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Temperature-driven phase transitions from first principles including all relevant excitations:
The fcc-to-bcc transition in Ca
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The temperature-driven fcc-to-bcc phase transition in calcium is examined by a fully ab initio-based
integrated technique including all relevant finite-temperature excitation mechanisms. The approach is based
on density-functional-theory calculations with a controlled numerical stability of below 0.5 meV/atom for
the electronic, quasiharmonic, and structural excitations and better than 1 meV/atom for the explicitly
anharmonic contribution. The latter is achieved by successfully utilizing the recently developed hierarchical
upsampled thermodynamic integration using Langevin dynamics method. This approach gives direct access to
a numerically highly precise volume- and temperature-dependent free-energy surface and derived properties.
It enables us to assign the remaining deviations from experiment to inherent errors of the presently available
exchange-correlation functionals. Performing the full analysis with both of the conventional functionals, local
density approximation and generalized gradient approximation, we demonstrate that—when considered on an
absolute scale—thermodynamic properties are dictated by a strikingly similar free energy vs volume curve.
Further, we show that, despite an error in the T = 0 K energy difference between the two phases (≈6 meV in
the present case), an excellent agreement of the temperature dependence of the Gibbs energy difference with
experimentally derived data is feasible. This makes it possible, for instance, to unveil unreliable and possibly
erroneous experimental input used in popular thermodynamic databases as we explicitly demonstrate for the
isobaric heat capacity of calcium.
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I. MOTIVATION

For roughly two decades, ab initio-based methods for
pressure-driven phase transitions have been successfully
applied to various materials. Prominent examples include
calcium,1 iron,2 and even much more complex materials such
as actinides.3 In contrast, an accurate and complete ab initio
description of temperature-driven transitions is still in its
infancy even for simple elementary metals. Corresponding
studies are rare4,5 and a reliable extension to complex materials
will only be feasible upon major advances in the field.

The main reason for the difficulty of dealing with
temperature-induced phenomena is twofold: (1) The relevant
energy scales differ typically by at least one order of magni-
tude. While pressure-dictated transitions are often determined
by energy differences of a few dozen meV/atom, a temperature
description generally relies on (free) energy differences of a
few meV/atom. Obtaining such accuracy and stability is a
demanding and challenging ab initio task. (2) While pressure-
induced transitions can usually be reasonably resolved by
considering solely the T = 0 K contribution, the situation
completely changes for temperature-induced transitions. The
reason is that various excitations become available and
these will be eventually the driving force for the transition.
An accurate ab initio description of such finite-temperature
excitations is, however, a challenging task due to the large
phase space which needs to be sampled.

Calcium is in this respect a prototypical example. Its
temperature-pressure phase diagram contains interesting and
technologically important phases. Much interest in calcium is

due to its remarkable superconducting properties.6 As a con-
sequence, pressure-induced transitions have been intensively
studied with ab initio methods. Moreover, calcium shows
also a temperature-induced transition from fcc to bcc. This
issue has been addressed using ab initio methods,4 albeit
including only noninteracting phonon excitations (quasihar-
monic approximation) to the free energy. This contribution
dominates the free energy at finite temperatures in absolute
terms. However, small energy differences can be crucial
for temperature-driven transitions and a detailed balance of
higher-order contributions, such as anharmonicity, must be
explored.

A major goal of the present study is to shed light on
the role of all relevant finite temperature contributions to the
fcc-to-bcc phase transition in calcium (Sec. IV B). The study
is performed utilizing a fully self-consistent and integrated ab
initio approach (Sec. II) firmly founded on density-functional
theory7 (DFT). We consider electronic, quasiharmonic, an-
harmonic, and vacancy excitations (Secs. III A to III E)
with a special focus on extreme numerical precision. For
the standard contributions we guarantee a convergency of
better than 0.5 meV/atom, while anharmonicity is captured
below 1 meV/atom. This accuracy makes it possible to
correlate remaining discrepancies between our calculation
and experiment to DFT errors related to the unavoidable
approximation in the exchange correlation (xc) functional. In
particular, we are able to reveal a free energy vs volume curve
that is—to a good approximation—independent of the used xc
functional if considered on an absolute scale (Secs. IV C and
IV D).
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Besides a detailed investigation of the phase transition, we
provide a comparison with experiment for various derived
thermodynamic properties (Secs. IV D and IV E). For that
purpose, we compile a large set of available experimental
data. On the theoretical side, we compute the full volume-
and temperature-dependent Helmholtz free-energy surface
allowing us to extract properties at constant pressure and thus
providing a sound basis for an unbiased comparison. Based on
this approach we are able to resolve a systematic discrepancy
between two sets of experimental data for the isobaric heat
capacity of calcium (Sec. IV E).

II. GENERAL METHODOLOGY

As indicated above, the central quantity in this study is the
Helmholtz free-energy surface F (V,T ) as a function of volume
V and temperature T . For each of the considered phases, fcc
and bcc, there is one such surface. The Helmholtz free energy
is a theoretically conveniently accessible thermodynamic po-
tential and provides access to all experimental thermodynamic
properties. Experiments are typically performed at constant
pressure P and we therefore need to perform a Legendre
transformation to the Gibbs energy G(P,T ) = F (V,T ) +
PV . We focus on the following derived quantities at ambient
pressure: Gibbs energy difference between bcc and fcc, volume
expansion V (T ), the isothermal bulk modulus BT (T ), and in
particular the isobaric heat capacity CP (T )8:

V (T ) =
[
∂G(P,T )

∂P

]
T

, (1)

BT (T ) = 1

κ
with κ = − 1

V (T )

[
∂2G(P,T )

∂P 2

]
T

, (2)

CP (T ) = −T

[
∂2G(P,T )

∂T 2

]
P

. (3)

To allow a convenient comparison with experiment we convert
the volume expansion into a linear expansion ε(T ) and a linear
expansion coefficient α(T ) according to

ε(T ) = L(T ) − Lref

Lref
, α(T ) = 1

L(T )

∂L(T )

∂T
, (4)

where L(T ) = [V (T )]1/3 and Lref = [V fcc
0 K ]1/3, with V fcc

0 K the
equilibrium volume of the fcc phase at T = 0 K (and given
pressure P ). Note that V (T ) is here assumed to be given per
atom in order to guarantee consistency between fcc and bcc
and that the reference volume corresponds always to the fcc
phase. The latter is, in particular, true even when we consider
the linear expansion of the high-temperature bcc phase.

The surface F (V,T ) for each phase is completely obtained
within DFT methodology. While in principle exact, a practical
DFT implementation relies on an approximation of the electron
exchange and correlation. The two most commonly used as-
sumptions are the local density approximation (LDA) and the
generalized gradient approximation (GGA). Our philosophy
is to calculate all properties using both approximations, an
approach found to be very useful for estimating intrinsic error
bars.9

Focusing first on the perfect crystal [vacancies are added in
Eq. (6)], we separate the free energy into the following terms:

F = E0K + F̃ el + F qh + F ah, (5)

with E0K being volume dependent and the other terms both
volume and temperature dependent. In Eq. (5), E0K is the
zero-temperature total electronic energy, F̃ el the electronic free
energy (the tilde reminding us that E0K is not included), F qh the
quasiharmonic free energy, and F ah the explicitly anharmonic
free energy.

The total electronic energy E0K is calculated within the
framework of “standard” DFT,7 while F̃ el requires the finite-
temperature extension of DFT by Mermin.10 The quasihar-
monic approximation used to obtain F qh is a general (not
necessarily requiring DFT) and well-established approach
(see, e.g., Ref. 11) based on noninteracting but volume-
dependent phonons. It has been applied in the context of DFT
since the late 1980s (e.g., Ref. 12). The biggest challenge
is related to the computation of the explicitly anharmonic
part F ah, which involves the interaction of phonons with
themselves. Due to demanding computations, DFT based
investigations of anharmonicity have been put forward only
recently, with Ref. 13 being one of the pioneering studies.

In the present work, we utilize the recently developed
upsampled thermodynamic integration using Langevin dy-
namics (UP-TILD) method14 to efficiently calculate F ah. The
UP-TILD method is a multistep approach with a Langevin
dynamics-based thermodynamic integration at its core. It
provides a high accuracy in F ah within only a few 100
molecular dynamics steps at the highest convergence level. The
approach relies on the observation that certain convergence
parameters such as k-point sampling and energy cutoff are
mainly needed to converge the kinetic electronic energy, while
the charge density is well described already at significantly
reduced parameters. Thus, increasing convergence gives rise to
a substantial volume-dependent shift in the energies, but affects
the forces and thus the shape of the potential energy surface
only little. With this knowledge, one can design a hierarchical
scheme with varying convergence parameters optimized for
highest efficiency.14

A surface according to Eq. (5) is calculated for a perfect
fcc and bcc crystal as well as for crystals containing a
single point defect. This allows to fully include the effect of
thermodynamically excited point defects on thermodynamic
properties within the noninteracting regime. We specifically
consider vacancies since other point defects such as intersti-
tials are thermodynamically irrelevant due to high formation
energies.15 In particular, we compute the complete tempera-
ture dependence of the Gibbs energy of vacancy formation
including all of the above-mentioned excitation mechanisms
(electronic, quasiharmonic, and anharmonic). Inclusion of
the anharmonic term has been found to be important for an
accurate determination of the entropy of formation.16

The final Gibbs energy surface G(P,T ) as a function of
pressure P and temperature T is obtained from8

G(P,T ) = F p(VP ,T ) + PVP − kBT ceq(P,T ). (6)

Here the Helmholtz free energy of the perfect crystal F p is
calculated according to Eq. (5) and at a volume VP which
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is consistently adjusted to correspond to the given pressure
P . The latter is volume and temperature dependent and
related to the free-energy surface by P = −∂F p/∂VP and
we stress that we perform the derivative on the full perfect
bulk free-energy surface including all excitations. This gives
us not only self-consistent access to the thermal part of the
pressure term arising from ionic vibrations, but also to the
contribution of the other excitations. Further in Eq. (6), kB

is the Boltzmann constant and ceq is the equilibrium vacancy
concentration obtained from

ceq(P,T ) = exp[−Gf(P,T )/(kBT )], (7)

with Gf denoting the fully pressure- and temperature-
dependent Gibbs energy of vacancy formation (Sec. III E).

III. METHODOLOGICAL DETAILS

The calculations are performed within the projector aug-
mented wave (PAW) method17 as implemented in the VASP

software package18,19 in combination with the provided PAW
potentials.20 In particular, we employ a calcium PAW potential
treating the eight highest electrons as valence electrons
(3p64s2) for both LDA and GGA calculations. Convergence
parameters are, in general, adjusted to give errors of below
0.5 meV/atom for E0K, F̃ el, and F qh and below 1 meV/atom
for F ah at all temperatures and volumes. The convergence
parameters are explicitly given in the following sections.

The accuracy of the PAW potential is carefully evaluated for
the E0K and F̃ el contributions using two distinct all-electron
approaches: the full-potential (linearized) augmented plane
wave (FLAPW) + local orbital method,21 as implemented
in WIEN2K,22 and a full-potential linear muffin-tin orbitals
(FPLMTO) method.23 Sections III A and III B give the details
of the all-electron calculations and Table III and Fig. 7(c) show
the results.

As for the xc electron energy and potential functionals we
use the LDA as well as the GGA approximation. For LDA
we apply the scheme of Ceperley-Alder24 as parametrized by
Perdew and Zunger.25 For GGA we use the Perdew-Burke-
Ernzerhof26 (PBE) parametrization.

A. T = 0 K energy

For our high-accuracy purposes, it turns out to be necessary
to use a careful procedure for obtaining the T = 0 K electronic
binding energy E0K [Eq. (5)]. This contribution is practically
not directly accessible, since at T = 0 K the Fermi distribution
corresponds to a step function resulting in high numerical
problems. We find that a simple extrapolation scheme for
E0K based on the ideal entropy can result in an error of
several meV/atom if used in combination with the Fermi
broadening. The (first-order) Methfessel-Paxton scheme,27

which introduces artificial (even negative) occupancies at the
expense of an unphysical electronic free energy, is more suited
for the purpose of giving an accurate extrapolation for E0K.
We ensure, however, that upon a careful (small broadening
with sufficient k points) extrapolation we arrive at the same
and exact E0K also with the Fermi-Dirac scheme.

To parametrize the T = 0 K energy-volume depen-
dence we use the Vinet equation of state28 (volume range

≈−10% to 12% around equilibrium). This equation of state
has been found to describe theoretical and experimental curves
of various materials most accurately.29 We work with >1650 k

points in the irreducible Brillouin zone and with a plane-wave
cutoff of 300 eV when calculating E0K for both functionals and
both phases. These values guarantee an energy convergency of
well below 0.1 meV/atom in the bcc-fcc energy difference in
the full volume range giving an excellent and unbiased starting
point for the free-energy calculations.

For the FLAPW calculations we use constant muffin-tin
sphere radii of RMT = 2.8 bohr radius for both GGA and
LDA. The product of the muffin-tin sphere radius and the
maximum reciprocal space vector, RMTkmax, is set to 12. The
k-point sampling is equivalent to that in the PAW calculations.
The maximum l value for the waves inside the muffin-tin
spheres and the largest reciprocal vector �G in the charge
Fourier expansion are set to lmax = 12 and Gmax = 18 (bohr
radius)−1, respectively. Relativistic effects are fully included
within the muffin-tin spheres and using the scalar relativistic
approximation in the valence region.

The details of the FPLMTO calculations are similar to the
ones for the FLAPW method. Instead of using a fixed muffin-
tin sphere radius, RMT, the latter is scaled with the atomic
sphere radius, RAS, so that RMT/RAS = 0.86. The results are,
however, insensitive to the scaling factor. The basis functions
include 3s and 3p semicore states in addition to the spdf

valence states. Each function has three energy tails for a total
of 18 basis functions in this triple-basis setup. The calculations
are carefully checked for convergence with respect to k points
and the expansion of the basis functions (in the interstitial) in
Fourier series. The effect of spin-orbit coupling is found to be
negligible.

B. Electronic excitations

The exact approach to obtain the T -dependent part of the
electronic free energy F̃ el reads

F̃ el(V,T ) = F el(V,T ) − E0K(V ), (8)

where F el is the total electronic free energy including the
T = 0 K binding energy E0K. Within finite temperature DFT,
F el(T ) is the fundamental quantity derived directly from
a corresponding calculation with T determining the Fermi
broadening, while E0K needs to be separately obtained by
careful extrapolation as discussed in the preceding section.

We evaluate the performance of the following common
approximation to Eq. (8):

F̃ el(T ) ≈ − 1
2T Sel(T ), (9)

where Sel is the (ideal) electronic entropy obtained from Fermi
occupation numbers f (ε) and the electronic density of states
N el(ε) by (spin unpolarized)30

Sel(T ) = −2kB

∫
dε N el(ε) [f ln f + (1 − f ) ln(1 − f )].

(10)

Both N el and f are explicitly temperature dependent,

N el = N el(ε,T ) and f = f (ε,T ) = 1

exp
[

ε−EF
kBT

] + 1
, (11)
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with the Fermi level EF and with the temperature dependence
of N el being fully captured by a self-consistent finite-
temperature DFT calculation. Note that Eq. (9) is directly
related to the simple extrapolation scheme for E0K referred
to in the previous section, since from Eqs. (8) and (9) we
directly obtain E0K = F el − F̃ el.

Approximation Eq. (9) turns out to be insufficient for our
high-accuracy purposes, since it can introduce an error of
a few meV/atom at higher temperatures. An example for
the performance of this approximation is given in Fig. 7(d).
To achieve full accuracy in F̃ el we therefore base all our
calculations on the exact formula Eq. (8).

Despite the fact that a calculation of the F̃ el(V,T ) surface
is nowadays a computationally straightforward task, the
determination of derivative quantities such as heat capacities or
expansion coefficients requires a well-defined parametrization
of F̃ el(V,T ). The reason is that a numerical differentiation—
even on a dense grid—would result in significant noise in
these quantities, since they are sensitive to extremely small
free-energy differences. The parametrization of the volume
dependence of F̃ el is typically simple, since the T = 0 K
binding energy E0K (which carries a stronger dependence)
has been separated out. A polynomial ansatz is therefore
well motivated and indeed we find a second-order polynomial
sufficient to fit F̃ el(V ) with an error of ≈0.1 meV/atom.

For the temperature dependence a direct polynomial fit,
that is, F̃ el(T ) = ∑

i ciT
i , turns out to be reasonable. We

are, however, able to devise a more physical and accurate fit,
particularly for the low-temperature regime. For that purpose,
we utilize Eqs. (9) and (10) as given but with the electronic
density of states N el as the fitting quantity. In particular, at
each considered volume we take N el to be energy independent
while expanding its temperature dependence into a polynomial

N el(V,T ) =
∑

i

ci(V )T i, (12)

where the ci are used as fitting parameters. With i = 0, . . . ,3
we are able to achieve fits with an error well below
0.1 meV/atom at all temperatures and volumes. Note that
with this fitting procedure we are not falling back to the
accuracy of approximation Eq. (9). We are just utilizing its
physical temperature dependence, while—due to the fitting
procedure—being consistent with information stored in the
exact formula Eq. (8).

The input to the fit is a mesh of at least 10 equidistantly
spaced volumes and 10 temperatures of explicitly calculated
F̃ el points in the relevant range for each surface. The
relevant range is determined by 0 K, the experimental melting
temperature31 of 1115 K, and the respective equilibrium
volumes at these temperatures. Further, we use >1650 k points
in the irreducible Brillouin zone and a cutoff of 150 eV leading
to an error well below 0.1 meV/atom.

The FLAPW calculations for F̃ el are performed with
WIEN2K22 and are based on the same parameters as given in
the preceding section.

C. Quasiharmonic vibrations

1. Effect of electronic temperature

The (quantum mechanical) quasiharmonic free energy
F qh follows from volume-dependent, but noninteracting

phonon frequencies ωq = ωq(V ) by means of the standard
expression11

F qh(T ) = 1

m3

3m3∑
q

{
h̄ωq

2
+ kBT ln

[
1 − exp

(
− h̄ωq

kBT

)]}
,

(13)

with the reduced Planck constant h̄. The ωq are lying on a
dense and converged mesh in Fourier space with m3 points
(here m = 16) and with the index q running over these points
and additionally over the three branches (unary crystal). In fact,
the noninteracting ωq are not only volume dependent but also
explicitly dependent on the electronic temperature/broadening.
This is a result of the so-called free-energy Born-Oppenheimer
approximation,32 which is a thermodynamic extension of the
standard Born-Oppenheimer approximation.33

The main result of the free-energy Born-Oppenheimer
approximation is that the ionic movement is determined
by the temperature-dependent electronic free-energy surface
F el({RI },T ), where {RI } denotes the set of atomic coordinates
(see, e.g., Ref. 16 for details). An immediate consequence
is that the dynamical matrix D, which yields upon Fourier
transformation and diagonalization the frequencies ωq , needs
to be obtained from the second derivative of F el({RI },T ), that
is, for a unary crystal of atomic mass M ,

Dkl(V,T ) = 1

M

[
∂2F el({RI },V ,T )

∂Rk∂Rl

]
{R0

I }
, (14)

where k and l run over atoms and spatial directions and where
{R0

I } denotes the set of equilibrium positions. The dynamical
matrix carries therefore an explicit temperature dependence
and this dependence is transferred to the resulting phonon
frequencies

ωq → ωq(V,T el), (15)

with the superscript making explicit that we refer here to the
electronic Fermi broadening within a finite-temperature DFT
calculation.

In Ref. 14, the actual influence of T el on phonons and
the resulting quasiharmonic free energy has been investigated.
Reference14 shows that it can be safely neglected in the case
of aluminum. In contrast, in Ref. 34 it has been found that
for rhodium, which has a higher density of states at the Fermi
level, F qh can change by a few meV/atom with varying T el.
Since calcium shows also a non-negligible density of states at
the Fermi level [see Fig. 5(c)], we carefully investigate the T el

influence.
For that purpose, we calculate the dynamical matrix in

Eq. (14) at various electronic temperatures and volumes.
We include also the T el = 0 K calculation by utilizing the
Methfessel-Paxton scheme.27 It turns out that the T el influence
is very small in the fcc phase. Even upon changing the Fermi
broadening from 0 K to 1160 K (=̂0.1 eV; close to the melting
temperature) the change in the fcc phonon energies is below
0.3 meV. As a direct consequence, also the effect on the
quasiharmonic free energy is small in fcc (<0.5 meV/atom).
For the bcc phase, we observe the same behavior in all
branches except for the low energetic T1[110] branch, which
experiences phonon shifts in the range of 2 meV [Fig. 5(a)].
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FIG. 1. (Color online) (a) Supercell size convergence and (b)
electronic temperature (Fermi broadening) dependence of the quasi-
harmonic free energy of the bcc phase for the GGA-PBE functional
at a lattice temperature of 716 K (experimental transition point31). In
(a) the supercell size convergence (in terms of the conventional cubic
bcc unit cell) is shown for three different electronic temperatures
and corresponds to frequencies on a dense Fourier mesh. In (b) both
curves refer to a 3 × 3 × 3 bcc supercell; one is, however, calculated
using only exact frequencies ωq while the other is based on a dense
ωq mesh.

Of even greater importance is the fact that the GGA phonon
dispersion shows a dynamical instability in this branch at
T el = 0 K, which can be lifted upon increasing T el. Due
to the importance of the involved physics, we postpone the
corresponding discussion to Sec. IV A. At this point, we focus
on the numerical consequences for the quasiharmonic free
energy. The latter needs to be calculated cautiously, since an
improper treatment may lead to divergent terms in Eq. (13).

We use the following procedure to avoid the instability
occurring in the GGA bcc T1[110] branch. First, we fix
the electronic temperature to a value of 1160 K at which
the instability nearly fully disappears. Second, we choose a
frequency mesh that does not resolve the remaining small
instability region [Fig. 5(a)], but which is fully converged in
any other region of the Brillouin zone. We use this choice
in Eq. (13) to calculate F qh, thus avoiding diverging terms
from the instability. This is equivalent to projecting out
the long-wavelength limit at which the instability occurs by
employing a finite size effect. The procedure is well justified
and entails no inaccuracy for our purposes due to the following
arguments.

(1) Note first that T el affects solely the T1[110] branch,
while its effect is negligible on all other frequencies [Fig. 5(a)].
The T1[110] branch corresponds, however, to a small part
of the full three-dimensional (3D) Brillouin zone and thus
enters Eq. (13) only with a small weighting factor. This is
demonstrated in Fig. 1(a). Changing T el from 800 K (close
to transition temperature) to 1160 K (close to melting) affects
F qh by less than 0.1 meV/atom. In fact, we can go further and
calculate F qh at T el = 0 K by projecting out again the (now
larger) instability region. Figure 1(a) shows that even in this
extreme case F qh changes by no more than 0.5 meV/atom for
the largest supercell.

(2) For the frequencies on the T1[110] branch which are
captured by the supercells used for the anharmonic calculations
(exact frequencies) the fixed T el condition is fully relaxed
by utilizing the UP-TILD method (Sec. III D). This reduces

further the weighting factor and confines the affected region
basically to the long-wavelength limit.

(3) Moreover, we expect the long-wavelength limit to be
additionally stabilized by phonon-phonon interaction. An
explicit evaluation of this statement is practically not feasible.
We are, however, able to devise a method (Sec. III F) that
makes it possible to estimate the effect due to phonon-phonon
interaction also for this Brillouin zone region. We can clearly
see [gray line in inset of Fig. 5(a)] that the phonon-phonon
interaction indeed removes the instability as expected.

2. Computational details

The dynamical matrix D is calculated using the direct force
constant method35 (also referred to as the small displacement
method36,37). A displacement of 0.03 bohr radius is used
throughout to obtain the Hellmann-Feynman forces. We ensure
that this choice leads to linear forces on all atoms in the
supercell. As intensively discussed in Ref. 9, an important
convergence parameter when applying the force constant
method in combination with the PAW method is the grid for the
augmentation charges. This is particularly crucial for elements
with high electron density in the augmentation region. The
chosen calcium PAW potential (eight valence electrons) has in
this respect a relatively strong contribution (similar to the Ag
case in Ref. 9) and we therefore carefully test corresponding
dependencies. Augmentation grids of 423 × 103 (fcc) and
864 × 103 (bcc) grid points/atom turn out to be sufficient.
With these settings for the augmentation grid a plane-wave
cutoff of 240 eV is an accurate choice.

We take special care to satisfy the electronic k-sampling
convergence, which is essential in elucidating the T el depen-
dence. Used values are in the range of 23 × 103 k points ·
atom. (This unit is useful when dealing with different phases
or varying supercell sizes; the given value corresponds, e.g.,
to a 6 × 6 × 6 k mesh in a 3 × 3 × 3 cubic fcc cell with
108 atoms.) We also experience that a very high energy
convergence criterion (≈10−5 meV/supercell) is needed in
the electronic loop to get the required accuracy in the
Hellmann-Feynman forces. This value is constant for different
supercell sizes, since forces are derivatives requiring the same
absolute energy convergence. To achieve this high convergence
criterion the block-Davidson iteration scheme38 for electronic
minimization is most useful.

As for the supercell size, we consider for each phase three
different cell sizes with up to 256 atoms (Table I). For the
phonon dispersion, we find that with two exceptions both
phases show a very fast convergence indicating predominant
short-range interactions. The first, minor exception concerns
the fcc T1[110] branch (cf. Fig. 4) where a known39 Kohn
anomaly causes small deviations from a linear behavior. Corre-
sponding phonon energy differences are, however, very small
(<0.5 meV/atom) and thus barely visible. More importantly
they do not affect the resulting quasiharmonic free energy
(Table I) and thus do not need to be resolved in full detail for
our purpose.

The other, much more pronounced exception occurs along
the already-discussed bcc T1[110] branch as a consequence of
the instability [Fig. 5(a)]. The corresponding dispersion rela-
tion is complex in terms of a Fourier expansion. A significant
number of Fourier components needs to be included, clearly
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TABLE I. Supercell size convergence of the quasiharmonic free
energy F qh per atom at the experimental fcc-bcc phase-transition
temperature31 of 716 K for the GGA-PBE xc functional. A dense
Fourier interpolated frequency mesh is used to calculate F qh. The
supercell sizes are given in terms of the cubic fcc and bcc conventional
unit cells with four and two atoms, respectively.

fcc bcc

Supercell Atoms F qh(meV) Supercell Atoms F qh(meV)

2 × 2 × 2 32 −297.9 3 × 3 × 3 54 −313.4
3 × 3 × 3 108 −298.7 4 × 4 × 4 128 −313.6
4 × 4 × 4 256 −298.6 5 × 5 × 5 250 −313.6

indicating long-ranged interactions in real space. Even after
stabilization the branch shows deviations from a sinusoidal
behavior requiring rather large supercells to capture the exact
wave vector dependence. In order to handle this challenging
task, we apply a special treatment in describing the phonon
dispersion along this branch, as discussed in Sec. III F.

Despite the rather strong influence of the supercell size on
the phonons in the bcc T1[110] branch, the resulting quasi-
harmonic free energy shows again a very small dependence.
This issue is illustrated in Table I and Fig. 1(a). The reason
is exactly the same as for the negligible T el dependence
discussed above. The weighting factor of the affected region
is too small to yield visible effects in the free energy. Based
on these findings, we conclude that the exact wave vector
dependence of the bcc T1[110] branch does not need to be
resolved for an accurate free-energy description. We can thus
safely use Fourier interpolations based on the 3 × 3 × 3 cell
for fcc and the 4 × 4 × 4 cell for bcc for our F qh calculations
presented in Sec. IV. (The fcc phonon dispersion in Fig. 4
corresponds, however, to a 4 × 4 × 4 cell to fully resolve the
Kohn anomaly.)

Let us also briefly mention our procedure for the
parametrization of the F qh(V,T ) surface. The temperature
dependence is straightforward since it is contained analytically
in Eq. (13). As regards the volume dependence, it has been
pointed out in Ref. 14 that various approximations (e.g.,
linear Grüneisen method) are not sufficient for a high-accuracy
description. We therefore investigate this issue in detail using
up to 10 explicitly calculated volume points in the relevant
range. We find that a second-order polynomial fit F qh(V,T ) =∑2

i=0 ci(T )V i results in a sufficiently accurate description with
an error of below 0.2 meV/atom. This parametrization is thus
applied for the calculations in Sec. IV.

D. Anharmonic vibrations

1. Effect of electronic temperature

The basic equation for the (classical) explicitly anharmonic
free energy F ah within the thermodynamic integration scheme
reads for a unary crystal16

F ah(V,T ) =
∫ 1

0
dλ

〈
F el

R (V,T el) − F el
0 (V,T el)

M

2

−
∑
k,l

M

2
ukulDkl(V,T el)

〉
NV T,λ

, (16)

where F el
R = F el({RI }), F el

0 = F el({R0
I }), uk = Rk − R0

k ,
M = atomic mass, and where T el explicitly indicates the
dependence on the electronic Fermi broadening. Further,
〈· · · 〉NV T,λ is the thermodynamic average of a NV T ensemble
at a fixed coupling coefficient to the quasiharmonic reference,
λ.

The thermodynamic average can be calculated using molec-
ular dynamics (MD) simulations. In such a case there are four
distinct ways in which temperature enters Eq. (16): First, it
directly controls the thermostat during the MD run (MD tem-
perature, TMD). Second, the electronic temperature/broadening
affects the Hellmann-Feynman forces which are used to
generate the phase-space trajectory (dynamic influence, T el

dyn).
We can also describe this as the effect of the electrons on
the nuclei thermodynamics (el → nucl anharmonic coupling).
Third, the electronic free-energy change (F el

R − F el
0 ) at a

certain fixed point {RI } in ionic configuration space depends
directly on T el (static influence, T el

stat). This can be viewed
as the reversed effect where the ions affect the electron
thermodynamics (nucl → el anharmonic coupling). Fourth,
T el influences the reference potential via the dynamical matrix
D (reference temperature, T el

ref).
In principle, to guarantee thermodynamic equilibrium at a

given temperature T we must ensure that

T = TMD = T el
dyn = T el

stat, (17)

whereas an arbitrary temperature can be chosen for T el
ref .

The latter is a consequence of the unrestricted choice of
the reference potential within a thermodynamic integration
scheme. However, our results for both calcium phases indicate
that in practice Eq. (17) does not need to be satisfied and that

T = TMD �= T el
dyn �= T el

stat (18)

yields accurate anharmonic free energies even if T el
dyn and T el

stat
vary independently by more than 1000 K. Further, we find that
the theoretical invariance with respect to the reference matrix
is broken in practice for the bcc phase. In fact, we need to set
T el

ref = T el
dyn for efficiency and T el

ref = T el
stat for accuracy in order

to avoid errors of several meV/atom in the final free energy.
To elucidate the effect of Eq. (18) we perform calculations

at T = TMD = 800 K and at independently varying T el
dyn and

T el
stat. In particular, we use electronic temperatures of 0 K,

800 K, and 1160 K and we properly treat T el
ref to avoid the

corresponding error at this stage. For the dynamic case, that
is, for varying T el

dyn, we find for both phases that within the
statistical error of <0.5 meV/atom the ionic trajectories are
insensitive to changes in the electronic temperature. For the
static case, that is, varying T el

stat, we can efficiently reach
a higher numerical precision by employing the UP-TILD
method (following section). We find differences of less than
0.2 meV/atom for fcc and bcc when changing T el

stat from 0 K
to 1160 K. We can therefore conclude that in calcium there is
negligible anharmonic coupling in both directions: el → nucl
and nucl → el.

We now turn to the T el
ref dependence. The above-mentioned

broken invariance and related errors occur only in the bcc
phase. They are related to the peculiarities in the T1[110]
phonon branch, but they are not a direct consequence of
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FIG. 2. (Color online) Volume dependence of the anharmonic
Helmholtz free energy for both investigated xc functionals (LDA
and GGA-PBE) and phases (fcc and bcc). The temperatures are (see
main text for details) TMD = 800 K, T el

dyn = T el
stat = 1160 K, and T el

ref =
1160 K (for blue and orange curves) and T el

ref = 0 K (gray curves).
Open circles correspond to a 3 × 3 × 3 bcc supercell (54 atoms),
closed circles to a 4 × 4 × 4 bcc supercell (128 atoms), open triangles
to a 2 × 2 × 2 fcc supercell (32 atoms), and closed triangles to a
3 × 3 × 3 fcc supercell (108 atoms). Statistical errors are of a similar
size as the symbols indicating calculated values (not shown). Lines
in between symbols are a guide to the eye. The arrows at the top
indicate equilibrium volumes at T = 0 K and the melting temperature,
respectively, for both xc functionals and the experimental T = 0 K
equilibrium volume.

the instability. We focus on a specific example to enable a
convenient discussion.

Consider the curves represented by open circles (blue,
orange, and gray) in Fig. 2. They show the anharmonic free
energy for a 54-atomic bcc supercell calculated once with
T el

ref = 0 K (gray) and once with T el
ref = 1160 K (blue/orange),

but keeping T el
dyn and T el

stat in both runs at a fixed temperature of
1160 K. We note differences of up to 3 meV/atom in the ab-
solute value and a strikingly different volume dependence par-
ticularly for LDA. Explicit tests show that both of these effects
are almost completely due to the electronic temperature
dependence of the single exact frequency on the T1[110]
branch (and its symmetric counterparts) captured in the 54-
atomic bcc cell [red upper tick labeled “3” in the inset of
Fig. 5(a)]. This frequency has a relatively strong weighting
factor if the free energy is obtained from a coarse grid of
exact frequencies. In practicable anharmonic calculations we
are, indeed, forced to calculate the free energy on a coarse
grid of exact frequencies, since only those frequencies can be
described which are contained in the specific supercells.

Next, we need to combine the results for the anharmonic
free energy with a corresponding F qh calculation in order to
obtain the total vibrational free energy. For F qh, we can and
we should use a dense Fourier interpolated mesh in order
to guarantee a good sampling of the low-energy branches.
The different sampling for F qh (mesh frequencies) and F ah

(exact frequencies) can, however, result in an error in the final
vibrational free energy (F qh + F ah) if we choose for the bcc
phase an inconsistent electronic temperature for the reference

potential, that is, T el
ref �= T el

stat. In the present case we find an
error of ≈3 meV/atom caused by different T el dependencies
of the free energy from mesh frequencies and the one from
exact frequencies [Fig. 1(b)]. The different T el dependence
can be understood by considering the effective contribution of
the T1 branch. As mentioned above the weighting factor for
this region is relatively strong for the coarse exact frequency
grid. In contrast, it is significantly smaller for a dense mesh
due to the occurrence of low-energy branches in other regions
of the Brillouin zone showing a different T el dependence.

We stress that the above effect is not a direct consequence
of the instability. In the discussed example we are using the
procedure described in Sec. III C 1 to project out the instability
region. Therefore, the exact as well as mesh frequencies used to
calculate the free energy do not contain any imaginary modes.
The reason for the strong influence of T el

ref is rather the peculiar
dependence of the stable region of the T1[110] branch on
electronic temperature [Fig. 5(a)].

2. UP-TILD method

A direct high-accuracy calculation of F ah using Eq. (16)
is computationally demanding. We employ instead the UP-
TILD14 method, which generates in a first step a low converged
(e.g., cutoff or k points, not statistics) and therefore efficient
thermodynamic average 〈· · · 〉low

NV T,λ by employing Langevin
dynamics. In a second step, the high converged thermodynamic
average 〈· · · 〉high

NV T,λ is obtained by the following upsampling
procedure:

〈· · · 〉high
NV T,λ = 〈· · · 〉low

NV T,λ − 〈�F el〉UP, (19)

where

〈�F el〉UP = 1

N

N∑
R

(
F

el,low
R − F

el,low
0

) − (
F

el,high
R − F

el,high
0

)
.

(20)

The sum runs over N uncorrelated structures (typically N <

100) which are extracted from the low converged run, sepa-
rately for each volume, temperature, and coupling coefficient.
For each such structure, F

el,low
R (F el,high

R ) denotes the corre-
sponding electronic free energy calculated with low (high)
convergence parameters. Further, F

el,low
0 and F

el,high
0 refer

to the electronic free energies of the respective equilibrium
structures.

Our optimized values for the UP-TILD method in calcium
are given in Table II. For both smaller supercells (2 × 2 × 2
for fcc and 3 × 3 × 3 for bcc), very efficient low convergence
parameters—20 and 80 s, respectively, for a single MD step
on an AMD Opteron 2.4 GHz with 24 cores—give already an
extremely accurate value for F ah. The remaining UP shift
is only 〈�F el〉UP = 1 meV/atom and the corresponding
convergence of the sum in Eq. (20) is very quick with
N = 10 – 20. For the 3 × 3 × 3 fcc supercell, we evaluate the
possibility to use only the 	 point for the electronic sampling.
This, however, turns out to be insufficient for generating a
reasonable configuration space distribution and a 2 × 2 × 2 k

mesh has to be used instead. In contrast, for the larger bcc
supercell, a 	 point calculation is a good starting point for
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GRABOWSKI, SÖDERLIND, HICKEL, AND NEUGEBAUER PHYSICAL REVIEW B 84, 214107 (2011)

TABLE II. Optimized UP-TILD parameters for calcium and the corresponding speed-ups and UP shifts 〈�F el〉UP per atom as compared to
a “usual” thermodynamic integration run. Cutoff refers to the employed plane-wave cutoff energy and the k density is given in k points · atoms.

fcc calcium bcc calcium

2 × 2 × 2 sc 3 × 3 × 3 sc 3 × 3 × 3 sc 4 × 4 × 4 sc
32 Atoms 108 Atoms 54 Atoms 128 Atoms

Low High Low High Low High Low High

Cutoff (eV) 130 170 130 170 130 170 130 170
k points 23 43 23 33 23 43 	 33

k density 256 2048 864 2916 432 3456 128 3456
Speed-up ×15 ×10 ×25 ×40
〈�F el〉UP (meV) 1 1 1 4

the UP-TILD method, as we verify explicitly, resulting in a
remarkable speed up of ×40.

As regards the Langevin dynamics, we investigate the
important influence of the friction parameter γ over four orders
of magnitude. We find that γ � 0.001 is significantly too low
to achieve any reasonable statistical convergence. A value of
�0.1 is instead too high, resulting in imprecise anharmonic
free energies. The best choice turns out to be close to 0.01, a
value which has been successfully employed also in a recent
aluminum study.14 The precise value for an optimal γ depends
additionally on the MD time step �t , since it is mainly the
product γ �t entering the Langevin equations and determining
the dynamics. We find that γ �t = 0.01 · 20 fs and 0.02 · 10 fs
result in similar accuracy and efficiency. Time steps larger
than 20 fs should not be used since they fail to sample the
high-frequency vibrations in calcium and thus lead to wrong
free energies.

We sample the MD trajectory at each λ value for up to
50 ps (after equilibration), resulting, in general, in a statistical
error of below 0.5 meV/atom. We are able to efficiently reduce
the expensive equilibration time on the actual DFT potential
(≈1 ps) by employing an inexpensive pre-equilibration on
the reference potential (200 ps). Exact equilibration and
simulation times, however, depend strongly on temperature
and volume since increasing both leads to an increase in
the phase space which needs to be sampled. They can also
depend on the coupling constant λ with values close to 0 and 1
being particularly difficult to converge statistically. Our largest
statistical errors are in the range of 1 meV/atom for a single λ

value. Note, however, that this error does not translate into an
equivalent error in the final anharmonic free energy since the
latter is averaged out and thus is reduced by performing the λ

integration.
Concerning the λ integration, we perform detailed inves-

tigations using a mesh of up to 11 explicitly calculated λ

points (0,0.1, . . . ,1). For the fcc phase, we find that the
thermodynamic average 〈· · · 〉NV T,λ obeys a nearly linear
dependence [cf. circles in Fig. 3(a)] as similarly found for
instance in fcc aluminum.14 In fact, our results indicate that
we might replace the full λ integration by considering a
single value at λ = 0.5, while losing only 1–2 meV/atom
in precision. To keep our desired accuracy goal we, however,
refrain from a linear approximation and capture instead the full
dependence on a dense λ mesh of six equidistantly distributed
points.

The situation turns out to be more involved for the bcc
phase. We find the linear approximation to cause deviations
of up to 20 meV/atom. In particular, the λ region close to
zero shows a strongly increasing dependence as illustrated
by the example in Fig. 3(a) (squares). The strength of the
increase at λ = 0 depends not only on volume and temperature
but also on the quasiharmonic reference matrix. Using an
inconsistent electronic temperature for the reference matrix
(e.g., T el

ref = 0 K but T el
dyn = T el

stat = 1160 K) results in a
significantly stronger increase than for a consistent one. In
agreement with the discussion in Sec. III D 1 this indicates
that a consistent electronic temperature is physically more
sound and technically more efficient. However, even for the
consistent case we find a strongly nonlinear behavior of
the thermodynamic average in bcc, making an accurate and
efficient λ integration challenging.

A natural possibility to deal with this issue seems to
be an extension of the linear fit by including higher-order
polynomials. However, we find this ansatz to show only slow
convergence with the number of polynomials included. Based
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FIG. 3. (Color online) Illustration of the performance of the fit
based on Eq. (21). In (a) the λ dependence of the thermodynamic
average 〈· · · 〉NV T,λ is shown for a fcc and bcc structure both at an MD
temperature of 1000 K. Gray lines indicate a fit based on Eq. (21)
and the red line is a third-order (cubic) polynomial fit. In (b) the
root-mean-square error (RMSE) of the explicitly calculated points
from the respective fit is shown for the bcc structure at various MD
temperatures. At a single temperature different points correspond to
different lattice constants.
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on our large set of calculated data, we are able to derive a much
more efficient way. Our ansatz assumes the following fit:

〈· · · 〉NV T,λ = a0 cot[π (a1λ + a2)] + a3, (21)

involving four fitting parameters a0, . . . ,a3. Its performance
should be therefore compared to a polynomial with the same
number of parameters, that is, a cubic polynomial. A specific
example clearly showing how well the λ dependence of the
thermodynamic average is described by Eq. (21) is given
in Fig. 3(a). In contrast, the cubic fit introduces oscillations
which are too strong, causing maximum deviations from the
true points of up to 10 meV/atom. The behavior found in
this example turns out to be a general feature in the Ca bcc
phase, as demonstrated by the root-mean-square deviations
displayed in Fig. 3(b). Moreover, we can safely extend the
cotangent fit to describe also the smooth λ dependence of the
Ca fcc phase, since it is similarly well described [Fig. 3(a)]. In
summary, we use the cotangent fit Eq. (21) and a converged λ

mesh of six equidistant points (0,0.2,0.4,0.6,0.8,1) for each
considered volume and temperature on both the fcc and the
bcc anharmonic free-energy surface.

We next describe our procedure for parametrizing F ah as
a function of volume and temperature. A detailed discussion
of the corresponding difficulties has been given in Ref. 14.
A solution has been proposed which utilizes a modified
version of Eq. (13) as the fitting function and a renormalized
average frequency as the fitting parameter.14 We find this
approach also well suited for describing F ah in the present
case (both fcc and bcc). We need, however, to extend it slightly
in order to accurately take the supercell size convergence
into account, which is computationally prohibitive by direct
calculation.

Our procedure is as follows: In a first step, we calculate a
dense (V,T ) mesh of ≈20 F ah points in the relevant range for
the two smaller supercells (2 × 2 × 2 for fcc and 3 × 3 × 3
for bcc). We then employ the fit proposed in Ref. 14 using
in particular a renormalized anharmonic frequency expanded
as ωah = a0 + a1T + a2V , where a0, a1, and a2 are fitting
coefficients. The root-mean-square error of this fit from
the explicitly calculated values is well below the statistical
uncertainty. Next, we calculate a much coarser grid of 3
to 4 volumes at a fixed temperature (close to the transition
temperature; see Fig. 2) for the larger supercells (3 × 3 × 3
for fcc and 4 × 4 × 4 for bcc). We find the difference between
the free energies of the larger and the smaller supercells to be
≈1 meV/atom for fcc and ≈2 meV/atom for bcc and nearly
volume independent. We parametrize this difference using
ωah = a0. Despite the fact that ωah is volume and temperature
independent, the resulting anharmonic free energy contains
both dependencies through the specific form of the fitting
function.14 In a last step, the fitted difference is added on
top of the parametrization for the smaller supercells and the
resulting sum constitutes our final anharmonic free-energy
surface.

We conclude with a comment on the expected overall
precision in F ah. From a statistical viewpoint, we can con-
fidently claim to be converged to well below 1 meV/atom.
The reason is the fact that each surface is assembled from a
large multitude of statistically independent runs with each run

being well converged by itself. Moreover, we have accurate
parametrizations available which tend to average out the
individual statistical errors. Further, we know that we are
well converged in terms of plane-wave cutoff and k points by
employing the UP-TILD method. The most difficult estimation
is related to the remaining error due to the supercell size. For
the investigated supercell sizes we see differences of up to
2 meV/atom. In general, we expect anharmonic interactions
to be short ranged in real space. In the present case, this
is additionally supported by the dominating short-ranged
character of the quasiharmonic interactions (see discussion
in Sec. III C). We thus estimate that a further increase in
supercell size will result in changes significantly lower than
found for the investigated supercells. Additionally, we find
a similar supercell size convergence for both phases (Fig. 2)
and expect this to reduce further the error in the free-energy
difference between bcc and fcc, which is our main target. In
total, we conjecture our error in F ah to be below 1 meV/atom.

E. Vacancies

The Gibbs energy of vacancy formation Gf is obtained as

Gf (P,T ) = F v(�P ,T ; Nv) − NvF p(VP ,T ) + Pvf, (22)

where F v is the free energy of a vacancy supercell with Nv

atoms and at supercell volume �P which is adjusted such as to
guarantee the same P as in the perfect bulk. Further, F p is the
free energy per atom of the perfect bulk calculated at atomic
volume VP corresponding to pressure P and vf = �P − NvVP

the volume of vacancy formation. Similar to what is found, for
instance, in Ref. 40, our calculations also show the importance
of the Pvf term in Eq. (22) which—even for moderate
pressures—can modify Gf by a few tenths of a meV. In
particular, for ambient pressure conditions of 0.1 GPa we find
an increase of Gf by ≈20 meV/atom. However, the effect on
the total Gibbs energy G(P,T ) in Eq. (6) is strongly suppressed
due to the exponential function in Eq. (7) and at most notable
in derivatives such as the heat capacity.

We calculate for F v the full set of excitations as provided
in Eq. (5). We focus specifically on the 2 × 2 × 2 supercell
for fcc and the 3 × 3 × 3 supercell for bcc. In the first place,
all internal degrees of freedom are fully relaxed for each cell
and at each volume. Starting from the relaxed geometries,
the calculation of the various free-energy contributions for
the vacancy supercell proceeds as described in the previous
sections for the perfect bulk. In particular, we use the same
convergence parameters. Special care must be taken, however,
in the case of the quasiharmonic contribution in order to
guarantee a consistent treatment between the vacancy and
perfect bulk. We accomplish this by employing the correction
scheme given in Ref. 14.

In our MD simulations for the anharmonic contribution to
the vacancy supercell, we experience an increased mobility
of the vacancy, that is, a hopping from its original site to
neighboring sites, when looking at high temperatures and λ

values close to 1. Further, we find that the mobility is stronger
in the bcc than in the fcc phase, which is intuitive due to the
more open structure. In order to guarantee a correct calculation
of F ah, all configurations at which the vacancy has left its
original place need to be carefully extracted and removed from
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the thermodynamic average. The reason is that our reference
dynamical matrix has a fixed and unmovable position for the
vacancy. In order to determine vacancy motion, we carefully
monitor the next-nearest neighbors of the vacancy during an
MD run. If we encounter an atom being closer to the vacancy
equilibrium position than to its own equilibrium position, we
define this configuration as a vacancy movement and take the
corresponding part of the MD trajectory out of the average
procedure. Our results indicate that the employed extraction
procedure is well defined, since we find the atoms to be, in
general, vibrating close to their equilibrium positions—even
for high temperatures and λ close to 1—and the vacancy
movement to be a singular and clearly identifiable process.

We conclude with comments on the expected overall
precision in the total Gibbs energy due to vacancies, that is,
the −ceqkBT term in Eq. (6). Focusing first on the temperature
region relevant for the phase transition (716 K) we find vacancy
concentrations which are well below 10−4 for all phases. The
corresponding contribution to the total Gibbs energy is, as a
consequence, fully negligible (<0.01 meV/atom). In such a
case also convergence issues do not play any role and we can
safely conclude that the final Gibbs energy difference between
bcc and fcc is highly accurate with respect to vacancies.

The only relevant contribution due to thermally excited
vacancies reveals itself in the high-temperature heat capacity
[Fig. 10(b)] in the bcc phase. While the absolute Gibbs energy
is still very small (<0.2 meV/atom) the exponential decrease
results in a small yet visible heat-capacity contribution. We
have not explicitly considered a larger supercell than the 54-
atomic 3 × 3 × 3 bcc supercell for the vacancy calculations.
Based on our previous experience where we found negligible
differences when increasing from 32 to 108 atoms in fcc
aluminum,14 we expect, however, also negligible influences
in the present case.

In fact, the crucial point to note is that the qualitative
result obtained in Sec. IV E which distinguishes between the
two sets of experimental data cannot be altered by larger
vacancy supercell sizes. To see this note that the contribution of
vacancies to the total Gibbs energy has always an exponential
temperature dependence. This dependence reveals itself in a
strongly nonlinear behavior of the heat capacity. The upper
experimental set of data [Fig. 10(a)] shows, however, a
perfectly linear behavior and thus vacancies are clearly ruled
out as a possibility to shift the heat-capacity curve from the
lower experimental set of data to the upper one.

F. T1[110] bcc instability

The focus of this section is to describe the special treatment
utilized in determining the T1[110] branch in the bcc phonon
dispersion [Fig. 5(a)]. Additionally, we want to lay out our
procedure for capturing qualitatively the influence of phonon-
phonon interactions on the instability in the GGA T1[110]
branch and describe the calculations for the long-wavelength
limit (shear of the bcc cell).

To see in detail the difficulties related to the T1[110] branch
consider the inset in Fig. 5(a) focusing on the GGA phonon
dispersion at T el = 0 K (solid orange line). Note next the
upper red ticks indicating the exact phonon wave vectors
which are contained in supercells practically accessible in a

quasiharmonic calculation. The important point to note is that
none of these exact wave vector grids is fine enough to resolve
the instability, that is, even for the 5 × 5 × 5 supercell both
of the exact wave vectors lie outside the instability region.
As a consequence, also the resulting Fourier interpolation
based on these exact frequencies cannot resolve the instability
correctly.

An extension of the supercell to sizes which provide a
sufficient number of exact wave vectors in the instability region
is clearly not feasible in full 3D. One possible solution would
be an application of the linear response method in reciprocal
space, which does not require large supercells.41 In the present
case, however, a much more direct approach is feasible in
real space. The important point to realize is that the [110]
direction corresponds in real space to an elongation of the
primitive bcc cell only along a single direction. For instance,
in order to achieve the dense mesh of 15 exact wave vectors
shown at the bottom of the inset of Fig. 5(a), we need a
supercell of 29 × 1 × 1 in terms of the primitive bcc cell
containing merely 29 atoms. Note that the remaining exact
points are lying in the other half of the [110] direction, that
is, the direction from N back to 	. Besides the extended
supercell the calculation proceeds otherwise as within a
“usual” quasiharmonic setting. We stress in particular that,
within the quasiharmonic regime, the described approach does
not entail any additional approximation, since the phonons are
noninteracting and each branch can be therefore described
separately.

We investigate various supercells up to the above-
mentioned one with 29 atoms. We find that the instability
region at various electronic temperatures is well described
(deviation <0.3 meV) by a supercell containing 19 atoms.
We use therefore this supercell for the next task of estimating
the qualitative influence of phonon-phonon interactions on the
instability. In particular, we use for that purpose the following
approach.

In a first step, we use an MD simulation in the elongated
supercell to generate a configuration space distribution. The
exact temperature controlling the MD simulation is of minor
relevance since we only aim at a qualitative description. Out
of the generated distribution, we extract a set of uncorrelated
snapshots and calculate for each the corresponding dynamical
matrix. Next, we average over the various obtained dynamical
matrices which (if convergence is achieved) restores the
original bcc symmetry. In a final step, we calculate the phonon
dispersion for the average dynamical matrix.

The described approach takes into account phonon-phonon
interactions only among phonons along the [110] direction,
while obviously completely neglecting the interactions with
any other phonon in the full 3D Brillouin zone. Therefore, the
obtained results cannot be used quantitatively, in particular, for
calculating an anharmonic free energy. We expect, however,
that the qualitative result that phonon-phonon interactions
result in a stabilization of the instability [see gray line in the
inset of Fig. 5(a)] does indeed hold.

In order to study the long-wavelength limit of the instability,
we shear the primitive bcc unit cell modifying a single
vector. In particular, if a1, a2, and a3 denote primitive bcc
vectors, the vectors of the sheared cell are obtained by
a′

1 = a1 + δa2 − δa3, a′
2 = a2, and a′

3 = a3, with δ measuring
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the strength of the shear [Fig. 5(b)]. This shear corresponds
exactly to the long-wavelength limit of the 〈110〉 polarization
of the transversal branch along the 	-to-N direction, which
is commonly labeled T1[110]. To study the influence of the
electronic temperature on the energy of the sheared unit cell,
we use a plane-wave cutoff of 150 eV and 16 420 k points
in the irreducible Brillouin zone (convergency better than
0.1 meV/atom). For the pressure-related investigations, we
use a PAW potential including additionally the 3s2 orbitals
(10 valence electrons) to avoid an error of a few meV/atom.
The plane-wave cutoff for this potential is set to 310 eV.
The electronic density of states calculations [Fig. 5(c)] are
based on the same settings, which guarantees converged results
particularly due to the high k-point sampling. We also use a
convolution with a Gaussian function with a width of 0.1 eV
to smoothen the density of states.

IV. RESULTS

Any free-energy study relies on accurate T = 0 K calcu-
lations. Table III summarizes our respective results for fcc
and bcc calcium and we first discuss the performance of the
employed PAW potentials.

The enthalpy difference �H bcc-fcc is extremely well de-
scribed showing deviations of only 0.1 meV/atom with respect
to the most accurate all-electron methods available, FLAPW
and FPLMTO. For the equilibrium lattice constant we find
a small underestimation of 0.09% (0.05%) for LDA (GGA)
by the PAW potential. This is directly related to a small
overestimation of the bulk modulus and its derivative. To check
the influence of these deviations at finite temperatures, we
combine the all-electron T = 0 K curve with finite temperature
excitations from PAW. We find changes of 0.3 meV/atom in
the Gibbs energy at the phase transition temperature. These
changes are the same for fcc and bcc so that the corresponding
difference is not affected. We therefore conclude that the
employed PAW potentials are well suited for the present
high-accuracy study.

Focusing now on the comparison with experiment for the
fcc phase, we discover two interesting facts: (1) For LDA,

we find the well-known9 underestimation of the experimental
lattice constant due to overbinding. GGA generally overes-
timates the equilibrium lattice constant.9 For fcc calcium,
we have the rare situation that also GGA underestimates the
lattice constant (albeit by 0.5% only). (2) Except for the lattice
constant/volume, we face the untypical circumstance that the
scatter in experimental data is of the same order as the deviation
between LDA and GGA. A comparison at this point stays
therefore inconclusive.

A. Stabilization of the T1[110] bcc instability

Before discussing the instability occurring in bcc, let us first
turn to the phonon dispersion of the low-temperature fcc phase
for which experimental data are available and an evaluation of
the performance of the xc functionals can be done.

The fcc phase shows a phonon dispersion (Fig. 4) typical for
elements with predominantly nearest-neighbor interactions.9

Our theoretical results are in good agreement with experimen-
tal values. In particular, the GGA functional shows a very good
performance over almost the entire Brillouin zone. The LDA
functional results in a qualitatively similar phonon dispersion
as the GGA functional (i.e., showing the same phonon wave
vector dependence). It produces, however, phonons that are
quantitatively roughly 1.07 times higher in energy than GGA.
This observation is consistent with trends found in a wider
range of materials provided that the phonon dispersion is
calculated at the self-consistent theoretical lattice constant.9

It is related to the above-mentioned underestimation of the
experimental lattice constant by the LDA functional which is
particularly large for fcc Ca (Table III).

Having established the theoretical accuracy, we turn now
to the phonon dispersion of the high-temperature bcc phase.
It is physically more interesting and challenging than the fcc
phase due to the instability region in the T1[110] branch and
its strong coupling to electronic excitations. Our results shown
in Fig. 5(a) reveal, in general, the same quantitative trend
that LDA produces significantly harder phonons. Qualitatively,
LDA and GGA show exactly the same phonon wave vector
dependence except for the T1[110] branch. There GGA shows

TABLE III. Equilibrium T = 0 K properties of fcc and bcc calcium: �H = bcc-fcc enthalpy difference, a = lattice constant, V = volume,
B = bulk modulus, B ′ = derivative of B with respect to pressure, and H f = formation enthalpy of the vacancy. All values include zero-point
vibrations. For FLAPW and FPLMTO, the latter are taken from the PAW results. Experimental values for �H correspond to T = 0 K and are
obtained from the CALPHAD parametrization of Saunders et al. (Ref. 42) and the parametrization from the SGTE unary database (Ref. 43) (see
also Fig. 6 and corresponding caption). The experimental lattice constant/volume is the T = 0 K value reported in Ref. 44. The experimental
bulk moduli and derivatives are room temperature values from Refs. 44–48. A correction of the bulk moduli to T = 0 K is performed based on
the temperature dependence from Ref. 44, but turns out to be irrelevant as compared to the scatter between the different measurements.

fcc calcium bcc calcium

LDA GGA-PBE LDA GGA-PBE

PAW FLAPW Exp. PAW FLAPW FPLMTO PAW FLAPW PAW FLAPW

�H (meV) 9.2 9.2 9.6 – 15 16.5 16.6 16.5
a (Å) 5.339 5.344 5.564 5.533 5.535 5.535 4.215 4.219 4.390 4.392
V (Å3) 38.04 38.15 43.07 42.35 42.41 42.40 37.44 37.56 42.30 42.35
B (GPa) 18.5 18.1 15 – 20 17.2 17.2 17.1 19.1 19.0 15.8 15.6
B ′ 2.7 2.4 2.5 – 3.9 3.3 3.2 3.2 4.0 3.7 2.3 2.1
H f (eV) 1.19 1.16 0.91 0.84
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FIG. 4. (Color online) Phonon dispersion of fcc Ca at 295 K along
high-symmetry directions. The corresponding lattice constant a for
the theoretical calculations (LDA and GGA-PBE) is shown in the
legend. The T1 and T2 branches correspond to the 〈110〉 and 〈001〉
polarizations, respectively. The experimental data including error bars
are from Ref. 39.

the already-mentioned dynamical instability, whereas LDA
has a fully stable T1[110] branch.

The phonon dispersions marked by solid lines in Fig. 5(a)
are obtained at an electronic temperature of 0 K. The dashed
and dotted lines show instead the important influence of
electronic excitations by displaying the phonon dispersion
at Fermi broadenings of 0.05 eV (=̂580 K) and 0.1 eV
(=̂1160 K). We observe that upon increasing the electronic
temperature the instable phonon branch is lifted up, becoming
nearly stable at 0.1 eV. Note two important points. (1) The
T1[110] branch is the only branch being visibly affected by
electronic temperature. The other branches have almost no
dependence. (2) The whole branch containing the instability

is affected even in regions where it is actually stable (see, e.g.,
N point).

To gain further insight, we resolve the instability and
its temperature dependence by following the corresponding
modes on the energy surface. We perform such calculations
for various instable wave vectors and show a representative
example in Fig. 5(b) corresponding to the long-wavelength
limit. We observe that the energy dependence describes a
double well potential which is characteristic for instabilities.
The depth of the minimum is rather small in the range of
3 meV/atom below the fully symmetric bcc structure. The
displayed energy dependence shows the deepest minimum
among all instable wave vectors.

The stabilizing effect of electronic temperature can be
clearly seen also for the energy dependence in Fig. 5(b).
We perform further investigations to elucidate the physical
background for this behavior. We find that a very similar
effect of stabilization can be obtained by applying external
hydrostatic pressure on the system, that is, compressing
to smaller volumes. In particular, we find that a step size
of 1 GPa corresponds to a similar energy shift as one
obtained by increasing T el by 0.05 eV [see Fig. 5(b)].
Incidentally, the correspondence with pressure explains why
LDA shows no instability at T el = 0 K in contrast to
GGA. The above-mentioned strong underestimation of the
equilibrium volume by LDA produces an internal pressure
in the system (quantified in the higher bulk modulus). This
internal pressure has the same effect as the external pressure
applied to the GGA system. (Note that the total pressure is
necessarily zero if the system is at equilibrium. It is, however,
not the total pressure which is relevant here, but only the
pressure contribution caused by the ionic vibrations, that
is, thermal pressure, and the latter turns out to be indeed
much stronger for LDA than for GGA, as shown explicitly in
Fig. 9.)
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FIG. 5. (Color online) Analysis of the dynamical instability in the calcium bcc phase. (a) Phonon dispersion for LDA and GGA-PBE at
the consistent T = 0 K equilibrium volume V

eq
0K (Table III). Solid lines show results for T el = 0 K and dashed and dotted lines those for

two increased electronic temperatures (GGA-PBE only). The inset enlarges the [110] direction with the upper red ticks indicating exact wave
vectors for the bcc supercells used in the quasi/anharmonic calculations (numbers correspond to the three bcc supercells given in Table I) and
with the lower red ticks indicating the exact wave vectors employed in the special treatment of the T1[110] description (Sec. III F). The gray
line shows the qualitative result of phonon-phonon interactions on the instability (Sec. III F) for GGA-PBE at an MD temperature of 250 K.
The T1[110] branch corresponds to the 〈110〉 polarization, whereas T2[110] corresponds to the 〈001〉 one. (b) Effect of electronic temperature
T el and applied hydrostatic pressure P (the other parameter being kept fixed at zero) on the GGA-PBE energy dependence for a shear of the
unit cell δ corresponding to the long-wavelength limit of the T1[110] branch in (a) (see Sec. III F for definition of δ). The applied pressures of
0.9, 1.9, and 2.9 GPa correspond to lattice constants of 4.3, 4.23, and 4.175 Å, respectively. (c) Effect of electronic temperature T el, applied
hydrostatic pressure P , and the shear δ on the electronic density of states close to the Fermi level EF. The curves for T el and P are shifted up
for clarity by 1 and 2 states/eV·atom, respectively.
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We are able to further trace back the origin of both
influences and relate them to the electronic density of states
close to the Fermi level [Fig. 5(c)]. We observe that both the
electronic temperature and pressure lead to the same changes
in the electronic density of states. In particular, we note that
the qualitative shape of the latter stays almost unaffected, the
dominating effect being instead a shift of the Fermi level to
lower energies. This leads to a reduction of electrons at the
Fermi level and thus to a stabilization effect.

By pushing the analysis further we can also show that a
similar effect on the electron density of states is caused by
following the energy along an instable mode [lowest/black
curves in Fig. 5(c)]. This time, however, the changes are
stronger, affecting also the qualitative shape of the density
of states. At low electronic temperatures and pressures the
instability therefore succeeds over the other two effects leading
to stabilization of the unsymmetric structure. At higher elec-
tronic temperatures and pressures the situation changes, but the
energetically lowest structure is determined by a much more
subtle interplay and coupling between the various influences.

B. The fcc-to-bcc transition including all relevant
excitation mechanisms

Let us focus now on the fcc-to-bcc transition. There are
two important points distinguishing the present study from
previous ones (e.g., Ref. 4): We include all free-energy contri-
butions that might be relevant for the transition, in particular
the explicitly anharmonic part of the vibrational motion. We
further guarantee the error to be below 0.5 meV/atom for
the standard contributions and below 1 meV/atom for the
anharmonicity. These two points are crucial because they
make it possible to correlate the remaining disagreement
with experiment with an error coming solely from the xc
functionals.

Our results for the Gibbs energy difference between bcc
and fcc including all excitations are shown in Fig. 6. Both
functionals, LDA and GGA, overestimate the experimental
transition on the energy scale by ≈6 meV/atom. This rather
small energy difference results, however, in an extremely large
overestimation of ≈400 K on the temperature scale. Note that
the energy scale does not relate to the temperature scale in
terms of thermal energy, that is, E = 3kBT/2 (6 meV =̂ 46 K).
The reason is that we are here considering temperature-
dependent Gibbs energy differences between phases.

Despite the 6 meV shift with respect to experiment, we find
that the GGA approximation shows a Gibbs energy difference
which has a very similar slope to that of the CALPHAD data.
This is particularly true for temperatures above 400 K, whereas
for lower temperatures, the slopes differ slightly. One should
not, however, correlate the disagreement at lower temperatures
with a DFT deficiency. At such low temperatures, particularly
below room temperature, the CALPHAD Gibbs energies are
based on extrapolations of experimental data. This is even true
for stable phases, the reason being long equilibration times
making calorimetric experiments challenging. Even more, for
unstable phases such as bcc, the Gibbs energies are based
on extrapolations from their stable regime (either temperature
or concentration stabilized). These circumstances make the
CALPHAD data at low temperatures questionable especially
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FIG. 6. (Color online) (a) Gibbs energy difference between bcc
and fcc �Gbcc-fcc at ambient pressure (0.1 GPa). The orange dashed
line corresponds to the GGA-PBE result shifted by −6 meV/atom.
The vertical lines indicate the experimental fcc-to-bcc transition
temperature T fcc→bcc

exp = 716 K (Ref. 31) and melting temperature
T melt

exp = 1115 K (Ref. 31). CALPHAD values are obtained from
Saunders et al. (Ref. 42) and from the SGTE unary database
(Ref. 43). The gray dotted line indicates a linear extrapolation
of the SGTE data (Ref. 42) to T = 0 K, since the original
parametrization diverges at low temperatures. (b) Influence of the
various Gibbs energy contributions on the GGA-PBE phase transi-
tion: 0 K = (T = 0 K) enthalpy difference, h = harmonic, q = quasi,
that is, expansion influence, el = electronic, ah = anharmonic, and
vac = vacancies.

considering the small Gibbs energy differences being relevant.
In fact, this statement is directly supported by noting the
inherent inconsistency (several meV/atom) between the two
available data sets for calcium (cf. dotted and solid black lines
in Fig. 6).

An interesting observation follows from a comparison of
the Gibbs energy difference between the two xc functionals.
At T = 0 K, we have a difference of 6 meV/atom between
LDA and GGA, which, as discussed above, is very relevant
in terms of the temperature scale. Nevertheless, at higher
temperatures the Gibbs energies of both functionals converge
and show a transition at almost exactly the same temperature.
The reason for this behavior is that the vibrational contributions
compensate for the initial T = 0 K difference. It might
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be tempting to suppose a systematic physical origin being
responsible for the equality in transition temperature between
the functionals due to this surprising agreement. So far,
however, we have no evidence that this behavior is not pure
coincidence.

Figure 6(b) shows the individual contributions to the tran-
sition arising from the various excitation mechanisms (GGA
functional). The largest finite temperature effect is clearly
caused by harmonic excitations (light blue shaded). This
contribution is obtained by calculating noninteracting phonon
energies and the resulting (Helmholtz) free energy at the
fixed, for each phase (fcc and bcc) self-consistently obtained
T = 0 K equilibrium volume. As temperature increases, the
bcc phase is significantly stabilized by harmonic excitations
over fcc, as can be intuitively explained by the more open
geometry when compared to the close-packed fcc structure.

The light green shaded region labeled “quasi” corresponds
to the contribution where the fixed volume restriction is lifted
and the noninteracting phonons are allowed to vary along the
thermal expansion. The thermal expansion is calculated for
each phase self-consistently and at a fixed pressure; that is, the
result is a Gibbs energy. The pressure corresponds to ambient
conditions to allow a consistent comparison with CALPHAD. We
find that the quasi contribution also favors bcc over fcc but by a
1/3 smaller amount. The argument for this behavior is the same
as above. The light orange shaded region in Fig. 6(b) indicates
the influence of electronic excitations. They also favor bcc
over fcc and in fact show a very similar influence as the quasi
contribution.

We now focus on the remaining two excitation mechanisms:
vacancies and anharmonicity. While vacancies turn out to be
irrelevant for the phase transition, the anharmonic excitations,
that is, phonon-phonon interactions, produce a crucial and
possibly unexpected effect. Their contribution is indicated in
Fig. 6(b) by the black arrow pointing upward. It turns out
that—against a possible intuitive expectation and opposed
to all before discussed contributions—anharmonicity favors
the fcc over the bcc phase. What is even more striking
is that the magnitude of this contribution is rather large
and that it nearly exactly cancels the electronic and quasi
contribution over the whole temperature range. Considering
Fig. 2, we can resolve the anharmonic excitations for each
phase separately. We see that the bcc phase has a positive
anharmonic contribution (particularly for GGA). In contrast,
the fcc phase has a comparatively strong negative anharmonic
contribution over the full volume range. We conclude that the
anharmonic stabilization of fcc over bcc is due to phonon-
phonon interactions which soften the original noninteracting
phonon frequencies in fcc but harden them in bcc.

We finish this section with a crucial observation regarding
the effect of the individual excitations on the phase transition
and the comparison with experiment. Let us for that purpose
single out two quantities capturing the major part of the
involved physics: The slope of the Gibbs energy difference in
the vicinity of the transition and its actual value at the transition
temperature. Both the quasi and the electronic excitations
significantly shift the actual Gibbs energy value at the
transition temperature toward the experimentally represented
curve (CALPHAD). However, for the slope we observe the
opposite trend, that is, it is becoming more negative and

thus the disagreement with experiment becomes larger. In
contrast, anharmonicity does the following: It carries the actual
value at the transition temperature away from experiment, but
pushes the slope strongly toward the one seen in the CALPHAD

curve.
This behavior is very reasonable: The absolute value of

the Gibbs energy difference at the experimental transition
temperature is directly related to the energy difference at T =
0 K and we, in fact, expect the largest error to originate from the
latter. The reason is that this energy difference involves large
geometric differences, that is, a relatively open structure for
bcc and a close-packed structure for fcc. The slope of the Gibbs
energy difference is instead fully related to finite temperature
excitations which are eventually based on energy differences
stemming from small geometrical distortions. We therefore
indeed expect the error related to temperature changes to
be much smaller than the one related to the T = 0 K phase
differences.

C. Similarity in the electronic free-energy dependence
for LDA and GGA

Let us go back to the Gibbs energy difference �Gbcc-fcc

containing all excitation mechanisms. Taking a closer look at
lower temperatures, we note that the curve for LDA (blue solid
line in Fig. 6) has a different dependence than for GGA (orange
solid line). In particular, �Gbcc-fcc for LDA shows a small dip
at around 100 K, while GGA behaves smoothly. The LDA
dependence is not a technical artifact but rather a consequence
of an important physical effect. By tracing back the origin
we identify that both xc functionals obey a very similar free
energy vs volume dependence on an absolute scale.

To start off we consider again the LDA �Gbcc-fcc [solid
curve in Fig. 7(a)], but now in comparison with the bcc-
fcc Gibbs energy difference excluding electronic excitations
(dashed curve). The latter difference has an almost perfect
linear dependence and we can therefore directly correlate the
dip with electronic excitations. In fact, we can even go further
and identify the particular phase being mainly responsible
for the unusual electronic Gibbs energy dependence. For that
purpose, Fig. 7(a) contains additionally the electronic Gibbs
energy for fcc and bcc separately (dotted curves). One can
see that the fcc curve decreases faster at low temperatures,
but—due to its stronger curvature—bcc overtakes at around
the experimental transition temperature. To understand the
different dependencies of fcc and bcc, we need to resolve
the Helmholtz free energy as a function of volume and
temperature; that is, we need to consider the full electronic
free-energy surface F̃ el(T ,V ).

We therefore plot a 2D projection of a representative set
from F̃ el(T ,V ) for fcc and bcc in Figs. 7(b) and 7(c) (blue
curves). One can see an important difference: While fcc has
almost no volume dependence at any temperature, bcc shows
a Helmholtz free energy decreasing with volume and with the
decrease becoming stronger as temperature rises. This insight
suffices to understand the dependencies of the electronic Gibbs
energies in Fig. 7(a), which for convenience are also included
in Figs. 7(b) and 7(c) (dotted curves).

At smaller temperatures and volumes, the bcc volume
dependence results in a free energy slightly higher than the
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FIG. 7. (Color online) Analysis of the temperature dependence of �Gbcc-fcc for LDA. In (a), the solid blue curve reproduces the LDA
Gibbs energy difference at P = 0.1 GPa from Fig. 6(a) (full = all excitations included). The dashed curve has all but the electronic excitations
included. The dotted curves show the electronic Gibbs energies for each phase separately. The shaded regions indicate whether fcc (gray) or
bcc (green) is stabilized by the electronic excitations. In (b) and (c), the LDA and GGA-PBE electronic Helmholtz free energy is shown as
a function of the volume V for fcc and bcc, respectively. For each combination (e.g., LDA fcc), the free energy is plotted for the five given
electronic temperatures. The vertical lines indicate the equilibrium volumes at T = 0 K (dashed; black dash-dotted = experiment) and at the
melting temperature (solid). The curves with open circles show the continuation of the free energy beyond the normal volume range into the
regime of the other functional. The blue dotted curves show the temperature dependence of the Gibbs energy (P = 0.1 GPa) and correspond
therefore to the dotted curves from (a). The green pluses indicate FLAPW results [WIEN2K (Ref. 22)]. (d) Similar to (c) but this time showing
the comparison between the full electronic free energy (darker curves) and the ideal electronic entropy term −T Sel/2 (light shaded curves).
Part (d) is discussed in Sec. III B.

one for fcc, thus leading to the fcc stabilization region in
Fig. 7(a) (gray shaded). At higher temperatures and volumes,
the bcc electronic free energy “slides” down relatively fast with
temperature due to the strong negative volume dependence.
This “sliding down” is responsible for the strong curvature
of the bcc Gibbs energy and hence also the reason for the
bcc stabilization region [green shaded in Fig. 7(a)]. With this,
we have therefore identified the origin of the low temper-
ature dependence of the overall Gibbs energy difference in
Fig. 6.

It remains, however, to explain why GGA seems to behave
qualitatively differently, that is, showing a rather smooth
dependence in �Gbcc-fcc. For that purpose, Figs. 7(b) and 7(c)
contain additionally the projection of F̃ el(T ,V ) for GGA
(orange lines). We recognize a similar behavior for the fcc
phase as already found for LDA, that is, only negligible volume
dependence. The situation is different for bcc. For GGA,
the bcc electronic free energy has only a very small volume
dependence, which is even opposite to LDA (i.e., increasing
with volume and temperature). This clear qualitative difference
between LDA and GGA is rather unexpected and we have
therefore put further effort in elucidating this matter.

The first attempt is to verify the quality of the PAW
potential. While the cross checks for T = 0 K showed already
a good performance of the PAW potential, the small energy
differences being relevant here and the new type of free-energy
contribution might change the picture. In particular, consider-
ing the large underestimation of the equilibrium volume by the
LDA functional [cf. blue dashed vertical and black dash-dotted
vertical line in Figs. 7(b) or 7(c)], thus resulting in an increased
internal pressure (higher bulk modulus), might lead to a

loss of accuracy of the PAW potential. Such considerations,
however, are not affirmed as the comparison of the PAW free
energy with FLAPW results in Fig. 7(c) (green pluses) clearly
demonstrates.

We follow therefore a different route to gain further insight.
To explain the approach note first that the relevant volume
ranges for LDA and GGA (at least for moderate pressures)
do not overlap [i.e., the blue and orange curves in Figs. 7(b)
and 7(c) are clearly separated]. This means that there is a large
mismatch in absolute volumes between the two functionals. If
we now extend the region of interest and calculate for each
functional the Helmholtz free energy at volumes native to the
other functional, we obtain a volume dependence as shown by
the open symbols in Figs. 7(b) and 7(c). For fcc the situation
stays the same, that is, no volume dependence. In contrast for
bcc, we find now a very similar volume dependence between
LDA and GGA, but only if we consider absolute volumes. We
conclude therefore that the seemingly inconsistent behavior
between LDA and GGA bcc is a volume effect: At absolute
volumes the functionals do behave consistently.

D. Theory vs experiment I: Extension of the LDA-GGA
similarity to vibrational free energies

Having the full Helmholtz/Gibbs free-energy surface as
a function of volume/pressure and temperature at hand we
can extract any thermodynamic quantity. We discuss in
the following the thermal linear expansion and the linear
expansion coefficient [Eq. (4)]. Even though the latter contains
almost the same information, it can reveal discrepancies more
clearly. We also discuss the (isothermal) bulk modulus [Eq. (2)]
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FIG. 8. (Color online) Thermodynamic properties at ambient pressure (0.1 GPa) derived from the free-energy surface including all studied
excitation mechanisms. The vertical lines indicate the experimental fcc-to-bcc transition temperature T fcc→bcc

exp = 716 K (Ref. 31) and melting
temperature T melt

exp = 1115 K (Ref. 31). The experimental data are from • Anderson (Ref. 44); ◦ Touloukian (Ref. 50); � Bernstein (Ref. 52)
(including error bars); and � Schulze (Ref. 49). Shown are (a) the thermal linear expansion ε(T ) [Eq. (4)], (b) the linear expansion coefficient
α(T ) [Eq. (4)], and (c) the isothermal bulk modulus BT (T ) [Eq. (2)] relative to its T = 0 K value in the fcc phase B fcc

0K .

which, being a second derivative, is even more sensitive to the
volume/pressure dependence of the free-energy surface.

Our results are shown in Fig. 8. We focus first on the
fcc phase where sufficient experimental data are available
for comparison. We omit, however, the gray marked thermal
expansion data from Schulze49 since they appear to have large
error bars as is indicated by their intrinsic scatter and also
by the significant deviation from the other measurements.
Comparing with the remaining experimental data we find
a good agreement with both of the investigated functionals
LDA and GGA. In fact, an important observation is that
no functional performs better than the other, as opposed to
our finding for the fcc phonons where GGA was clearly
closer to experiment. For the (fcc) quantities in Fig. 8, we
can rather support an interpretation found previously for a
larger set of metals9: LDA and GGA can be considered
as approximate generic upper and lower bounds to experi-
mental data, allowing us to construct fully ab initio-based
error bars for the theoretically computed thermodynamic
data.

An analysis of such approximate error bars makes it possi-
ble to quickly identify problematic cases.9 In fact, performing
this analysis carefully in the present case reveals a possibly
unphysical dependence of the experimental expansion. As
mentioned above, the expansion coefficient can magnify
discrepancies, so let us focus on Fig. 8(b). Analyzing the
temperature range around 300 K, we notice that the Touloukian
data50 lie slightly higher than both LDA and GGA, that is, not
within the ab initio error bars. Considering the full Touloukian
curve,50 we find that what is even more striking is the difference
in slopes in the expansion coefficient. The Touloukian data50

show weak temperature dependence above 300 K, while
both LDA and GGA have a significantly stronger increase
with temperature. Comparing to expansion coefficients for
other elements (e.g., Ref. 50 or 51) it appears that it is
rather the experimental data for fcc Ca that is unusual. Other
elements show indeed an increasing expansion coefficient with
temperature as does also theory predict for fcc Ca.

Turning now to the high-temperature bcc phase, we find
a scarce experimental situation. No data are available for the
bulk modulus and only an older measurement for the thermal

expansion from Bernstein.52 Unfortunately, the authors report
difficulties with the measurement and estimate rather large
error bars. Therefore, a comparison with our theoretical data
would be inconclusive for the quantities shown in Fig. 8. We
come back to this issue when discussing the heat capacity in
Sec. IV E. For the moment, let us concentrate on an intrinsic
theoretical comparison.

For that purpose, note the following trend in the fcc ab
initio curves in Fig. 8: When we move from (a) to (b) and
then to (c), the difference between the LDA and GGA curves
increases. A similar trend occurs also for the bcc phase; it is,
however, shadowed in Fig. 8 by the fact that the shown bcc
linear expansion and bcc bulk modulus are referenced with
respect to T = 0 K fcc values. These trends are not merely
a technical artifact (e.g., used scale), but are indeed based on
a deeper physical argument. The reason is that upon moving
from (a) to (c), the quantities probe more and more sensitively
the volume dependence of the Helmholtz free-energy surface.
Therefore, as mentioned above, the (isothermal) bulk modulus
is the most sensitive in this respect. Correlating this argument
with the difference between LDA and GGA, we can draw
a very important conclusion: A main difference between
LDA and GGA in describing thermodynamic quantities
originates in their different volume/pressure dependence of
the Helmholtz/Gibbs free-energy surface.

We can extend this statement even further by performing
a combined analysis of the LDA and GGA results for both
of the phases fcc and bcc. To this end, note in Fig. 8(c)
the following behavior: While for the fcc phase the LDA
functional yields a harder system (i.e., higher bulk modulus)
than GGA, we see a jump at the transition temperature to an
exactly opposite picture in the bcc phase. For bcc, GGA yields
the harder material with a higher bulk modulus. We label
the behavior at the transition temperature a “soft jump” for
LDA and a “hard jump” for GGA [Fig. 8(c)]. Concluding, we
see that the difference in the free-energy volume dependence
(or equivalently Gibbs energy pressure dependence) between
LDA and GGA is different for fcc and bcc, that is, error
cancellation does not take place.

This conclusion is rather unfortunate, since it significantly
lowers the predictive power of an ab initio approach. Based
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on a detailed analysis, we are, however, able to remedy this
situation.

For the following analysis, we concentrate on the quasi-
harmonic contribution to the temperature dependence of the
bulk modulus which contains a major part of the effect.
Further, we need to relate the quasiharmonic bulk modulus
to the quasiharmonic free-energy surface F qh. It turns out
that considering the free energy on an absolute scale brings
little insight. The reason is that the strong temperature
dependence of F qh hides the relevant volume effects. It is
much more revealing to perform the analysis using instead
the derivative of the free-energy surface along volume, that is,
pressure surface. We therefore construct a 2D representation of
the quasiharmonic pressure surface P qh(V,T ) shown in Fig. 9.
Since Fig. 9 is a rather unconventional representation, let us
explain it in a bit more detail.

The quasiharmonic pressure surface constitutes the domi-
nant part of the thermal pressure surface and it is constructed by
taking the negative derivative of the quasiharmonic free-energy
surface with respect to volume. We see only positive pressures
for all volumes and temperatures in Fig. 9, because the
quasiharmonic contribution (i.e., the noninteracting phonon
gas) is purely repulsive. It creates an inner pressure driving
the system to larger volumes, that is, thermal pressure. This
effect increases with temperature, as can be clearly seen in
Fig. 9 (see for instance the orange curves for GGA fcc with
the temperatures included). The increase with temperature is
eventually the reason for thermal expansion which can be
explicitly obtained upon adding the quasiharmonic pressure to
a corresponding T = 0 K pressure-volume curve. Taking the
negative derivative (scaled with volume) of the pressure we
arrive directly at the isothermal bulk modulus. Relating this
to Fig. 9 means that a steeper positive slope of the pressure
curve results in a softer material (i.e., in a lower bulk modulus;
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FIG. 9. (Color online) Volume dependence of the quasiharmonic
contribution to the thermal pressure P qh at different temperatures
for the (a) fcc and (b) bcc phase. The vertical lines indicate the
equilibrium volumes at T = 0 K (dashed; black dash-dotted =
experiment at T = 0 K) and at the melting temperature (solid).
The curves with open circles in (b) show the continuation of the
pressure beyond the normal volume range into the regime of the
other functional.

see for instance LDA bcc becoming softer with increasing
temperature as indicated by the arrow).

With that background we can come back to the analysis
of the LDA and GGA bulk modulus for fcc and bcc. The
soft and hard jumps of the bulk moduli in Fig. 8(c) can be
understood in terms of the slopes of the pressure curves in
Fig. 9. Focus first on LDA and note that P qh has a slightly
higher slope at the same temperature for bcc than for fcc.
This explains the soft jump of the LDA bulk modulus at the
transition temperature in Fig. 8(c). In contrast for GGA, we
find that P qh in Fig. 9 has a higher slope for fcc. In fact, GGA
bcc has almost no slope. This explains the opposite behavior of
the GGA bulk modulus resulting in a hard jump at the transition
temperature.

Having traced back the effect to the volume dependence
of the Helmholtz free energy/pressure surface, we can now
perform the next crucial step. Similarly as in the previous
section for the electronic free energy, we extend the volume
region for each functional beyond its own regime, in order to
cover also the volumes native to the other functional (indicated
by the open circles in Fig. 9). Looking at the pressure curves
in the full volume range allows us to draw an important
conclusion which perfectly fits our result for the electronic
excitations discussed in the previous section: Both, LDA and
GGA follow a similar quasiharmonic free-energy curve if
compared on an absolute volume scale. However, due to the
different placement on this curve which is caused by a differing
equilibrium volume at T = 0 K, we see differences in the
thermodynamic properties which involve derivatives of the
free energy along the volume axis.

Note also that for bcc we can even closely relate the
similarity in the quasiharmonic curve with the electronic
free-energy curve from Fig. 7(c). The curvatures are opposite
(convex vs concave), but the placement with respect to the
minimum on each curve is strikingly similar. For instance, in
both cases (quasiharmonic and electronic) the bcc phase lies
in the minimum of the general free energy/pressure vs volume
curve. In fact, we can complete the discussion by noting that
also the anharmonic contribution follows a similar volume
dependence as can be seen by a detailed inspection of the
trend shown in Fig. 2.

E. Theory vs experiment II: Resolution of the disagreement
in the experimental heat capacity

The presented methodology is ideally suited to evaluate
experimental heat capacities. Accurate heat capacities are
a crucial ingredient in constructing phase diagrams, for
example, within the CALPHAD approach, but their experimental
determination is—particularly at high temperatures—often
accompanied by large scatter in the data. Only very recently
ab initio has reached a level where it can help evaluating the
quality of experimental data.14,54,55

The experimental situation in Ca is shown in Fig. 10(a).
In particular in the bcc phase we observe two strongly
disagreeing experimental sets of measurements. In the
CALPHAD parametrization only one of the sets is used while
the other is disregarded. The data set chosen for the CALPHAD

parametrization shows a steep increase with temperature and
reaches a relatively high value of more than 5kB at the melting
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GRABOWSKI, SÖDERLIND, HICKEL, AND NEUGEBAUER PHYSICAL REVIEW B 84, 214107 (2011)

0 300 600 900
Temperature (K)

0

1

2

3

4

5

Is
ob

ar
ic

 h
ea

t c
ap

ac
it

y
C

P
 (

k B
) CALPHAD (SGTE)

GGA-PBE
-

LDA

0 10 20 300

0.1

0.2

0.3

0.4
fcc

T  fcc→bcc
exp T  melt

exp

bcc

Ditmars 1989
Robie 1985
Ulyanov 1985
Kubaschewski 1950
Jauch 1946
Clusius 1930
Zalesinski 1928
Eastman 1924

(a)

0 300 600 900
Temperature (K)

0

1

2

3

4

Is
ob

ar
ic

 h
ea

t c
ap

ac
it

y
C

P
 (

k B
)

h + q + el + ah + vac
h + q + el + ah
h + q + el
h + q
h

fcc

T  fcc→bcc
exp T  melt

exp

bcc

harmonic

quasi
electronic

vacancies
anharmonicity

Ditmars 1989
Clusius 1930

(b)

FIG. 10. (Color online) (a) Isobaric heat capacity CP [Eq. (3)] of
fcc and bcc Ca at ambient pressure (0.1 GPa) containing all studied
excitation mechanisms and (b) the influence of the latter for the
GGA-PBE functional. The vertical lines indicate the experimental
fcc-to-bcc transition temperature T fcc→bcc

exp = 716 K (Ref. 31) and
melting temperature T melt

exp = 1115 K (Ref. 31). CALPHAD data are
taken from the SGTE database (Ref. 43). Experimental values are
from � Ditmars (Ref. 56); � Robie (Ref. 57); � Ulyanov (Ref. 58);
• Kubaschewski (Ref. 59); 
 Jauch (Ref. 60); ◦ Clusius (Ref. 61);
� Zalesinski (Ref. 62); � Eastman (Ref. 63). See Fig. 6 for further
notation.

temperature. The other set of experimental data shows a clearly
weaker increase with temperature reaching only a value of
about 4kB at the melting point.

Our results for the LDA- and GGA-based heat capacities in-
cluding all excitation mechanisms are also shown in Fig. 10(a).
At temperatures <300 K, the experimental situation is decisive
and we see an excellent agreement with theoretical data from
both functionals. At higher temperatures, we find that the ab
initio theory shows an excellent agreement with the lower
experimental data. A further important observation is that even
at temperatures close to the melting point, LDA and GGA
show a very similar qualitative and quantitative behavior for
the heat capacity. Following the discussion in Ref. 9, we can
consider LDA and GGA as approximate ab initio error bars.
Thus, based on their close agreement we confirm the lower set
and rule out the upper one. The presently employed CALPHAD

parametrization should therefore be reconsidered.

Figure 10(b) decomposes the heat capacity into the re-
spective contributions from various excitations. Clearly, at
temperatures above ≈300 K the harmonic limit of 3kB of
noninteracting phonons (at fixed volume) is reached (Dulong-
Petit law), being the most important contribution. To describe
the linear increase with temperature, we need to include the
quasiharmonic as well as the electronic excitations. Both
are similar in magnitude, contributing together ≈1/4 of the
total heat capacity. The anharmonic term describing phonon-
phonon interactions, which was of high relevance in explaining
the phase transition (see Sec. IV B), is negligible in the heat
capacity. It is slightly positive for the fcc phase and negative
for bcc, but only roughly 1/50 of the total heat capacity.
In contrast, while being negligible for the phase transition,
vacancies are showing a non-negligible contribution in the bcc
phase at temperatures close to the melting point. The reason
is that despite their small absolute free energy, the exponential
decrease in temperature causes a strong second derivative (that
is, heat capacity).

A crucial contribution significantly lowering the Gibbs
energy of vacancy formation turns out to be anharmonicity.
The relatively high value for the enthalpy of formation of
0.84 eV at T = 0 K (Table III) is strongly lowered at the
melting temperature by −0.2 eV by anharmonic excitations
while quasiharmonic interactions only account for a lowering
of −0.07 eV and the electronic influence is of even less
importance (+0.02 eV).

V. CONCLUSIONS

We have studied the influence of all relevant finite-
temperature excitation mechanisms on the prototype
temperature-driven fcc to bcc transition in calcium solely based
on ab initio techniques. Extensive convergence checks and
methodological advancements allowed us to reach a numerical
accuracy of better than 0.5 meV/atom in the standard contribu-
tions (T = 0 K energy, electronic, quasiharmonic, and vacancy
excitations) and of below 1 meV/atom in the explicitly
anharmonic term. The high numerical accuracy and a detailed
analysis of the two currently most popular xc functionals, LDA
and GGA, allowed us to derive systematic and general trends
and to elucidate the presently achievable accuracy with DFT.
Key findings are summarized in the following.

bcc instability. Upon a careful study of the long-wavelength
limit of the T1[110] branch in the bcc phonon dispersion, we
have revealed a dynamical instability at T = 0 K and ambient
pressure. We have shown that the instability significantly
depends on the electronic temperature/broadening which can
even lead to a full stabilization. The effect is very similar
to a pressure-induced stabilization and we can relate both to
the behavior of the electronic density of states at the Fermi
level. Moreover, we have devised a method to qualitatively
evaluate the effect of phonon-phonon interactions on this
long-wavelength instability and have shown that they lead to
additional stabilization. Based on this insight we proposed
a straightforward method to deal with such instabilities in
quasiharmonic and anharmonic calculations.

Phase transition. The key finding is that the temperature
dependence of the Gibbs energy difference between bcc and
fcc is found to be in very good agreement with experimental
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(CALPHAD) data. Of crucial importance is the influence of
anharmonic excitations shifting the Gibbs energy difference by
several meV/atom in favor of fcc. In particular, the temperature
dependence is altered significantly by anharmonicity and only
upon inclusion of this contribution we find good agreement
with experiment. While the temperature dependence of the
Gibbs energy difference is predicted with good accuracy, we
find that the actual value at the experimental phase transition
temperature is overestimated by ≈6 meV/atom for both
functionals LDA and GGA. This rather small overestimation
leads, however, to a drastic error on the temperature axis of
≈400 K. We ascribe this mainly to a failure of the used xc
functionals in predicting a correct T = 0 K energy difference.
In this respect, van der Waals interactions, which are missing
in LDA and GGA, could play an important role.64

Free energy vs volume curve. Based on a comparison of
several derived thermodynamic properties with experiment
and on an intrinsic theoretical comparison between LDA
and GGA, we have been able to derive the dependence of
a general free energy vs volume curve. This is meant in the
sense that both xc functionals follow a very similar Helmholtz
free-energy curve when taken at the same absolute volume.
The difference between the functionals is only due to the
different relative placement on that general curve. While
LDA is placed at very small absolute volumes due to the
well-known overbinding, GGA is found at larger volumes in
much closer agreement with experiment. The different relative
placement on the curve results in strongly varying derivatives
along the volume axis. The bulk modulus which probes
the volume dependence most sensitively shows therefore the
largest differences between LDA and GGA.

Heat capacity. The extensive compilation of experimental
data for the heat capacity of calcium reveals a clear distinction
between two systematically deviating sets of experiments at
high temperatures with intolerable differences of up to 1kB.
From our numerically highly accurate free-energy surface
we are able to derive a reliable theoretical prediction of the
isobaric heat capacity. Since the studied xc functionals show
negligible differences in the heat capacities we can with great
confidence assess the quality of the experimental data. A
surprising outcome is that for Ca the well established and
widely employed CALPHAD SGTE database43 is not based
on the best available set of experiments. A reparametrization
should be considered.

The multitude of studied properties makes it possible to
draw important general conclusions as to which performance
one can expect from traditional DFT xc functionals. Let us
recap: We find good agreement with experiment and between
LDA and GGA for the temperature dependence of the Gibbs
energy difference. The actual value at the phase transition
is, however, overestimated by both functionals. We find strong
differences in the volume dependence between LDA and GGA
resulting, for example, in a strongly differing bulk modulus.
The heat capacity is instead excellently described and the
difference between LDA and GGA is insignificant.

In combining these results, a unified picture emerges
that shows how differently the various properties probe the
Helmholtz free-energy surface F (V,T ) [or equivalently the
Gibbs energy surface G(P,T )]. The actual value of the Gibbs
energy difference at the phase transition is directly related
to the T = 0 K energy difference between the phases. We
do not expect this difference to be in perfect agreement with
experiment within a meV scale since its determination involves
substantial geometrical differences. The large differences in
the volume dependence and related properties of the function-
als are due to the discussed different relative placement on a
similar absolute free-energy curve. In contrast, the temperature
dependence of the Gibbs energy difference and the heat
capacity are dominated by the temperature dependencies of
the free-energy surface. From the results of the present study
we expect this dependency to be described accurately.

The methodology and insight gained in the present
study constitute an important step toward a fully ab ini-
tio and numerical approach to compute accurate and re-
liable input for thermodynamic modeling and to identify
the performance but also the limitations of present day xc
functionals.
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