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Energy dissipation in dielectrics after swift heavy-ion impact: A hybrid model
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The energy dissipation after irradiation of dielectrics with swift heavy ions is studied applying a combination
of the Monte Carlo (MC) method and the two-temperature model (TTM). Within the MC calculation the transient
dynamics of the electrons in the excited dielectric is described: the primary excitation and relaxation of the target
electrons as well as the creation of secondary electrons. From the MC data, it was observed that the electron
system can be considered as thermalized after a time of t ≈ 100 fs after the ion impact. Then the TTM is applied
to calculate the spatial and temporal evolution of the electron and lattice temperature via the electron-phonon
coupling using the MC data as initial conditions. Additionally, this MC-TTM combination allows to compute
material parameters of strongly excited matter.
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I. INTRODUCTION

Charged particles lose their energy while passing through
matter. This energy loss is mainly due to two dissipation
channels, called electronic and nuclear stopping, respectively.
The first is the excitation of target electrons, while the latter
refers to elastic collisions of the projectile with the target
nuclei. In the case of ions with masses of more than 20 proton
masses and kinetic energies in the MeV regime, so-called swift
heavy ions (SHI), electronic stopping is the main energy-loss
channel.1,2

SHI are known to induce nanoscaled material modifications
in insulators. These modifications, also called tracks, may
reveal themselves as craters or hillocks on the surface,
which can be observed, for instance, using an atomic force
microscope.3 These modifications can be explained in terms
of the two-temperature model (TTM),4 commonly called the
inelastic thermal spike model5 in this context, which has been
successfully applied for reproducing experimentally observed
track radii and damage thresholds.3,5–7 Within this model, both
the electronic as well as the phononic systems are described
via a respective heat-diffusion equation. The two equations
are coupled by an exchange term. The electrons are heated
directly due to the ions energy loss, while the phononic system
is heated indirectly by electron-phonon coupling. This leads
to a local heating of the lattice, which may result in a molten
area.

During the irradiation of an insulator, electrons are excited
from the valence into the conduction band. The application
of the TTM therefore suffers from the fact that the material
parameters involved are often unknown and will depend on the
variable electron density in the excited dielectric, i.e., these pa-
rameters depend strongly on transient excitation dynamics. A
reliable theory considering the complete excitation dynamics
is needed to compute these quantities. Additionally, the TTM
is based on thermodynamic equations, especially the electronic
temperature is used, requiring the electron system to be in an
equilibrium state. It is unclear after what time after the ion
impact this requirement is fulfilled.

In previous works,8,9 we introduced our developed combi-
nation of the Monte Carlo method (MC) and the TTM. We
demonstrated that our combined method MC-TTM is capable

of calculating material parameters like the electron diffusivity
and the electron-phonon coupling.

In this work, a detailed description of the coupling of both
methods will be given. This paper is therefore constructed
as follows. In the next section, the MC method and the
TTM will be introduced. Then we demonstrate how to
couple the MC calculation with the TTM, allowing to take
advantages of the facts that the MC method is well capable of
dealing with electrons in nonequilibrium and the ability of the
TTM to calculate the heat transport, taking electron-phonon
interactions into account on an extended timescale. Within the
MC part, the transient electron dynamics after the ion impact
is calculated. Using this data, we then give an estimate on
the electron thermalization time after which the definition of
a temperature is meaningful. In Sec. III, the MC data are
analyzed and then used to calculate the transient electronic
heat capacity taking the variable electron density into account.
This is followed by the conclusions.

II. MODEL

This section is divided into three parts in which the model
calculations will be explained. In the first part, the Monte Carlo
method, in particular, its treatment of the primary electronic
excitation induced by the SHI and subsequent nonequilibrium
dynamics of electrons and holes are described. This is followed
by the introduction of the two-temperature model in which the
heat transport and lattice heating are calculated. The final sec-
tion is devoted to the coupling of these two different methods.

A. Monte Carlo method

Invented decades ago, the Monte-Carlo method became
one of the classical ways to describe particle transport in
matter.10–17 Recently, it has been used for studying excitation
and relaxation of electrons irradiated with SHI or laser
pulses.8,16–20 Within the method, each process occurring with
each particle in the system is considered event by event.
Every particle undergoes a collision process with a certain
probability. The probability of a particular event depends on
its cross section relative to the total cross section summed over
all possible interactions.
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Our Monte-Carlo approach, including all applied cross
sections and sampling algorithms is thoroughly described in
Ref. 20. Here, we briefly recall some aspects of the algorithm,
focusing on the physical background of our model. As a first
step, we calculate the free paths between collisions of the
incoming projectile with the target atoms; then ionization
may occur for each collision, which results in the creation
of the first generation of free electrons, so called δ electrons.
Secondly, we calculate the free paths between all possible
subsequent collisions for all free electrons. This includes
scattering on bound electrons in different energy states and
elastic scattering on target atoms. In case of an ionization event,
the bound electron corresponding to the shortest possible path
length is chosen and the transferred energy is calculated.
Consequently, the free path and time for each of these
electrons, i.e., for electrons with different energies, are also
obtained. Each ionization of a bound electron is accomplished
by the creation of a hole. The possibility of hole decay by
Auger recombination and, thus, further creation of secondary
electrons is also included in the MC simulation. In case of
the elastic scattering, the energy transferred to an atom as
well as the electron scattering angle are calculated. To obtain
the resulting distributions of electrons and their energies, the
simulations are repeated many times and finally averaged.

For simplicity, we assume perpendicular incidence, apply-
ing cylindrical geometry and periodic boundary conditions
along the z axis and neglect any nuclear stopping of the
SHI. This neglection is justified for ions with energies above
∼1 MeV/u. Since we, on the other hand, neglect relativistic
effects, the model is valid for intermediate ion energies. The
projectile is assumed to have an equilibrium charge state,
which we describe according to the Barkas formula.2,17,18

The solid is considered as a homogeneous random arrange-
ment of atoms. Therefore no effect like channeling or other
influence of a particular material structure on particle prop-
agation are entering the simulation. Sequential collisions of
an SHI penetrating through homogeneous media is described
with the Poisson law for the mean-free path. For solids, the
corresponding mean-free path can be chosen equal to the mean
interatomic distance.12–17 According to their energy levels,
the target electrons are placed randomly around the nucleus.
These target electrons are considered as not moving during the
collision with the SHI. This is equivalent to a condition on the
projectile velocity being much greater than the electronic Bohr
velocity in the atom. The impact parameter is chosen randomly
within the interatomic distance15,20 and the energy transfer
is then calculated according to this impact parameter.18,20 If
the energy transfer exceeds the electrons’ ionization potential,
this electron is considered as a free electron after collision.
In the other case, no energy is transferred and the electron
remains bound at the atom. The scattering angle is explicitly
determined by the transferred energy, and the polar angle
is uniformly distributed within the interval [0,2π ). The
ionized electrons are treated as independent particles, i.e.,
the transferred energies and angles of emission of electrons are
uncorrelated.12–17

These resulting high-energy electrons may as well ionize
target atoms. Such collisions are called inelastic collisions
of free electrons with atoms in contrast to elastic collisions,
which do not change the ionization state of the atoms but

solely transfer kinetic energy. To calculate the mean-free path
for inelastic collisions of free electrons with atoms, we apply
the Gryzinski ionization cross section,17,21 depending on the
energy of the electron and the ionization potential of the
bound electron. The transport and scattering of the secondary
electrons, created by these ionizations, are included in the
simulation in the same manner.18–20,22

In contrast to the penetrating SHI, excited electrons may
loose kinetic energy to target atoms. We refer to these collisions
as elastic collisions. Such collisions do not change the energy
of the electron significantly, however, they change the direction
of motion of the electron. This is especially important for
electrons with a kinetic energy smaller than the band gap of
the solid Ee < Egap, since for these electrons elastic collisions
are the only scattering channel. Mott’s cross section with the
screening parameter by Moliere for electronic scattering12–14,20

is used to calculate the mean-free path for the elastic collisions.
This cross section depends on the electron energy and the
atomic number of the atom. The scattering angle for this
collision is defined by the transferred energy, while the polar
angle is uniformly distributed in the interval [0,2π ).

Thus, in the frame of the MC approach, electrons can
loose their energy due to both, elastic or inelastic collisions.
The realized free path of the electrons is chosen as the
shortest possible path according to Poisson law. Thus elastic
collisions with the target atoms and inelastic collisions with
bound electrons at different energy levels contribute to the
mean-free path.18,20 Additionally, low-energy electrons can
loose their energy due to emission of phonons,12–14 which
are accounted for within the TTM calculation (see Sec. II B).
Phonon emission provides the main heating mechanism of
the lattice, since the above mentioned elastic collisions of
the electrons heat the atoms only slightly on the considered
timescales.

Scattering among free electrons is not taken into account,
since, apart from the very narrow track core, the free-electron
density is much smaller than the density of valence band
electrons and the density of atoms.20 Thus collisions with
the latter two partners are the dominant electron scattering
mechanisms, determining energy transport away from the track
core.

After the ionization of a target atom, a hole is created.
These holes then can decay due to Auger recombination.
The Poisson law for the time of decay is applied to calculate
this recombination process.20,22 Every atomic shell of a target
atom has a characteristic Auger decay time.23 The electron,
which is enabling the Auger transition, and the other electron,
which gains the excess energy, are chosen randomly among
the bound electrons. The difference between the energy
released by the filling of the hole in a deeper shell and the
electrons’ own ionization potential determines its final energy
after the recombination. The electrons’ momentum is then
chosen uniformly within the solid angle. Filling of a hole
by an electron from a neighboring atom, so-called Knotek-
Feibelman processes,24–26 are also taken into account. The
characteristic time of these processes is assumed to be equal
to usual Auger recombination times. As we have shown in
Ref. 18, Knotek-Feibelman processes are especially important
for the atoms in the close vicinity of the SHI trajectory where
multiple ionizations result in a lack of own electrons of these
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atoms. The neighboring atoms can provide electrons for the
energy release via such interatomic Auger decays.

To determine the spatial and temporal particle and energy
distributions, we follow every electron and hole, and then
average over the respective ensemble. Once the electrons
exhibit a thermalized behavior, the MC part is considered to
be finished, and we switch to the TTM calculations.6,8 The
details of the transition from one model to the other one are
described in Sec. II C.

B. Two-temperature model

The TTM is widely applied to describe electron-lattice
relaxation after SHI or laser irradiation.4–6,27–29 Within this
model the temporal and spatial evolution of the electronic and
lattice temperature, Te and Tp, respectively, are calculated. The
TTM is given as

CV,e(Te)
∂Te

∂t
(�r,t) = ∇ · [κe(Te)∇Te(�r,t)]

− g[Te(�r,t) − Tp(�r,t)] + S(�r,t), (1)

CV,p(Tp)
∂Tp

∂t
(�r,t) = ∇ · [κp(Tp)∇Tp(�r,t)]

+ g[Te(�r,t) − Tp(�r,t)]. (2)

Here, κe(Te) and κp(Tp) denote the heat conductivity and
CV,e(Te) and CV,p(Tp) denote the heat capacity of the
electrons and the lattice, respectively. Furthermore, g is the
coupling parameter between both subsystems and S(�r,t)
is the space-and-time-dependent energy source heating the
electronic subsystem. Commonly S(�r,t) is calculated using
the SRIM code30 and the expression for the radial electron
energy deposition given by Waligorski et al.16

Here, the finite difference method is used to solve Eqs. (1)
and (2). An infinite large heat bath is used as boundary
conditions. The heat conductivity can be expressed as

κe,p(Te,p) = De,p(Te,p)CV,(e,p)(Te,p), (3)

substituting the heat conductivity with the diffusivity
De,p(Te,p).

The electron-phonon coupling parameter g controls the
flux of heat or energy from the electrons to the phonons per
unit time and volume. This parameter governs the heating
of the lattice and is thus a crucial quantity. However, only
limited experimental data are available on the electron-phonon
coupling parameter for dielectrics, which is therefore often
treated as a fitting parameter. Furthermore, the electronic
diffusivity De determines the spatial transport of the energy
and thus determines the local lattice temperature. Experimental
data on this property for dielectrics are lacking. Although
one can extract the electron diffusivity De from resistivity
measurements for instance, such kind of measurements often
do not reflect the transient electronic excitation during the
irradiation.

In our work, we obtain both the electronic diffusivity De(Te)
and the electron phonon-coupling parameter g from the MC
simulation and use these parameters within the TTM. Details
on how both quantities are obtained are given in Sec. II C.

The lattice diffusivity is given as Dp = CV,p/κp, where
we assume a linear temperature dependence of the heat

conductivity κp and of the heat capacity CV,p according to
Refs. 31 and 32, respectively. Thus the lattice diffusivity is
given as Dp = 8.4 × 10−3 cm2/s.

In previous work,9 we demonstrated that it is important to
take the energy redistribution related to Auger decay of holes
into account. The effective source term in Eq. (1), heating
the electronic subsystem, can be written as S(�r,t) = Sh(�r,t) +
SSHI(�r,t), where SSHI(�r,t) is the energy introduced into the
electronic system by the primary ion. In our particular case,
the source term SSHI(�r,t) is substituted by an energy profile
of the electrons calculated within the MC simulation, which
enters our TTM approach as initial conditions. The Auger
recombination is treated as an additional source of energy for
the electronic system, assuming an exponential decay:

Sh(�r,t) = Eh(�r)(1 − e−t/τ ). (4)

Here, Eh(�r) denotes the initial excess energy of the hole at
position �r and τ is the characteristic decay time. In the present
work, Eh(�r) is calculated within the MC simulation and the
time τ is chosen to be τ = 100 fs, according to Refs. 33 and 34.

C. MC-TTM combination

One fundamental concept for the description of ion-excited
insulators is that excited electrons in the conduction band of
an insulator behave like free electrons in a metal.1 Following
this idea, we describe these electrons by a pseudo-Fermi
distribution, a pseudo-Fermi energy E∗

F , and a free-electron
gas DOS. The energy zero point is located at the bottom of
the conduction band. This is schematically shown in Fig. 1.
To combine the MC method with the TTM, we seek the
appropriate Fermi distribution, which describes the density and
energy of the electrons calculated within the MC simulation.

Generally speaking, one may calculate the energy density U

of the electrons obtained from the MC simulation and convert
that into an electronic temperature. If the electron heat capacity
CV,e is known, this conversion can be done straightforwardly.
However, in the case of insulators (especially during SHI
irradiation), this parameter is unknown, and we therefore
proceed by analyzing the particular distribution:

f (E,Te,μ) = 1

1 + exp[(E − μ)/kBTe]
, (5)

where kB is the Boltzmann constant and μ the chemical
potential.

In our case, two unknown variables appear, i.e., μ and Te.
They can be determined by exploiting the zeroth and the first
moment of the Fermi distribution, which read, respectively,

N =
∫ ∞

0
α(E)f (E,Te,μ)dE, (6)

U =
∫ ∞

0
Eα(E)f (E,Te,μ)dE. (7)

Here, α(E) is the free-electron DOS, N and U denote the
particle and energy densities, respectively.

Both the particle density N as well as the energy density U

are known from our MC calculation (see Sec. III, Figs. 5 and
6). With knowledge of N , Eq. (6) can be solved by varying
μ and Te leading to a relation μ(Te). The same procedure is
repeated for Eq. (7).
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FIG. 1. Schematic description of valence and conduction bands
of an insulator under irradiation with a swift heavy ion. Electrons are
excited from the valence band (VB) into the conduction band (CB).
The excited electrons are then treated as a free-electron gas with
their appropriate pseudo-Fermi distribution f (E,Te,μ), appropriate
pseudo-Fermi energy E∗

F , and a free-electron DOS. The energy zero
point is located at the bottom of the conduction band.

Figure 2 shows that for both Eqs. (6) and (7), i.e., fixing
the density N or the energy U , respectively, two independent
functions μ(Te) are obtained. Exemplary values for the
electron density (N = 2 × 1021 cm−3) and the electron energy
density (U = 160 Jcm−3) are assumed in Fig. 2. However,
as the energy and particle densities are related to the same
physical electron ensemble, the temperature and chemical
potential have to be equal, thus Te and μ are given exactly at
the point where both functions intersect. Here, the intersection
point is a uniquely defined point as both functions as well as
their first derivative are monotonically decreasing. Since the
energy and particle densities are functions of the lateral radius,
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FIG. 2. (Color online) Temperature dependence of the chemical
potential μ evaluated from Eq. (6) for constant density N and Eq. (7)
for constant energy density U , respectively.
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FIG. 3. Single-electron diffusivity Ds
e(E) for different electron

energies.

the calculations have to be performed for various sets of N and
U to obtain Te and μ for all radii.

At this point, we would like to emphasize that these
calculations also serve as zero-order criteria for the thermal-
ization of the electron ensemble. From our MC simulation, the
energy and particle densities can be extracted at any chosen
time instant and space point. However, it is obvious that the
electron system can not be thermalized if the time interval,
starting from the ion impact till the measurement, is too short
for the electrons to undergo enough collisions to establish
a Fermi distribution. Though we do not evaluate the shape
of the distribution function itself, we can judge whether the
establishment of a Fermi distribution is reasonable for the
obtained N and U . This is not the case when the intersection
point for Eqs. (6) and (7) results in unphysical values for the
electronic temperature or the chemical potential μ. In Sec. III,
we elaborate the results for μ and Te and also discuss the nature
of particle transport as a further criterion for a thermalized
behavior of the excited electrons.

Next, we will discuss how the electron diffusivity De(Te)
and the electron-phonon coupling g are obtained within
the MC simulations. Within the MC calculation, individual
electron trajectories are followed. For each electron with
a given energy E or synonymously a velocity v(E), the
free-flight time τ between two successive collision events is
calculated. This time can be readily converted into a free-flight
path λ. The diffusivity follows from the product between the
electron velocity and the free-flight path

Ds
e(E) = 1

3vλ. (8)

Here, the superscript s denotes the fact that Ds(E) is not an
actual diffusivity, but it is calculated from the movement of
single electrons. The electronic diffusivity Ds

e(E) is shown for
different electron energies in Fig. 3. It exhibits a decreasing
energy dependence for small energies, which is also observed
if only electron-electron scattering is considered.6 However, by
taking electron-atom collisions into account, it is found that
the diffusivity shows a pronounced minimum for electronic
energies around 20 eV, while increasing again for larger
electron energies. The reason is found in the applied Mott’s
cross section, which exhibits a maximum in this energy range.
Thus electrons with energies around 20 eV have a significantly
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FIG. 4. Averaged electron diffusivity according to Eq. (9) for
different Fermi energies, corresponding to different electron densities.

smaller free-flight path than electrons with smaller or larger
energies.

As Eq. (8) reflects the single-particle free-flight path, one
has to weight Ds

e(E) with the appropriate Fermi distribution
in order to obtain the electron diffusivity:

De(Te) =
∫ ∞

0 α(E)f (E,Te,μ)Ds
e(E)dE

N
. (9)

According to Eq. (9), De(Te) depends on the respective Fermi
distribution. The result of this averaging is shown in Fig. 4
for different Fermi energies EF , corresponding to different
electron densities N. The chemical potential μ(EF ,Te) entering
Eq. (9) is calculated for the curves in Fig. 4 with the condition
of constant electron density. Starting with the case for EF =
0.1 eV, i.e., a Boltzmann gas for temperatures above ∼1000 K,
one finds that the overall behavior of Ds

e (E) is well reproduced.
With increasing EF , the behavior of De(Te) deviates more and
more from Ds

e(E), especially for low electron temperatures.
This difference stems from the fact that, at low temperatures
and positive chemical potentials, electrons are in a degenerate
state, thus contributions of Ds

e(E) at energies below the Fermi
edge are pronounced, while high-energy contributions are
truncated. Consequently, this effect recovers for sufficiently
large Te � EF /kB , where ultimately the chemical potential
becomes negative, i.e., the electrons are fully nondegenerate.

For the implementation in the TTM, we evaluate Eq. (9)
at every space point individually, according to the local
temperature Te and chemical potential μ. The electron-phonon
coupling can be estimated in a similar manner. Within the
MC calculation, rates of collisions between electrons and
target atoms are directly obtained. The transferred energy
between electrons and atoms, 	E, in a certain time interval
is calculated within the binary collision approximation. The
resulting dependence of 	E on the electron energy E is linear
and shown in Ref. 9 (Fig. 2 therein). Finally, the volume in
which this energy is transferred is identified with the volume
of one target atom. In this way, an electron-phonon coupling
parameter of g = 1.2 × 1018 W/Km3 for SiO2, for example,
is found. Since the transfer rate per energy is constant, the
integration of a single electron coupling to a mean coupling
parameter, similar to Eq. (9), is dispensable, and g enters
directly the TTM calculations.

    20 fs
  40 fs
  60 fs
  80 fs
  100 fs

FIG. 5. (Color online) Space- and time-dependent electron den-
sity for different times after the ion impact.

III. RESULTS AND DISCUSSION

Here, we present the results of our combined MC-TTM
model for the exemplary irradiation of solid SiO2 by Ca19+
ions with a total energy of 11.4 MeV/u and a stopping power
of 2.7 keV/nm. This stopping power is comparable with the
stopping power in SiO2 used in a recent experiment.35

Figure 5 shows the calculated electron density for different
times after the ion impact obtained from the MC method. The
spatial and temporal evolution of the density is governed by
three major mechanisms8,9,20 following the initial excitation:
the electron transport, which moves electrons away from
the center of the track, the secondary electron ionizations,
which increase the total number of electrons most efficiently
at short timescales, and the Auger recombinations of deep
atomic shells, which increase the number of electrons most
pronounced in the track core.

The total electron energy density shown in Fig. 6 demon-
strates a similar behavior to that of the electron density.
It is decreasing in the intermediate region (between a few
angstroms and a few tens of nanometers) due to the electron
transport. Additionally, there is a sink of energy due to the
secondary ionizations (most pronounced at the front of electron
propagation, where the fastest electrons are), and the increase

   20 fs
  40 fs
  60 fs
  80 fs
  100 fs

FIG. 6. (Color online) Space- and time-dependent electron en-
ergy density for different times after the ion impact. The inset shows
its nonlogarithmic enlargement in the center of the ion impact point.
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FIG. 7. (Color online) Comparison between ballistic and diffu-
sive electron transports at 1 fs (top) and 10 fs (bottom) after the
ion impact. The ordinate shows the initial position of the electrons
from the ion track and the abscissa the traveled distance within ten
collisions.

of the energy due to the Auger decays in the central region of
a track.

Using the MC data, we can analyze the particle transport
in more detail. We calculate, for each electron at a certain
radius from the ion track, the traveled distance considering ten
collisions. This is shown in Fig. 7, where the ordinate shows the
initial position from the ion track and the abscissa the traveled
distance considering the last ten collisions. This traveled
distance can then be compared with (a) the distance that
electron would travel purely ballistically, without scattering
changing its direction of motion, and (b) with the diffusive
transport, for which the distance is proportional to the square
root of time:

De = 	x2

	t
⇒ 	x ∝

√
	t. (10)

In Fig. 7 (top), one can see that electrons calculated within
the MC (black squares) mostly demonstrate the “intermediate”
behavior between ballistic and the diffusive one. The fastest
electrons at the front are of pure ballistic nature. The electrons
within the narrow central region of several angstroms from
the ion impact point were just created by Auger decays, and
did not have time to travel a significant distance. After 10 fs
(see Fig. 7, bottom), most of the electrons demonstrate already
diffusive behavior, except for the very front of the excitation,
and again, the central region of the track, where electrons are
excited due to Auger recombination. A more detailed analysis
of this nonequilibrium electron behavior within these first 10 fs
has been already reported in a previous work.20
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FIG. 8. Calculated electronic temperature for different track radii
for different times after the ion impact evaluated from Eqs. (6) and
(7). The solid line is to guide the eye.

Figure 7 thus indicates three spatial regions: one in the
central region of the track, one at the very front of excitations,
and an intermediate region, where the particle transport of
electrons shows a diffusive behavior. There, the transport
behavior is that of a thermalized electron gas in a radius
>0.2 nm for times >10 fs. We now study whether it is
reasonable to prescribe a Fermi distribution for the electronic
system for the chosen irradiation scenario. To that end,
we calculate the electron temperature Te and the chemical
potential μ according to Eqs. (6) and (7) using the electron
and the energy densities shown in Figs. 5 and 6.

The calculated electron temperatures for different track
radii and different times after the ion impact are shown in
Fig. 8. At t = 20 fs after the ion impact, electron temperatures
can be defined for track radii larger than 0.7 nm. For 40 and
60 fs, a temperature can be defined for track radii larger than 0.6
and 0.5 nm, respectively. By the time of 80 fs, a temperature can
be calculated for the entire track. We conclude that by a time of
around 80–100 fs the TTM can be applied. Figure 8 provides
snapshots of the energy profile of the electrons approaching
thermal equilibrium, which is assumed after 100 fs. Such
thermalization times have been also found studying excitation
of nonequilibrium electrons in laser-irradiated SiO2.36

The three distinct zones mentioned in the discussion of
Fig. 7 are reflected in the energy profile and marked in Fig. 8.
Zone I is located around the track core with radius of about
0.2 nm. Within this zone, the electrons are predominantly
heated by Auger recombination leading to a continuous energy
deposition in that zone and thus to an elevated electronic
temperature as compared to the rest of the track.

Zone II is located from 0.2 nm on and reaches up to around
100 nanometers. This zone is populated by mainly low-energy
secondary electrons. These electrons thermalize much faster
than electrons in the first zone; and as they have lower kinetic
energies they are described by a lower temperature.

Finally, zone III is initially reached only by high-energy
ballistic electrons. At later times, it is also populated by
electrons originating from within the first two zones.

It can be seen in Fig. 8, that the electron temperature exhibits
a nontrivial shape with respect to the radius, which differs
from the expected exponential behavior. The increase of the
electron temperature at radii around 0.4 nm is due to secondary
electron creation. Furthermore, it can be observed that the
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eqs. (6)&(7)

eqs. (6)&(7)

eqs. (6)&(7)
20 fs

60 fs

100 fs

FIG. 9. Electron temperature for different radii: 20 (a), 60 (b),
and 100 fs (c) after the ion impact. Symbols: calculations according
to Eqs. (5) and (6). Solid line: Eq. (11). Dotted line: TF = EF /kB .

electron energy at a radius of around 0.4 nm up to 1 nm
increases with time, while the electron temperature decreases
with time for radii larger than 2 nm. This temporal behavior
of the electron temperature stems from the complex interplay
between electron transport of high-energy electrons and the
creation of (less energetic) secondary electrons due to impact
ionization.

Up to now, we have calculated the electronic temperatures
corresponding to the given set of U and N with the assumption
that the electrons obey a Fermi distribution. For a non
degenerated ideal electron gas with kBTe � EF , however, a
simpler relation holds,

kB Te = 2
3 U/N. (11)

To further study the time evolution of the obtained tempera-
tures, we compare the results of Eq. (11) with Eqs. (6) and (7)
in Fig. 9. The three parts of the figure, (a), (b), and (c), show the
spatial dependence of the calculated electronic temperatures
for the time of 20, 60, and 100 fs, respectively, after the ion
impact. The straight line refers to Eq. (11), while the symbols
show the temperatures resulting from the implicit equations (6)
and (7). For comparison, the Fermi temperature TF = EF /kB ,

reflecting directly the local free-electron density, is shown
as dotted lines in Fig. 9. Both methods yield the same
temperatures several nanometers and further away from the
ion impact point. Here, the density of electrons is low, the
calculated chemical potential is negative, and the electrons
are nondegenerated, thus the assumed Fermi distribution
(as sketched in Fig. 1) equals its Boltzmann tail and both
temperatures coincide. As was pointed out above, for times
shorter than around 80–100 fs, no reasonable temperatures
can be defined in the near vicinity of the ion impact point
using the moments of the Fermi distribution, Eqs. (6) and (7).
In contrast to that, Eq. (11) has a solution everywhere, where
N and U are given. After 100 fs, see Fig. 9(c), both methods
yield an electron temperature in all the areas studied and both
temperature curves exhibit a similar behavior. However, in the
near vicinity of the ion impact point, the temperatures differ
from each other. Figure 9 shows that the obtained temperatures
are smaller than the Fermi temperature TF . Thus the electrons
are degenerated, and a Fermi distribution has to be assumed.
Note that this finding is in accordance with the chemical
potential, resulting from Eqs. (6) and (7), which is positive in
this area. In conclusion, we find that the electron temperatures
can be only described rather far away from the ion impact
point using the simple relation given by Eq. (11). In contrast
to that, using Eqs. (6) and (7), gives an accurate estimation of
the electron temperatures for all times and radii.

Knowing temperature and chemical potential and assuming
a Fermi distribution of hot electrons, we now can calculate
other thermodynamical quantities like the electron heat capac-
ity directly:

CV,e = ∂U

∂Te

. (12)

The calculated temperature dependent electronic heat ca-
pacity is shown in Fig. 10 for different electronic densities
corresponding to different track radii. The heat capacity
is increasing with increasing electronic density and thus
with decreasing track radius. This demonstrates that the
common assumption of a spatially constant electronic heat
capacity is not valid. The value of CV,e ranges from some
1000 kJ/m−3K−1 down to 10 kJ/m−3K−1 within 1 nm
of the track for the irradiation scenario studied here. Fur-
thermore, assuming a temperature independence or simple

FIG. 10. (Color online) Temperature-dependent electronic heat
capacity for different track radii corresponding to different electronic
densities. The solid line shows the electronic heat capacity for Au
s-band electrons.
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t = 100 fs

Radius [nm]

FIG. 11. (Color online) Calculated energy density for electrons,
holes, and the lattice at the time of 100 fs after the ion impact. The
energy density is used as initial conditions for the TTM calculation.

proportionality CV,e ∝ Te appears also not valid since the
electronic temperatures are not in the low-temperature regime,
as the comparison of Figs. 8 and 10 show. In general, since
the evolution of the electron temperature is considered, the
entire temperature interval has to be taken into account.
Assuming CV,e ∝ Te underestimates electronic temperatures
for high electron energies. For comparison, we have added
the electronic heat capacity for gold calculated using a free-
electron density of states in Fig. 10. Please note that only the
Au s-band electrons are considered here. The figure shows
that the electron heat capacity of the irradiated SiO2 is greatly
enhanced transiently.

The lifetime of this enhanced heat capacity depends on the
duration of the increased electron density in the conduction
band of the insulator, which is beyond the scope of the present
paper. In the future, particle transport will be included in
the TTM.

Finally, we apply the TTM using the initial conditions and
parameters delivered by the MC method to extract data that
can be directly compared to experiments. For completeness,
the calculated spatial profile of the electron, hole, and the
lattice energies that serve as the initial conditions for the TTM
are shown in Fig. 11 at a time of 100 fs after the ion impact.
As shown above, at that time, the electrons can be treated as
thermalized and thus the TTM can be applied. The energy

FIG. 12. (Color online) Calculated time evolution of the lattice
temperature for different radii from the ion impact point. The dashed
line is the melting temperature of SiO2.

density of the electrons (red circles) is used as the source term
SSHI(r) for Eq. (1), i.e., is used as initial conditions for the
electrons. The energy density related to holes (blue squares)
Eh(�r) is used in the time-dependent source term Sh(�r,t) heating
the electron system according to Eq. (4). During the MC
simulation, energy is transferred to the target atoms due to
binary electron-atom collisions. This energy density (green
triangles) is used as initial conditions for the lattice in Eq. (2).
The electronic diffusivity De(T ) and the electron-phonon
coupling parameter are extracted as described in Ref. 9.

The results of the TTM calculation are shown in Fig. 12.
Here, the temporal lattice temperature evolution is shown for
different radii from the ion impact point. In order for the
material to melt, the melting temperature Tmelt = 1972 K
as well as the heat of fusion Hfusion = 142 Jg−1 have to be
overcome. Both values are taken from Ref. 37. From this figure
it can be seen that the molten area consists of a cylinder with a
radius of around 1.5 nm around the track core. Assuming that
the molten area reflects the structural modifications induced by
a single-ion impact observed in the experiment, we conclude
that the structural modification has a radius of around 1.5 nm,
which is in good agreement with the experimentally observed
modifications.35

IV. CONCLUSION

With the MC simulation we have used a kinetic approach
to simulate the initial electron dynamics. Our results show
that the energy transport as well as the free-electron energy
cannot be described with equilibrium concepts at early times.
We find that the TTM can be applied after a time of t ≈ 100 fs
after the ion impact. Within the MC part of the calculations, all
necessary (and experimentally inaccessible) material parame-
ters are computed so that no fitting is needed within the TTM.
Moreover, the detailed evaluation of the MC output revealed a
strong transient increase of the electronic heat capacity, which
is located around the track core.

The calculation of the electron dynamics after SHI irradia-
tion of dielectrics has revealed that the track can be separated
into three different zones. In the first zone, electrons are
heated due to Auger recombination of electrons and holes.
In this region, the most energetic electrons within the track

Auger
heating

Two-Temperature
Diffusion

I II III

Ballistic
heating

T

t

FIG. 13. Schematic view of the three distinct zones of different
characteristic electron behavior.
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can be found. These electrons propagate outwards and create
secondary low-energy electrons exhibiting a thermal character.
These thermal electrons are located in the second zone. Finally,
the electrons that originate in the first zone can reach the third
zone moving almost ballistically trough the crystal. Figure 13
schematically shows these three zones.

The developed combination of the Monte Carlo method
with a two-temperature model (MC-TTM) is capable of
describing the track creation processes in dielectric targets
after swift heavy ion irradiation.8 The approach presented here
is a universal method that can be applied to any irradiation of

dielectrics by SHI and should prove useful in the computation
of material parameters during strong electronic excitations and
the calculation of track radii and related quantities.
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