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Magnetic friction: From Stokes to Coulomb behavior
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We demonstrate that in a ferromagnetic substrate which is continuously driven out of equilibrium by a field
moving with constant velocity v, at least two types of friction may occur when v goes to zero. The substrate may
feel a friction force proportional to v (Stokes friction) if the field changes on a time scale which is larger than
the intrinsic relaxation time. On the other hand, the friction force may become independent of v in the opposite
case (Coulomb friction). These observations are analogous to, e.g., solid friction. The effect is demonstrated in
both the Ising (one spin dimension) and the Heisenberg (three spin dimensions) models, irrespective of which
kind of dynamics (Metropolis spin-flip dynamics or Landau-Lifshitz-Gilbert precessional dynamics) is used.
For both models the limiting case of Coulomb friction can be treated analytically. Furthermore we present an
empiric expression reflecting the correct Stokes behavior and therefore yielding the correct crossover velocity
and dissipation.
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Friction phenomena, despite their huge importance in
everyday life, are still not fully understood. Different friction
mechanisms are possible, leading to different dependencies
of the friction forces on the driving velocity. Microscopically,
one often assumes Stokes-like friction, i.e., a linear velocity
dependence. However, this atomistic view is in conflict with
Coulomb friction at the interface between solids, because it
approaches a nonzero absolute value in the limit of small
velocities, independent of the materials and their surface
conditions.1–6 A possible solution was offered by the simple
model developed by Prandtl and Tomlinson, in which a
stick-slip instability was responsible for Coulomb friction.7,8

They suggested a surface atom to be coupled by a spring of
stiffness k to a slider which moves with constant velocity v.
The atom interacts with the surface via a periodic potential
and experiences a viscous friction force proportional to its
velocity ẋ. If k is sufficiently small with respect to the potential
height, the atom first gets stuck in the potential minima and
slips when the tension gets large enough. The slip motion ẋ

does not depend on the slider’s velocity v, and one observes
Coulomb friction. However, when k is large with respect to the
potential height, the atom moves with the slider’s velocity and
the friction force is Stokesian. The crossover from one regime
to the other has been studied recently.9

What remains a puzzle, however, is that Coulomb friction
is a far more general phenomenon than one might expect
from the Prandtl-Tomlinson model, which is formulated in
terms of elastic forces in a periodic potential. For example,
Stokes as well as Coulomb behavior has also been observed
for magnetic friction, where elastic forces are absent. Being
guided by a detailed investigation of the crossover between
both types of magnetic friction, a unifying principle can be
formulated that applies to the magnetic as well as to the elastic
case.

So far, magnetic friction has been studied in two different
types of models. Ising models with single-spin-flip dynamics,
where two half spaces move with respect to each other, yield
Coulomb friction.10–12 Analogous results have been obtained
in the Potts model.13 On the other hand, a magnetic dipole
scanning a Heisenberg surface showed Stokesian friction14–17

(always provided the velocity is not too large).

Recently a work has been published in which a point-like
magnetic perturbation moves through an Ising model.18,19 The
authors claim to have observed Stokes friction, which is in
conflict with our results for similar models.10,11 Here we
present an explanation of this discrepancy and clarify under
what conditions either Stokes or Coulomb friction occurs.

The systems studied in Refs. 10–13 have in common that
the motion occurs in a discretized way: The system is at rest
for a certain number a/v of Monte Carlo sweeps (MCS),
after which one half space is moved by one lattice constant
a. Accordingly we have a periodic excitation and relaxation
procedure, where excitation is fast (happens in between two
subsequent spin-flip attempts), whereas relaxation extends
over a/v MCS. By contrast, in Refs. 14–17 excitation is slow,
because due to the dipole-dipole interaction, a substrate spin
feels the approaching tip a long time in advance.

Now we present a simple one-dimensional model that
interpolates between both cases. We consider a position-
dependent field hz(r ′), which is moved continuously with
constant velocity v. r is given in units of a, and v = ṙ . Then the
discrete motion can be modeled as a step function, as shown
in Fig. 1 as solid line. For a certain time 1/v, exactly one spin
is exposed to the field with constant amplitude until the field
reaches the next spin. Additionally the amplitude of the dipole
field used in Refs. 14–17 is plotted. From Ref. 15 we know
that for this case the adjustment of the spins with respect to the
moved field happens in an adiabatic way, or in other words,
the time scale of relaxation is below that of the excitation.
To generalize these setups, we consider a field with steepness
δr � 1,

hz(r
′) = h(

e− r′
δr + 1

)(
e− 1−r′

δr + 1
) , (1)

which may be tuned from the step-like field [δr = 0, now
called limiting case (i)] to a slowly varying field [δr ≈ 0.1,
case (ii)]. By shifting this field according to r ′ = r − vt ,20 we
can directly influence the time scale at which the excitation at
a fixed position r occurs, τswitch ∝ δr/v.

We first consider a chain of classical, normalized Heisen-
berg spins (|Sr | = 1) of length L with lattice spacing a,
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FIG. 1. (Color online) The dynamics in the different studies
can be mapped on a time-dependent field with amplitude hz(r ′)
(here normalized by its maximal value h) interacting with the spins
positioned at integer sites. The discrete motion in the Ising and Potts
model then corresponds to a step function, which may be treated as
a fixed spin interacting via exchange with one partner on the chain.
The amplitude of a dipole field is sketched for comparison. The field
used in this work may be tuned by adjusting the parameter δr from
one limiting case to the other.

which interact with the field defined above. The corresponding
time-dependent Hamiltonian is

H(t) = −
L∑

r=1

J Sr · Sr+1 + dxS
2
r,x + hz(r − vt)Sr,z, (2)

with the exchange constant J . To get a well-defined ground
state, we use an easy axis anisotropy (dx > 0) and antiperiodic
boundary conditions Sr+L = −Sr . The spins perform Landau-
Lifshitz-Gilbert dynamics,21,22

μs(1 + α2)

γ

∂Sr

∂t
= Sr× ∂H

∂Sr

+ αSr ×
(

Sr× ∂H
∂Sr

)
, (3)

consisting of a precessional motion with a frequency propor-
tional to γ /μs , and a damping with the damping constant α.
For simplicity, we neglect temperature here, and the dynamic
parameters yield a spin relaxation time τrel. The friction force
F can be either calculated from the dissipated power Pdiss or
the pumping power Ppump, which are equal in the stationary
state due to energy conservation and therefore we subsequently
use F = 〈P 〉 /v after time averaging. The two cases can be
described by

P (v) ∝ vφ, (4)

with the dissipation exponent φ = 1 (φ = 2) for the Coulomb
(Stokes) case. P can be extracted from the energy terms by

P (t) = ∂H
∂t

=
L∑

r=1

∂hz(r − vt)

∂t
Sr,z, (5)

which represents the power pumped into the system by the
motion. In our simulations [see Fig. 3(a)], we found φ = 2 for
large τswitch, which corresponds to the results in Refs. 14–17.
For sufficiently small τswitch we get φ = 1, which was known
from simulations in the Ising model and was now reproduced
in the Heisenberg model.

In the following we calculate the velocity v× at which a
crossover from one regime to the other occurs. For case (i)

only two spins contribute to the sum in Eq. (5) at the discrete
times vt ∈ Z (at all other times and positions the field remains
constant), and we can calculate the averaged pumping power
by discretizing ∂thz,

PC = −hv(〈S1′,z〉 − 〈S0′,z〉). (6)

For the time τca, corresponding to the time at which the
amplitude of the field stays nearly constant, no pumping
or excitation occurs. We consider τca > τrel, i.e., the system
always relaxes to equilibrium after a pumping event. Since the
equilibrium configuration does not depend on the dynamics,
Eq. (6) tells us that here φ = 1. The equilibrium configuration
for our choice of boundary conditions is a domain wall (DW)
state, where the out-of-axis component is determined by the
field and thus points in the z direction. As the field interacts
mainly with only one spin, the shape of the DW is not
influenced by h and we may use the continuum limit profile
(a→0),23

mH(r ′) = (tanh (r ′/�), 0, sech(r ′/�)), (7)

with the DW width � = √
J/(2dx), which can be calculated

from minimizing the free energy.24 By inserting 〈S0′ 〉 = mH(0)
and 〈S1′ 〉 = mH(1) into Eq. (6) we now can calculate the
power which is pumped into the system during each switching
event. This quantity can be visualized in a potential plot. We
again assume that h does not influence the shape of the DW
but rather its center rdw. Because in limiting case (ii) the
system is always near equilibrium and in limiting case (i)
it always reaches the ground state before being excited out of
equilibrium, this assumption is justified and we can describe
the whole configuration with rdw. We look at one cycle at
which the field’s peak moves from 0 to 1, corresponding to
the times −1/2 � vt � 1/2. For given t we can calculate the
system’s total energy as a function of rdw (see the potential
lines in Fig. 2). If the system evolved quasistatically, it would
always be in the current potential minimum. In this picture
PC/v corresponds to the energy difference between the energy
at rdw = 0, vt = −1/2 (the equilibrium state) and vt = 1/2
(the state which is present when the peak of the field has moved
to the next spin while the DW is still at the same site). Results
from simulations (plotted as squares in Fig. 2) confirm this: At
vt = 0 the system is excited to the upper state in a short time,
and relaxes to the new ground state by adjusting rdw slowly
afterward, until it reaches the new ground-state configuration
with rdw = 1. Simulations of the second limiting case (circles
in Fig. 2) confirm that the system is always near equilibrium,
thus the DW slightly lags behind the ground state.

From our simulations, we found the pumping power

P H
S = dxμs

Jγ δr
αv2. (8)

The factor dxv/(δrJ ) originates in the synchronization with
the field, which changes at the time scale τswitch. The factor
αvμs/γ emerges from spin dynamics, yielding a retardation
of the DW as derived in Ref. 15. Setting

P H
C (v)

!= P H
S (v) := P H

× (vH
×) (9)
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FIG. 2. (Color online) The system can be parametrized by the
center of the DW rdw, thus for different times the total energy of the
system can be calculated. This is done for field parameter δr = 0.1
for 10 equidistant times (blue to purple curves). If the system evolved
quasistatically, it would follow the configuration of minimal energy,
marked by the curve. Simulation results show both cases, the points
indicate energy vs rdw for 10 time steps: (i) � The energy P H

C /v is
periodically pumped into the system, which relaxes independent from
τswitch afterward. As the switching occurs at vt = 0, we first see the
relaxation from the preceding excitation in the left minimum, and at
vt = 1/2 the relaxation in the right minimum is not finished. (ii) •
The system follows with a lag, but stays near equilibrium, slightly
above the minimal energy configuration.

yields the crossover velocity25

vH
× = hδr

αdx

γ J

μs

[1 − sech(1/�)], (10)

where the system performs a crossover from the Stokes-friction
state to the Coulomb-friction state. In Fig. 3(c) these crossover
quantities have been calculated and the simulation results
have been rescaled appropriately. The simulation data fit
excellently over several magnitudes with the derived crossover
quantities; the remaining deviations are discussed below. We
performed also simulations of the isotropic Ising model with
the same field and periodic boundary conditions (Sr+N = Sr ).
The Ising spins undergo spin-flip dynamics with Metropolis
probability.26 Randomly chosen spins are flipped with the
probability pf = min [1, exp (−β
E)], where β is the inverse
temperature and 
E the energy difference between the flipped
and the not flipped state.

For (i) we again find a behavior φ = 1. We assume that for
(i) the spins relax after each switching event to the ground-state
profile which can be calculated via transfer matrix methods:11

mI(r ′) = tanh (βh)[tanh (βJ )]|r
′|. (11)

With 〈S0′,z〉 = mI(0) and 〈S1′,z〉 = mI(1) in Eq. (6), we get P I
C .

φ = 2 is observed for (ii), and we fitted

P I
S ∝ v2/δr. (12)

FIG. 3. (Color online) Dissipated power vs velocity (in natural
units) for the (a) Heisenberg (dx = 0.5J,α = 0.5,h = J , blue or gray)
and the (b) Ising (β = 1/J,h = 10J , black) models. The simulated
δr are δr = ∞ (�), 10−4 (�), 10−3 (•), 3 × 10−3(◦), 10−2 (�), and
10−1 (�). The grid lines mark the corresponding v×, the dashed lines
display the calculated PC(v) from Eq. (6) and fitted PS(v). For (c)
we calculated explicitly the crossover quantities P× and v× for both
models from Eqs. (9) and (10), and plot the data again rescaled.
Additionally we varied α = 0.3 (purple), h = 2J (green), and dx =
0.25J (yellow) for the same δr set. In the inset we plot an effective
exponent φeff = ∂ log P/∂ log v, and get a universal crossover from
2 to 1.

We calculated again the crossover velocity vI
×, which is

additionally plotted in Fig. 3(b), and rescaled all data points
for the crossover plot, Fig. 3(c).

Comparing Figs. 3(a) and 3(b), we come to the main
result of our investigation, namely, the coincidence concerning
the crossover between both models, despite the substantial
remaining differences such as the dynamics of the models.
The present deviations from the crossover curve are discussed
below. The slight increase of P , observed in the regime v > 0.1
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for all δr in the Ising model, is due to the fact that the system
has not enough time to relax back to equilibrium before the
next shift takes place and mI(1) becomes significantly smaller
than its equilibrium value. As the Heisenberg model contains
spin wave excitations, we observed the generation of spin
waves above a threshold velocity.16 In the crossover plot these
spin waves cause a kink above v/v× = 0.1 for α = 0.3 (and
a higher peak in the effective exponent plot). For very high
velocities we observe a lowering of the power, which is due to
a segregation of the peak of the field and the DW, leading to
a reduced mH

z (0) < 1. This state with lowered dissipation has
already been observed and reported.17

In conclusion, we presented a new model which shows
for the case of magnetic friction a transition from Stokes to
Coulomb behavior, analogous to the Prandtl-Tomlinson model
for solid friction. Whereas there the elastic stiffness of the
slider is the crucial parameter, it is the switching time of the
magnetic field in our case. The comparison of both models

sheds new light on the universal origin of Coulomb behavior,
which is based on a separation of the relaxation time from
the much larger time scale on which the system gets excited.
Our findings are in accordance to field theoretical results by
Demery et al.,18,19 who also found Stokes-like friction because
their model does not contain discrete sites and thus τca = 0,
i.e., the field is continuously driving the system. However,
their simulation results are not correct, because they simulated
an Ising model with a discontinuous motion of a field,
which is known to show Coulomb friction. This discrepancy
stems from an incorrect definition of the friction force [Eq.
(50) in Ref. 19]; a correct definition has been presented in
Ref. 10.
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