (150) we next write down the expressions for the products of
the onsite matrix elements. Spin-space products of the onsite Hamiltonian yield the following for up- and down-spin channels
with respect to the coordinate system on orbital |nκ〉[

EEEiαEEEjβ

]
νν

= �
(nm)
iα �

(nm)
jβ ± �

(nm)
iα �

(m)
jβ (sssjβsssnκ ) ± �

(nm)
jβ �

(m)
iα (sssiαsssnκ ) + �

(m)
iα �

(m)
jβ (sssiαsssjβ), (C14)

[EEEiαEEEjβEEEkγ ]νν = �
(nm)
iα �

(nm)
jβ �

(nm)
kγ ± �

(nm)
iα �

(nm)
jβ �

(m)
kγ (ssskγ sssnκ ) ± �

(nm)
jβ �

(nm)
kγ �

(m)
iα (sssiαsssnκ ) ± �

(nm)
kγ �

(nm)
iα �

(m)
jβ (sssjβsssnκ )

+�
(nm)
iα �

(m)
jβ �

(m)
kγ (sssjβssskγ ) + �

(nm)
jβ �

(m)
kγ �

(m)
iα (ssskγ sssiα) + �

(nm)
kγ �

(m)
iα �

(m)
jβ (sssiαsssjβ)

±�
(m)
iα �

(m)
jβ �

(m)
kγ [(sssiαsssjβ)(ssskγ sssnκ ) + (sssjαssskβ)(sssiγ sssnκ ) − (sssiαssskβ)(sssjγ sssnκ )], (C15)[

EEEiαEEEjβEEEkγEEElδ

]
νν

= �
(nm)
iα �

(nm)
jβ �

(nm)
kγ �

(nm)
lδ ± �

(nm)
iα �

(nm)
jβ �

(nm)
kγ �

(m)
lδ (ssslδsssnκ ) ± �

(nm)
iα �

(nm)
jβ �

(nm)
lδ �

(m)
kγ (ssskγ sssnκ )

±�
(nm)
iα �

(nm)
kγ �

(nm)
lδ �

(m)
jβ (sssjβsssnκ ) ± �

(nm)
jβ �

(nm)
kγ �

(nm)
lδ �

(m)
iα (sssiαsssnκ ) + �

(nm)
iα �

(nm)
jβ �

(m)
kγ �

(m)
lδ (ssskγ ssslδ)

+�
(nm)
iα �

(nm)
kγ �

(m)
jβ �

(m)
lδ (sssjβssslδ) + �

(nm)
jβ �

(nm)
kγ �

(m)
iα �

(m)
lδ (sssiαssslδ) + �

(nm)
iα �

(nm)
lδ �

(m)
jβ �

(m)
kγ (sssjβssskγ )

+�
(nm)
jβ �

(nm)
lδ �

(m)
iα �

(m)
kγ (sssiαssskγ ) + �

(nm)
kγ �

(nm)
lδ �

(m)
iα �

(m)
jβ (sssiαsssjβ) ± �

(nm)
iα �

(m)
jβ �

(m)
kγ �

(m)
lδ [(sssjβssskγ )(ssslδsssnκ )

+ (ssskγ ssslδ)(sssjβsssnκ ) − (sssjβssslδ)(ssskγ sssnκ )] ± �
(nm)
lδ �

(m)
iα �

(m)
jβ �

(m)
kγ [(sssiαsssjβ)(ssskγ sssnκ ) + (sssjβssskγ )(sssiαsssnκ )

− (sssiαssskγ )(sssjβsssnκ )] ± �
(nm)
kγ �

(m)
lδ �

(m)
iα �

(m)
jβ [(sssiαsssjβ)(ssslδsssnκ ) + (sssjβssslδ)(sssiαsssnκ ) − (sssiαssslδ)(sssjβsssnκ )]

±�
(nm)
jβ �

(m)
kγ �

(m)
lδ �

(m)
iα [(sssiαssskγ )(ssslδsssnκ ) + (ssskγ ssslδ)(sssiαsssnκ ) − (sssiαssslδ)(ssskγ sssnκ )]

+�
(m)
iα �

(m)
jβ �

(m)
kγ �

(m)
lδ [(sssiαsssjβ)(ssskγ ssslδ) + (sssiαssslδ)(sssjβssskγ ) − (sssiαssskγ )(sssjβssslδ)]. (C16)

The moments of the density of states may now be obtained by multiplying the onsite matrix elements with intersite Hamiltonian
matrix elements.
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