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The optical response and the ground state of graphene and graphene-like systems are determined self-
consistently. Deriving equations of motion for the basic variables, graphene Bloch equations are introduced
and combined with a variational ansatz. Within the Hartree-Fock approximation, this approach reproduces the
gap equation for the ground state. The results show that the Coulomb interaction drastically influences the optical
response of graphene and introduces an extremely sensitive dependency on the dielectric environment via static
background screening. Regarding the effective fine-structure constant as a control parameter, a transition from a
semimetal to an excitonic insulator is predicted as soon as the effective graphene fine-structure constant exceeds
a value of roughly 0.5. Above this critical value, the computed optical spectra exhibit a pseudogap and several
bright p-like excitonic resonances.
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I. INTRODUCTION

The research interest in graphene has increased dramat-
ically since its first isolation by Geim and co-workers in
2004.1 In particular, the highly unusual electronic and optical
properties have led to a cascade of both theoretical and experi-
mental investigations, exploiting its fundamental underlying
physics as well as potential applications in electronic and
optoelectronic devices (see Ref. 2 and references therein).

The key for understanding the unique electronic properties
of graphene is its exotic band structure that differs substantially
from most other condensed matter systems. Based on a
tight-binding (TB) model, Wallace predicted in 19473 an
electronic single-particle spectrum exhibiting two distinct
crossing points. In the vicinity of these so-called Dirac
points, the dispersion is a cone, similar to the light cone in
relativistic mechanics, with the Fermi velocity vF replacing
the speed of light. The occurrence of the cones results from
the symmetry between the two equivalent sublattices that
build the honeycomb lattice. The sublattice wave functions
can be combined into a pseudospinor that then obeys the
ultrarelativistic Dirac equation. Hence, from a quantum electro
dynamics (QED) point of view, electronic excitations close to
the Dirac points of graphene can be considered as charged,
massless, chiral fermions. From a condensed matter point of
view, as the density of states vanishes at the Dirac points,
graphene can be considered either as a semimetal or a
vanishing-gap semiconductor.

However, as the TB Hamiltonian neglects many-body
interactions completely, the role of the electron-electron
Coulomb interaction is still not well understood and still the
subject of ongoing research.4–29 As a convenient measure
of the relative importance of the Coulomb interaction, one
can use the effective fine-structure constant αG = e2/εh̄vF ,
where ε is the effective background dielectric constant.
For freestanding graphene in vacuum αG ≈ 2.41, indicating
prominent Coulomb interaction effects.

Generally, one can distinguish between Coulomb modifica-
tions of the electronic ground state and Coulombic signatures
in the excitation properties. From strongly correlated systems,
it is known that the Coulomb interaction can induce a
transition from a semimetal to a Mott insulator where, unlike

in conventional semiconductors, the gap results from the
electron-electron rather than the electron-ion interactions. In
particular, the electron exchange interaction has been identified
as the dominant mechanism responsible for the opening of a
gap.30

Methodically, most theoretical treatments of the ground
state of a many-body system either use highly simplified
model Hamiltonians or they rely on perturbative and/or varia-
tional approaches. For graphene, perturbative studies based
on a renormalization-group analysis predict a logarithmic
divergence of the Fermi velocity, stabilizing the semimetallic
ground state.4–7 However, nonperturbative methods yield a
semimetal-to-insulator transition at sufficiently high coupling
strengths8–12 where the predicted critical values for αG range
from 0.5 to 1.5. In particular, the possibility of an excitonic
condensate has been explored.18,20

From semiconductor physics, it is known that the excitation
spectrum in the vicinity of the fundamental band gap is
dominated by Coulomb bound electron-hole pairs leading
to the appearance of excitonic resonances in the absorption
spectra. Mathematically, the excitons obey a hydrogen-like
Schrödinger equation, which is commonly referred to as
Wannier equation.31 The exciton binding energy in typical
semiconductors is in the range of 1 to 100 meV, i.e., much
smaller than the hydrogen ground binding energy. However,
bound states exist even in the presence of strong static
(background) screening, which preserves the long-range 1/r

Coulomb tail. In metals, the highly mobile carriers effectively
screen this long ranged part of the Coulomb interaction
with the consequence that excitonic effects are of minor
importance. In graphene, the existence of bound pair states
and the importance of screening effects are subjects of current
research. Since real massless particles in nature are neutral,
the Dirac two-body problem has become a topic of interest
only within the graphene research and, until recently, it has
not even been clear if bound Dirac pairs exist.21,32

Experimentally, an important tool to study microscopic
processes in many-body systems is optical spectroscopy,
providing information both on the system ground state and the
excitation properties. Theoretically, several methods to model
the optical response of a quantum mechanical many-body
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system are well established, e.g., the density matrix approach,
nonequilibrium Green functions, or the systematic cluster
expansion approach.33 In general, these methods rely on the
knowledge of the initial state, which is usually the ground
state.

In this paper, we extend the microscopic approaches and
develop a framework that allows us to determine the ground
state and the optical response of graphene and graphene-like
systems on the same level of approximation. Our method
combines the equations of motion with a variational approach.
Within the Hartree-Fock approximation, we obtain gap equa-
tions that determine a Bogoliubov ground state.18,20 With this
initial state, we then calculate the linear optical response.
The resulting spectra show several bright excitonic resonances
below the pseudogap.

The work is organized as follows. In Sec. II, we present the
Hamiltonian within the TB approximation. Using this basis,
we derive the equations of motion for the dynamical quantities
of interest and discuss the role of the Coulomb interaction.
Similar equations have been derived previously for carbon
nanotubes.34,35 In Sec. III, we apply the variational principle to
the total Hamiltonian and impose the equations of motion as a
constraint to obtain a stationary ground state. The resulting gap
equations are presented and analyzed numerically. In Sec. IV,
we derive the graphene Bloch equations and compute the linear
optical response.

II. THE HAMILTONIAN AND EQUATIONS OF MOTION

The system Hamiltonian for a single graphene sheet
interacting with a classical light field can be written as

Ĥ = Ĥ0 + ĤI + ĤC.

Here,

Ĥ0 =
∫

d3x ψ̂†(x)

{
p2

2m0
+

∑
RA,RB

V (x − R)

}
ψ̂(x), (1)

describes the motion of the electrons of mass m0 in the periodic
lattice potential, V (x − R) is the effective core potential of
the carbon atom located at R, and {RA} and {RB} are the
coordinates of the carbon atoms on each sublattice (See Fig. 1).

ĤC = 1

2

∫
d3x

∫
d3x ′ ψ̂†(x)ψ̂†(x′)V (x − x′)ψ̂(x′)ψ̂(x)

(2)

describes the electron-electron interaction via the Coulomb
potential V (x − x′) = e2/ε|x − x′|, where ε is the dielectric
constant of the environmental medium.

ĤI = − e

2m0c

∫
d3xψ̂†(x)

×
{

p · A(x) + A(x) · p − e

c
A2

}
ψ̂(x) (3)

describes the light-matter interaction within the minimal
coupling substitution and A is the vector potential for the
optical field.

The interaction Hamiltonian couples the dynamics for the
vector potential to the expectation value of the particle current

(a) (b)

FIG. 1. (Color online) The lattice and the reciprocal lattice.

that can be calculated from the Heisenberg equation of motion,

ih̄
d

dt
〈Ô〉 = 〈[Ô,Ĥ ]〉 + ih̄

〈
∂

∂t
Ô

〉
,

for the relevant operator Ô, yielding a set of coupled
differential equations. As is well known, the two-particle
Coulomb interaction couples the dynamics for the N -particle
expectation values to those of the (N + 1)-particle expectation
values, which is known as the hierarchy problem. In order
to achieve a closed set of equations, this hierarchy must be
truncated. A systematic truncation scheme is provided by the
cluster expansion, which has been proven to work quite well
under many different excitation conditions.33

In principle, the system dynamics can be described by solv-
ing the resulting coupled set of differential equations starting
from a predetermined initial state. In a typical experimental
setup, the system is excited from the ground state and the
response to an externally applied field is measured. Thus, to
analyze such experiments theoretically, it is crucial to have
an adequate description of the ground state. In semiconductor
physics, band structure calculations usually provide a suitable
basis to expand the field operators and a good approximation
for the ground state. However, this may not be the case in
systems where strong carrier-carrier Coulomb interactions
influence the ground-state properties.

In the following, we therefore follow an approach where
we treat H0 within the TB approximation and use the resulting
eigenfunctions as basis to represent the total Hamiltonian.
Within this basis, we then derive the equations of motion on
the singlet level, which is equivalent to the time-dependent
Hartree-Fock approximation. To determine the ground state on
the same level of approximation, we apply the variational ap-
proach for the system energy and impose the equations of mo-
tion as constraints to guarantee stationarity of the ground state.

A. Tight-binding Hamiltonian

Following the TB approach, we expand the field operators
in terms of the carbon wave functions,

ψ̂(x) = 1√
N

∑
k,RA

eik·RAφ(x − RA)âk

+ 1√
N

∑
k,RB

eik·RB φ(x − RB)b̂k

= ψ̂A(x) + ψ̂B(x). (4)

Here, âk (b̂k) annihilates a particle in the state {k} on
the sublattice A (B), φ(r) = r e−r/2d cos ϑ/

√
32πd5 is the

carbon 2pz orbital responsible for the optical and electronic
properties of graphene, and ϑ is the angle between the carbonic
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FIG. 2. (Color online) Schematic plot of the π -valence and the
π∗-conduction band structure of graphene according to the TB model.

coordinates and the surface normal vector. The parameter
d = aB/Zeff controls the effective spreading of the carbon
wave functions.

Inserting Eq. (4) into the Hamiltonian and taking into
account nearest-neighbor hopping only,36 one obtains for the
single-particle part,

Ĥ0 =
∑

k

EF (â†
kâk + b̂

†
kb̂k) + γf (k)â†

kb̂k + γf ∗(k)b̂†kâk.

(5)

Here, EF is the expectation value of Ĥ0, γ is the matrix element
describing hopping processes between neighboring carbon
atoms, δ1 = a

2 (1,
√

3), δ2 = a
2 (1,−√

3), and δ3 = (−a,0) are
the vectors connecting any carbon atom to its three next
neighbors (see Fig. 1), a is the nearest-neighbor distance, and

f (k) =
3∑

i=1

eik·δi

is a function that depends on the lattice symmetry properties
only. Diagonalization of Ĥ0 yields the TB single-particle band
structure

E
c/ν

k = EF ± γ |f (k)| (6)

shown in Fig. 2.
Within the TB approximation, the shape of the bands

only depends on the lattice symmetry. The valence and
conduction bands are symmetric and touch each other at the
two nonequivalent points K± = (2π/3a,±2π/3

√
3a) of the

Brillouin zone, where the function f (k) = 0. Since the ground
state of Eq. (5) has a completely filled valence and an empty
conduction band, the nodes occur exactly at the Fermi level EF .
In the vicinity of these nodes, a first-order Taylor expansion
gives

f (K± + k) = −3a

2
e−iπ/6(kx ± iky).

Thus the dispersion is a cone with linear coefficient 3γ a/2 ≡
h̄vF , similar to the light cone in relativistic mechanics. Con-
sequently, the electrons behave like massless Dirac fermions

with the Fermi velocity replacing the speed of light. Both ex-
perimental and theoretical data give a value of approximately
106 m/s for the Fermi velocity.

In the following, we will treat Ĥ0 within the TB approxi-
mation. Within the band-structure picture, the Hamiltonian is
represented in terms of the electron and hole operators

êk = 1√
2

[âk + f̃ (k)b̂k], (7)

ĥ
†
−k = 1√

2
[−âk + f̃ (k)b̂k], (8)

with f̃ (k) = f (k)/|f (k)|, yielding

Ĥ0 =
∑

k

γ |f (k)|(ê†kêk + ĥ
†
−kĥ−k)

+
∑

k

EF (ê†k êk − ĥ
†
kĥk) +

∑
k

(EF − γ |f (k)|). (9)

Here, the second term only contributes if the electron and
hole symmetry is broken, e.g., by doping, and the last term
represents the energy of the filled valence band. Since this
term is constant, it can be omitted. Taking the TB ground
state as a reference, the energy with respect to this reference
is obtained by normal ordering of the Hamiltonian within the
electron-hole picture.

Important Coulomb contributions arise from on-site scat-
tering processes where each electron remains on its specific
sublattice, defining the generic matrix element

V (q) = 2πe2

εq
F (qd)

that depends on the momentum transfer only and is given by
the 2D bare Coulomb potential modified by the background
dielectric constant ε and a form factor F (qd). The form factor

F (qd) =
∫

d3r

∫
d3r ′eiq·(ρ−ρ ′)e−q|z−z′ ||φ(r)|2|φ(r ′)|2

with F (0) = 1 results from the finite extension of the carbonic
pz orbitals perpendicular to the plane and decreases monoton-
ically with q. Hence, the finite value of d = aB/Zeff can be
interpreted as the effective thickness of the graphene sheet.
As an intrinsic length scale, it fixes the graphene energy unit
E0 = h̄vF /d and is crucial for obtaining finite values for the
exciton binding energy.32 The Coulomb matrix elements for
the processes where at least one electron is scattered from one
sublattice to the other are much smaller and vanish exactly at
the Dirac points. These will be neglected.

Expanding the field operators in terms of the electron and
hole wave functions produces 24 different contributions, some
of which describe equivalent processes. The ten nonequivalent
normally ordered contributions to the Coulomb interaction,

HC = 1

2

∑
qkk′

V +
kk′(q)ê†k+q ê

†
k′−q êk′ êk + 1

2

∑
qkk′

V +
kk′(q)ĥ†

−k−q ĥ
†
−k′+q ĥ−k′ ĥ−k −

∑
qkk′

V +
kk′(q)ê†k+q ĥ

†
−k′−q ĥ−k′ êk

+
∑
qkk′

V −
kk′(q)ê†k+q ĥ

†
−kĥ−k′+q êk′ + 1

2

∑
qkk′

V −
kk′(q)ê†k+q ê

†
k′−q ĥ

†
−k′ ĥ

†
−k + 1

2

∑
qkk′

V −
kk′(q)ĥ−k−q ĥ−k′+q êk′ êk
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−
∑
qkk′

V A
kk′(q)ê†k+q ĥ

†
−k′ ê

†
k′−q êk −

∑
qkk′

V A
kk′(q)ê†k+q êk′ ĥ−k′+q êk +

∑
qkk′

V A
kk′(q)ĥ†

−kĥ−k′+q ĥ−k−q êk′

+
∑
qkk′

V A
kk′(q)ê†k′−q ĥ

†
−kĥ

†
−k′ ĥ−k−q, (10)

have three different matrix elements,

V ±
kk′(q) = 1

4V (q)[1 ± f̃ ∗(k + q)f̃ (k)]

× [1 ± f̃ ∗(k′ − q)f̃ (k′] (11)

V A
kk′(q) = 1

4V (q)[f̃ ∗(k + q)f̃ (k) − 1]

× [1 + f̃ ∗(k′ − q)f̃ (k′)], (12)

that not only depend on the momentum transfer but also on the
momenta of the involved scattering particles. Only within the
linear approximation, translational invariance is recovered and
the matrix elements with q = k′ − k, relevant for the Hartree-
Fock approximation, are given by

V ±(k − k′) = 1

2
V (|k − k′|)[1 ± cos(θk − θk′)], (13)

V A(k − k′) = ± i

2
V (|k − k′|) sin(θk − θk′). (14)

The scattering processes characterized by the different matrix
elements are schematically presented in Fig. 3. The repulsive
electron-electron (e-e) and hole-hole (h-h) and the attractive
electron-hole (e-h) scattering where both particles remain in
their initial bands are described by V + [see Fig. 3(a)]. The
corresponding processes, where both particles change their
bands, are described by V − [see Fig. 3(b)]. Both V + and
V − are symmetric with respect to k − k′ and equal for both
Dirac points. Auger processes, where an e-h pair is created

FIG. 3. (Color online) Schematic representation of the Coulomb
matrix elements. Figure 3(a) shows the scattering processes where
each particle remains in its initial band, described by V +. These
processes are a direct generalization of those occurring in wide-gap
semiconductors and include the repulsive electron-electron (e-e)
and hole-hole (h-h) as well as the attractive electron-hole (e-h)
scattering. V − describes processes where both particles change their
respective bands, i.e., pair creation or annihilation and scattering of
electron-hole pairs under center of mass momentum transfer, shown
in Fig. 3(b). Figure 3(c) shows Auger processes, where scattering
of a quasiparticle supplies or absorbs the energy and momentum to
create or annihilate an e-h pair respectively. The processes shown in
Figs. 3(b) and 3(c) require at least one particle to cross the gap and
are usually neglected in wide-gap semiconductors.

or annihilated under simultaneous energy and momentum
transfer to other quasiparticles, are not ruled out by energy
and momentum conservation and are described by the matrix
elements V A [see Fig. 3(c)]. These matrix elements are
antisymmetric with respect to k − k′ and have opposite sign
for the two distinct Dirac points. As usual, processes with zero
momentum transfer describe a divergent self-interaction that
cancels with the electron-ion and ion-ion interaction in the
jellium limit and are explicitly subtracted from the Coulomb
Hamiltonian.

When computing the optical response, the light-matter
interaction is often treated within the dipole approximation.
In crystalline solids, this approximation can be obtained by
a multipole expansion and subsequent coarse graining over
an elementary lattice cell, taking only monopole and dipole
contributions into account. In typical direct-gap semicon-
ductors, the distinct symmetry properties of the valence and
conduction bands allow us to associate monopole contributions
to intraband and dipole contributions to interband transitions,
respectively. As inter and intraband transitions involve very
different energy scales in a large-gap semiconductor, an optical
field couples only to interband transitions, while intraband
transitions are in the teraherz range.

In graphene, the situation is quite different. As both the
π -valence and π∗-conduction bands are constructed from
pz atomic orbitals, they have the same angular momentum
quantum numbers and monopole and dipole contributions
do not distinguish between different bands. Hence, dipole
transitions necessarily involve a superposition of k states
required to build a p-like collective state. Additionally, due
to the vanishing gap at the Dirac points, inter and intraband
transitions take place on the same energy scale.

To derive the correct interaction Hamiltonian, we start from
Eq. (3), apply the Coulomb gauge ∇ · A = 0, and expand the
field operators in terms of the TB wave functions. Making the
assumption that the vector potential varies slowly on the length
scale of the lattice constant a and sheet thickness d, one finds

ĤI = − e

m0c

∑
k

A ·
(
h̄k − e

2c
A
)

(â†
kâk + b̂

†
kb̂k)

− e

m0c

∑
k

[π(k) · A â
†
kb̂k + H.c.], (15)

where A denotes the field at the position of the graphene sheet,
z = 0. The first term in the first line of Eq. (15) describes the
interaction of the vector potential with the directed current
h̄kρ̂k/m0, where ρ̂k = −e(â†

kâk + b̂
†
kb̂k) is the charge density.

This term vanishes because of parity. The second term in
the first line of Eq. (15) is proportional to the total electron
density n0 of the π band, yielding a Drude-like response. The
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remaining term describes true quantum mechanical transitions,
whose strength is determined by the optical matrix element

π(k) =
∑

i

eik·δi

∫
d3xφ∗(r) pφ(r − δi) = −i

2M

3a2
∇kf (k)

(16)

and

M =
∫

d3xφ∗(r)δi · p φ(r − δi). (17)

On-site momentum matrix elements vanish because of parity
and hence, in graphene, optical transitions involve inter-sub-
lattice hopping processes. Within the linear approximation, the
dipole matrix elements in the vicinity of the Dirac points are
given by

π±(k) = i

√
2M

a
e−iπ/6u± = −|π |e−iπ/6u±

with u± = (ex ± iey)/
√

2, showing that the two degenerate
K points couple to circular polarization components of the
optical field.

Transforming the light-matter interaction Hamiltonian into
the e-h picture, within the linear approximation, yields

Ĥ
[p]
I = e|π |

m0c

∑
k

A± cos θk(ê†k êk + ĥ
†
−kĥ−k − 1)

± i
e|π |
m0c

∑
k

A± sin θk(ê†kĥ
†
−k − ĥ−k êk), (18)

where the ± sign refers to the distinct Dirac points and
circular polarization components respectively. Equation (18)
clearly shows that optical excitations not only involve inter-
band, but also intraband transitions. Furthermore, the angle
dependence in the light-matter Hamiltonian assures that only
p-like states couple to an external optical field. Schematic
representation of the light-matter interaction is shown in
Fig. 4.

B. Equations of motion

In this section, we use the basic single-particle expectation
values

fk = 〈ê†k êk〉 = 〈ĥ†
−kĥ−k〉, Pk = 〈ĥ−kêk〉, (19)

as dynamical variables and derive their equations of motion
within the time-dependent Hartree-Fock approximation. Due
to the band symmetry, the electron and hole populations are

FIG. 4. (Color online) Schematic representation of the light-
matter interaction.

equal. Furthermore, as the two equations of motion for the
two distinct K points are related by the parity transformation
k → −k, A± → A∓, we restrict our discussion to a single
Dirac point.

Evaluating the commutators in the Heisenberg equa-
tions of motion, we obtain the closed set of differential
equations

ih̄
d

dt
Pk = 2kPk − (1 − 2fk)�k − ih̄

d

dt
Pk

∣∣∣∣
coll

, (20)

h̄
d

dt
fk = −2 Im[P ∗

k �k] − h̄
d

dt
fk

∣∣∣∣
coll

. (21)

Here, we introduced the notation

k = h̄vF k −
∑

k′
[V +(k − k′) − V −(k − k′)]fk′

− i
∑

k′
V A(k − k′) ImPk′ + e|π |

m0c
A± cos θk

≡ r
k[fk] + �k[Pk,P

∗
k ,A], (22)

�k =
∑

k′
V +(k − k′)Pk′ + V −(k − k′)P ∗

k′

∓ i
e|π |
m0c

A± sin θk − 2
∑

k′
V A(k − k′)fk′

≡ �R
k [Pk,P

∗
k ,A] − i��k[fk]. (23)

In Eqs. (20) and (21), the terms d/dt |coll refer to incoherent
scattering contributions beyond the Hartree-Fock approxima-
tion. To solve the coupled equations, we have to supply the
appropriate initial and boundary conditions.

The generalized Rabi energy �k consists of two contribu-
tions. �R

k contains the optical field and the internal field of the
polarization Pk and differs from the standard Rabi frequency
known from semiconductors only by the anisotropy resulting
from the chiral nature of the Dirac electrons. The additional
part �� contains contributions from the populations fk via
the Auger processes. Similarly, the generalized renormalized
energy k has not only terms due to the populations contained
in r , but also Auger contributions from the polarizations and
an energy renormalization due to the external field in �k. For
large gap semiconductors, these contributions can be neglected
because of energy and momentum conservation. However, for
systems with small or vanishing gap, as in graphene, the basic
quantities f and P are inherently mixed due to the Auger
terms.

Close to the K± point, the Auger contributions to � and 

can be written as

��k = ±
∑

k′
V (k − k′) sin(θk − θk′)fk′ ,

�k = ±
∑

k′
V (k − k′) sin(θk − θk′) ImPk′ ,

respectively. For isotropic densities f and P , the angle
integration will give zero and the Auger contributions vanish.
The light-matter terms, however, are in themselves anisotropic.
The light will therefore excite angular-dependent densities for
which the Auger contributions are finite.
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T. STROUCKEN, J. H. GRÖNQVIST, AND S. W. KOCH PHYSICAL REVIEW B 84, 205445 (2011)

In semiconductor physics, the transverse optical field
directly only couples to the nondiagonal expectation values
P and P ∗, which physically represents an optical polarization
that can be probed experimentally via optical spectroscopy.
Unlike in graphene, the diagonal populations fk affect optical
semiconductor spectra only indirectly through their coupling
to the polarization in the semiconductor Bloch equations
(SBE).31 As the linear coupling to the optical field results
in a radiative decay of any macroscopic polarization on
a picosecond time scale,37 a (meta)stable initial state may
be prepared to contain incoherent diagonal populations but
no macroscopic polarizations. In particular, choosing the
initial fk = 0 models excitation from the ground state.
Expanding the solution of the SBE into powers of the
exciting fields gives the well-known series that contains
only the odd powers for the polarization and the even
powers of the optical field for the populations.38 Hence,
for weak optical fields, the equations for the polarizations
and populations can be solved iteratively. The homogeneous
part of the polarization equation produces the generalized
Wannier equation with the Pauli blocking prefactor (1 − 2f ).
This homogeneous part is responsible for the formation of
bound excitons at low densities, which appear as resonances
of the excited system, energetically below the band gap.
Inserting increasing amounts of incoherent initial populations
leads to a gradual bleaching of excitonic resonances in the
absorption spectra and finally produces gain once inversion is
reached.

A similar behavior might be expected for the case of
graphene. However, the interpretation of the single-particle
energy renormalization as “band-edge” renormalization is
problematic in a gapless system. Also, bound-exciton solutions
of the Wannier equation would predict resonances at negative
energies, which is clearly unphysical. This pathological be-
havior would show up for any incoherent initial population
that allows for bound-state solutions of the generalized
Wannier equation. Consequently, such a population cannot
correspond to a physically meaningful initial state of the
system.

In particular, if the linear Wannier equation

2h̄vF k φλk −
∑

k′
[V +(k − k′)φλk′ + V −(k − k′)φ∗

λk′]

= Eλ φλk (24)

has bound-state solutions, the TB ground state with fk = Pk =
0 cannot correspond to the ground state of the Coulomb-
interacting system. The linear Wannier equation has been
analyzed in Ref. 32. Here, it has been shown that bound-state
solutions indeed exist for an effective graphene fine-structure
constant exceeding the critical value αG ≈ 0.5. Below this
value, the Coulomb interaction is too weak to create bound
states. In this weakly interacting regime, Eqs. (20) and (21)
can be solved directly to obtain the optical response and the
TB Dirac sea can serve as the ground state of the system. In
the regime with strong Coulomb interactions, Eqs. (20) and
(21) are not the true graphene Bloch equations, since they do
not describe the optical response defined with respect to the
correct many-body ground state.

III. GROUND STATE

A. Derivation of the gap equations

A convenient method to determine the ground state is
provided by the variational principle

δ〈Ĥ 〉|A=0 = 0, (25)

where δ〈Ĥ 〉|A=0 is the expectation value of the total energy in
the absence of external fields. Due to the Coulomb interaction,
the expectation value of the Hamiltonian contains the same
many-body correlations as the Heisenberg equations of motion
and cannot be solved exactly. To be consistent with the
equations of motion, we express the energy expectation value
in terms of the same variables as the equation of motion.
Within the mean field approximation, these are fk, Pk and P ∗

k ,
yielding the variational equation

0 =
∑

k

(2̄kδf̄k − �̄∗
kδP̄k − �̄kδP̄

∗
k ), (26)

where barred quantities refer to ground-state expectation
values. However, the dynamic variables are coupled and thus
cannot be varied independently of each other.

In order to be radiatively stable, the macroscopic current
associated with the ground state must vanish. This condition
is fulfilled for all isotropic distributions f̄k and P̄k. Due to this
isotropy, the related Auger contributions to ̄k and �̄k vanish.
Furthermore, the ground state clearly has to be a stationary
state. Therefore the expectation value of any operator in this
state has to be static, such that the time derivative of the basic
variables has to vanish. Thus we impose the stationary solution
of the equations of motion as constraints to assure a steady
state:

0 = 2̄kP̄k − (1 − 2f̄k)�̄k, (27)

0 = −2 Im[P̄ ∗
k �̄k]. (28)

Equation (27) defines the possible distributions for the non-
diagonal populations P̄k in the presence of a given isotropic
diagonal population f̄k subject to the condition that P̄k is
real, imposed by Eq. (28). In itself, the set of Eqs. (27) and
(28) puts no constraints on the populations. As the set of
Eqs. (27) and (28) always has the trivial solution Pk = 0,
any isotropic carrier distribution defines at least one stable
equilibrium state with an associated real polarization defined
by Eq. (27). Among these equilibrium states, the ground
state minimizes the total energy and can be determined by
inserting Eq. (27) into the variational equation. This yields the
condition

δ
[
f̄k(1 − f̄k) − P̄ 2

k

] = 0 (29)

relating f̄ and P̄ . Assuming that the interacting ground
state can be generated adiabatically from the noninteracting
TB ground state with fk = Pk = 0, the combination of the
conditional relation and Eq. (27) allows us to express the
ground-state populations in terms of the renormalized energies
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and Rabi energies:

P̄k = 1

2

�̄k√
̄2

k + �̄2
k

, (30)

f̄k = 1

2

⎛
⎝1 − ̄k√

̄2
k + �̄2

k

⎞
⎠ . (31)

Inserting these into Eqs. (22) and (23) yields the coupled set
of integral equations

�̄k = 1

2

∑
k′

V (k − k′)
�̄k′√

̄2
k′ + �̄2

k′

, (32)

̄k = h̄vF k − 1

2

∑
k′

V (k − k′)

× cos(θk − θk′ )

⎛
⎝1 − ̄k′√

̄2
k′ + �̄2

k′

⎞
⎠ , (33)

from which the renormalized and Rabi energies may
be calculated numerically. The set of Eqs. (32) and (33)
are equivalent to those derived in Ref. 18 and combine
the so-called gap equation for �̄k and the equation for the
renormalized single-particle energy ̄k.

The set of Eqs. (30)–(33) displays several interesting
features. From Eq. (31), one recognizes that f̄k > 1/2 implies
a negative renormalized energy ̄k < 0 and f̄k < 1/2 implies
̄k > 0, respectively. From Eqs. (32) and (33), we notice the
properties �̄k > 0 for any nontrivial solution of Eq. (32) and
̄k=0 = 0 for any isotropic particle distribution, the latter
relation resulting from angle integration. Hence, for any
nontrivial isotropic solution of the gap equation one has f̄k=0 =
P̄k=0 = 1/2, i.e., the electrons are in a state that mixes the tight-
binding valence and conduction bands with equal probability.

In general, the solution of the gap equation is not unique.
This reflects the fact that the many-body Hamiltonian may have
more than one stationary mean-field solutions fulfilling the
variational condition (26). In particular, the gap equation (32)
always has the trivial solution �̄k = P̄k = 0, corresponding
to a completely incoherent state. For the incoherent state,
Eq. (31) simplifies to ̄k = h̄vF k − ∑kF

k′ V (k − k′) cos(θk −
θk′) with f̄k = [1 − sg(̄k)]/2 = θ (kF − k) and ̄kF

= 0 fixes
the Fermi wave number kF . Hence, as k=0 = 0, the tight-
binding ground state always solves the gap equation and hence
corresponds to a stationary mean-field solution of the many-
body Hamiltonian, though not necessarily the ground state.

B. Properties of the ground state

To achieve intuitive insight into the nature of the ground
state and to derive a criterion for the existence of a nontrivial
solution of the gap equation, we implement the conditional
relation (29) via

f̄k = β2φ2(k)

1 + β2φ2(k)
, (34)

P̄k = βφ(k)

1 + β2φ2(k)2
. (35)

Without loss of generality, we can assume φ(k) to be a
normalized wave function and β is an additional parameter
controlling the total density. With the aid of the wave function
φ, one can construct the exciton creation and destruction
operators

B̂† =
∑

k

φ(k)ê†kĥ
†
−k, (36)

B̂ =
∑

k

φ(k)ĥ−kêk (37)

that generate the transformation Û (β) = exp(βB̂†). Acting on
the TB ground state, Û creates a coherent exciton state:

|�〉BCS = CeβB̂† |�〉TB ≡
∏

k

(uk + vkĥ
†
−k ê

†
k)|�〉TB, (38)

reproducing the expectation values (34) and (35). Here,
the normalization constant is C = exp[−1/2

∑
k ln(1 +

β2φ2(k)]. The coherent excitonic state is equivalent to
the BCS state with uk = 1/

√
1 + β2φ2(k) and vk =

βφ(k)/
√

1 + β2φ2(k).
As any Hartree-Fock state is uniquely determined by

the expectation value of the basic single-particle operators,
Eq. (38) represents the ground state if we identify βφ(k) =
fk/Pk for any nontrivial solution of the gap equation and fix
β by normalizing φ. At low densities, the commutator

[B̂,B̂†] =
∑

k

φ2(k)(1 − ê
†
k êk − ĥ

†
−kĥ−k) (39)

is quasi-Bosonic and the exciton state is formally equivalent
to a coherent Glauber state in quantum optics.

Clearly, for any fixed set {φ(k)}, the total particle density is
a monotonously increasing function of β and the tight-binding
ground state with P̄k = f̄k = 〈Ĥ 〉HF = 0 corresponds to β =
0. For small β, the lowest-order contribution to the total energy
is given by

E(β)=β2

[
2
∑

k

εkφ(k)2−
∑
kk′

φ(k)V (k−k′)φ(k′)

]
+O(β4).

(40)

Subsequent variation of E/β2 − μ
∑

k φ(k)2 yields the linear
Wannier equation for the wave function φ with eigenvalue μ.
In the limit of vanishing density, the system energy is E =
β2μ = Nμ, where N = β2 is the total number of pairs in
the low-density limit. Hence, if the linear Wannier equation
allows for bound-state solutions with μ < 0, the system can
gain energy by forming bound e-h-pair states and a nontrivial
solution of the gap equation is expected to exist.

In Ref. 32, bound exciton solutions are reported for parame-
ter conditions corresponding to the regime of strong Coulomb
interaction. These solutions vanish as the system transitions
into a weakly interacting regime where the graphene fine-
structure constant αG � 1/2. To demonstrate the properties of
the excitonic transformation (38), we take the wave function
φ(k) obtained as numerical solution of the Wannier equation,
and evaluate the energy of the state (38) for different values of
β. For αG = 2.4, which corresponds to the coupling strength in
vacuum for vanishing dynamical screening, the result is shown
in the left part of Fig. 5. Increasing β increases the number of
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FIG. 5. (Color online) Results from evaluating the energy (a) and
the energy per particle (b) for the state (38) for different values of β

with a fixed wave function φ(k).

pairs contributing to an energy reduction while simultaneously
the energy gain per pair [see Fig. 5(b)] decreases due to the
Pauli blocking. As a result, the obtained energy function has
a clear minimum at βcd ≈ 0.2. We can also note that this
minimum is clearly below the energy at β = 0. The energy per
pair [see Fig. 5(b)] at β = βc is approximately one half of the
exciton binding energy 〈E〉/〈N〉|β=0.

As any nontrivial solution of the gap equation produces a
wave function via βφ(k) = fk/Pk, solving the gap equation is
equivalent to the minimization of the ground-state energy with
respect to the full set βφ(k) and must yield better results than
variation with respect to the single variational parameter β.
Hence, the existence of bound-state solutions of the linear
Wannier equation is an unambiguous sign for a nontrivial
solution of the gap equation.

The solution of the gap equation defines the mean-field
Hamiltonian

Ĥ MF =
∑

k

̄k(ê†kêk + ĥ
†
−kĥ−k) − �̄k(ĥ†

−kê
†
k + êkĥ−k) (41)

with the single-particle dispersion

E
c/v
k = ±

√
̄2

k + �̄2
k. (42)

The new valence band is below the TB valence band if either
�k = 0 and ̄kF

= 0 have a solution with positive Fermi wave
number, in which case the new valence and conduction bands
are degenerated at the Fermi level at k = 0 and k = kF , or
the gap equation has a nontrivial solution with �̄k �= 0, for
which the spectrum exhibits a gap of magnitude 2�̄k=0 at the
Dirac points. Obviously, or rather by construction, the BCS
state is the ground state of the mean-field Hamiltonian, and the
energy required to add a quasiparticle in the new conduction or
valence band is given by E

c/v
k and that to create an e-h pair by

Ec
k + Ev

k. Nevertheless, the density of states in the pseudogap
is nonzero since the Bogoliubov state characterized by the
order parameters {�̄k,̄k} has a finite overlap to states with
order parameters {�̄k + δ�k,̄k + δk}. Hence, within the
Bogoliubov basis, single-particle excitations are described by
scattering within the pseudoparticle bands, while collective
excitations of the many-body system lead to deformation of
the bands that vary the system energy continuously through
the pseudogap.

C. Numerical solution of the gap equations

Figure 6 shows the solution of the full gap equations
for αG = 2.4. Numerically, we evaluated the gap equation
iteratively, using the optimized excitonic state generated by

FIG. 6. (Color online) Numerical solutions of the gap equations,
Eqs. (32) and (33) for αG = 2.4. (a) Ground-state Rabi energy �̄

(dashed line), ground-state renormalized energy ̄ (dash-dotted line),
and Ec = (�̄2 + ̄2)1/2 (solid line), all vs kd . Energies are given in
units of E0 = h̄vF /d . (b) Ground-state population f̄ (solid line) and
polarization P̄ (dotted line) vs kd . These are related to the energies
in (a) via Eqs. (30) and (31). Note how both f̄ and P̄ go to 1/2 at
k = 0, and that the region where f̄ > 1/2 corresponds to the region
where ̄ < 0.

the solution of the linear Wannier equation as initial guess.
Convergence was obtained within less than ten steps. We
checked the robustness of the numerical solution against the
initial guess. Starting with different values of β requires
only a few more iterations until convergence is reached but
produces the same solution. Due to the form factor in the
Coulomb matrix elements, all integrals are well behaved
and no additional cutoff parameters are required to achieve
convergence. Figure 6(a) shows the resulting internal field and
the renormalized energies in units of E0 = h̄vF /d.

We see that the full solution of the gap equation produces
a large internal field, which decreases monotonously as a
function of k. Overall, the renormalized energy deviates only
slightly from the bare single-particle energy, which is due to
the angle dependence of the Coulomb integrals. At k = 0, the
renormalized energy starts at zero and for small positive k, it
becomes slightly negative. In this region, f̄ (k) > 1/2, as can
be seen from Fig. 6(b) showing the population and polarization
distributions. At k = 0, both f̄ = 1/2 and P̄ = 1/2. Regarding
the first derivative of the renormalized energy as renormalized
Fermi velocity, our calculations do not confirm the logarithmic
divergence predicted in Refs. 4 and 10 but instead, the Fermi
velocity decreases and even becomes negative.

In Fig. 7, we show the internal field [see Fig. 7(a)] and
renormalized energies [see Fig. 7(b)] for αG = 0.9, 1.0, 1.1,
and 1.2. From the Wannier equation, we know that the exciton
binding energy decreases rapidly with decreasing effective
fine-structure constant, and from this, we expect a similar
behavior for the internal field. Indeed, decreasing the coupling
constant from 1.2 to 0.9 decreases the internal field about
one order of magnitude, while the renormalized energies are
hardly distinguishable from the bare single-particle energies.
Under all conditions, the particle and polarization distribution
at k = 0 are 1/2 see Figs. 7(c) and 7(d). With increasing
wave number, the distributions fall off very rapidly and the
integrated particle and polarization density decrease with
decreasing αG.

In Fig. 8, we show the total energy density [see Fig. 8(a)],
energy gain per pair [see Fig. 8(b)], and pair density [see
Fig. 8(c)] as functions of αG. The energy gain per pair starts
at zero for αG ≈ 1/2 and increases rapidly with increasing
αG, yielding approximately 1.6 eV for αG = 2.4. Increasing
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FIG. 7. (Color online) Solutions of the gap equation for different
values of the fine-structure constant. Upper part: (a) ground-state
Rabi energy �̄ and (b) renormalized single-particle energy ̄ vs kd

for αG = 0.9 (solid yellow line), 1.0 (long-dashed green line), 1.1
(medium-dashed blue line), and 1.2 (short-dashed purple line). The
energy values have been obtained using vF = 9.07 × 105 and d =
0.18 Å. Lower part: population (c) and polarization (d) distributions.

αG from .5 to 2.4 increases the total energy gain per cm2

over approximately 20 orders of magnitude, which is a
combined effect of the increasing energy gain per pair and
the increasing pair density. At αG = 2.41, the pair density is
〈N〉/A = 2.16 × 1014 cm−2, which should be compared with
the total density n0 = 1.27 × 1015 cm−2 of the valence band
electrons.

Figure 9 shows the resulting quasiparticle dispersion
calculated from Eq. (42) for different values of the effective
fine-structure constant in comparison with the noninteracting
TB bands. The shaded dotted area shows the full tight-binding
dispersion and the black dotted line the linear approximation
to the TB dispersion, respectively. As can be recognized,
deviations of the linear approximation from the full TB band
structure can be neglected for energy ranges up to roughly 1 to
1.5 eV. For values of αG exceeding the critical value αc ≈ 1/2,
a gap opens that increases rapidly with increasing αG. As can
be recognized, the band minima do not occur exactly at the

FIG. 8. (Color online) Energy density (a), energy gain per pair
(b), and pair density (c) as functions of the coupling constant αG. The
dotted curves show the quantities on a logarithmic scale (left axis)
and the solid curves present the same quantities on a linear scale (right
axis). The stars correspond to the gap equations solutions in Fig. 7.

FIG. 9. (Color online) Dependence of the quasiparticle band
structure Ec

k − Ev
k [see Eq. (42)] on the effective fine-structure

constant αG. The curves shown are for αG = 0.9 (solid yellow line),
1.0 (long-dashed, green line), 1.1 (medium-dashed, blue line), and
1.2 (short-dashed, purple line), together with the linear TB dispersion
(dotted black line). The shaded, dotted area shows the full TB
dispersion. These band structures correspond to the gap-equations
solutions in Fig. 7.

Dirac points but are slightly shifted toward finite k values.
This is a result of the negative renormalized energy in the
region where inversion occurs and is increasingly pronounced
for large coupling strengths. For values of αG � 1.1, the
Bogoliubov bands lie well within the validity range of the
linear approximation to the TB bands. For higher values,
corrections beyond the linear approximation should be taken
into account, however, this is beyond the scope of this article.

IV. OPTICAL RESPONSE

To illustrate the influence of Coulomb effects on measurable
quantities, we calculate the optical response of our graphene
model system. For this purpose, we derive the graphene
Bloch equations (GBE) and compute the linear response to an
external optical field. In all calculations, the initial conditions
will be chosen such that the graphene sheet is excited from the
BCS ground state by a normally incident optical or terahertz
pulse.

As shown in Sec. II, at normal incidence, the two degenerate
Dirac points couple to the right and left circular polarized
components of the transverse optical field. Hence, the circular
polarization components provide a natural basis for the optical
field in which the different polarizations are decoupled. Each
polarization component of the vector potential obeys the wave
equation

�A± − ε

c2

∂2

∂t2
A± = −4π

c
j±. (43)

Here, j± = −c〈 δHI

δA±∗ 〉 is the expectation value of the total
current

j± = −e2n0

m0c
A±(z = 0,t)f (z)

+ e|π |
m0

∑
k

[(1 − 2fk) cos θk ∓ Im(Pk) sin θk]f (z)

= −e2n0

m0c
A±(z = 0,t)f (z) + j±

[p]f (z), (44)

205445-9
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with f (z) = ∫
d2ρ|φpz

(r)|2 ≈ δ(z) on the scale of the optical
or terahertz wavelength. The total current consists of two
contributions. The first is simply proportional to the vector
potential and hence purely classical. Its only dependence on
material quantities is via the charge density ρ(r) = −en0f (z),
where n0 is the total density of the electrons in the π band.
This term is responsible for a Drude-like response. The second
part of the current is purely particle-like and is associated
with inter and intraband transitions. Due to the phase θk,
isotropic electron and hole distributions or polarizations do
not contribute to a macroscopic particle current. Hence, if the
system is in its ground state and in the absence of external
fields, there is no macroscopic current.

A. Graphene Bloch equations

To calculate the particle current, we divide the polarization
and the particle distributions into a static part arising from the
ground state, and a dynamical part arising from the optical
excitations:

Pk = P̄k + �Pk, (45)

fk = f̄k + �fk, (46)

and, correspondingly, for the renormalized and Rabi energies.
In a first approximation, all contributions beyond Hartree-
Fock are treated phenomenologically by introducing constant
dephasing and relaxation rates, i.e., d�Pk/dt = −γ�Pk and
similar for the populations. Noting that P̄k is real, the GBE for
the dynamical part of the polarization and particle distribution
are obtained as

ih̄
d

dt
�Pk = 2

(
̄k + �r

k

)
�Pk − (1 − 2f̄k − 2�fk)��R

k

+ 2�k(P̄k + �Pk) + i(1 − 2f̄k − 2�fk)��k

+ 2P̄k�r
k + 2�̄k�fk − ih̄γ�Pk, (47)

h̄
d

dt
�fk = −2 Im

(
�P ∗

k ��R
k

) + 2��k[P̄k + Re(�Pk)]

− 2 Im
(
P̄k��R

k + �̄k�P ∗
k

) − h̄γ�fk. (48)

In Eq. (47), the first line is the direct generalization of
the familiar homogeneous part of the SBE, producing the
generalized Wannier equation. The dynamical part of the Rabi
energy, ��R

k , contains the optical field and the internal field
of the optically induced interband polarization only, while
both the ground-state and the dynamical populations contribute
to the renormalization of the single-particle energies and the
phase-space filling, reducing the effective Coulomb interac-
tion. The second line describes an energy renormalization
due to the optical field and Auger scattering proportional
to �k, and Auger contributions proportional to ��k that
act as a source/drain for the dynamical polarization. These
processes are very ineffective in a wide-gap semiconductor
and are usually neglected in the SBE. The last line of Eq. (47)
describes the coupling of the polarization to the populations
via the ground-state polarizations. These contributions do not
exist in the SBE and are specific for an excitonic ground
state.

The first line in the equation of motion for the populations,
Eq. (48), is the direct generalization of the SBE. The respective

terms contain dynamical quantities only and are at least of
second order in the optical field. The second line describes
the conversion of polarizations into populations via Auger
scattering processes proportional to ��k. The last line
describes ground-state polarization assisted sources, specific
for the excitonic ground state.

The major effect of the ground-state polarization is the
introduction of a linear source for the optically induced
populations fk. As a result, within a power expansion in terms
of the exciting field, both the dynamical polarization and the
population contain all powers of the exciting field. For any
arbitrary order, the equations of motion are inherently coupled
by the contributions proportional to P̄k in the last lines of
Eqs. (47) and (48), and hence, must be solved simultaneously
rather than iteratively. It is exactly this polarization-mediated
coupling that is responsible for the occurrence of the Bogoli-
ubov gap in the linear spectrum.

B. Linear optical spectra

To illustrate the basic effects of several contributions to
the optical response, we solve the linearized GBE for a given
external optical field. Examples of the results for αG = 2.4
and h̄γ = 5 × 10−4E0 are shown in Fig. 10. The spectrum
shows 4π Im(j±/ωA±), which is a direct measure for the
absorption. We notice pronounced excitonic resonances at low
energies followed by a spectrally flat response. Due to the
optical selection rules, all bright excitonic resonances have a
p-like symmetry. Similar to the spectra in semiconductors,
the peak height increases with increasing binding energy,
showing that oscillator strength is transferred to strongly bound
excitons.

Ignoring all Coulomb effects in the GBE, other than those
responsible for the excitonic ground state, gives the artificial
spectrum shown by the dashed (blue) curve in Fig. 10. This
solution is equivalent to that obtained using only the mean-field
Hamiltonian (41). The resulting spectrum is proportional to the

FIG. 10. (Color online) Imaginary part of the linear susceptibility
for a graphene-like system with αG = 2.4. Energy in units of E0 =
h̄vF /d .
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density of states (DOS) (divided by ω) of the Bogoliubov bands
and has no additional structure. The onset of the continuum
absorption starts with a 1/

√
h̄ω − EG-like damped singularity

exactly at the Bogoliubov gap. The origin of the singularity is
the shift of the band minimum to finite k values (see Figs. 6 and
7). Within a quadratic approximation, E(k) = EG + h̄2(|k| −
k0)2/2meff , the DOS

g(E) = meff

πh̄2 θ (E − EG)

[
1 +

√
h̄2k2

0

2meff(E − EG)

]
,

consists of a steplike contribution typical for 2D parabolic
bands and a singular part proportional to the shift k0 that is
similar to the free-particle result of a semiconductor quantum
wire.31 Energetically above the Bogoliubov gap, the optical
response assumes the “universal” value given by 1

2πα(e∗/e)2,
where α = e2/h̄c is the fine-structure constant and e∗ =
e|π |/√2m0vF is the effective charge, producing the effective
medium Hamiltonian H0 + H

[p]
I = vF σ · ( p − e∗/cA) where

σ = (σx, ± σy) combines the Pauli spin matrices. The effec-
tive charge depends on the optical matrix element and can
either be calculated from the carbonic wave functions or be
used as a fitting parameter. An additional factor two arises if
the spin degeneracy is taken into account. Note that there is no
valley degeneracy for the excitation with circularly polarized
light.

Including all Coulomb interaction terms, we obtain several,
clearly recognizable excitonic resonances below the pseudo-
gap, shown by the solid (pink) curve in Fig. 10. The resonances
arise from the Coulomb interaction of the optically induced
excitations only, while the excitonic ground-state populations
open the required gap.

To study the influence of dephasing, we repeated the
calculation for the dephasing values in the range from h̄γ =
5 × 10−4E0 (lightest, most peaked curve) to h̄γ = 5 × 10−2E0

(darkest, flattest curve). As we can see in Fig. 11, the
excitonic spectra broaden and the fine structure close to the
gap smoothens to a flat, continuum-like response. The lowest
exciton resonance is clearly recognizable for dephasing rates
h̄γ up to 5 × 10−3E0.

To study the influence of the Auger contributions, we
present in Fig. 12 results where we artificially vary the
relative strength of the Auger terms between 0 (no Auger
terms) and 1 (full Auger contributions). The comparison shows

FIG. 11. (Color online) Effect of dephasing on the spectra of a
graphene-like system with αG = 2.4. The curves show the results for
dephasing constants (from most to least peaked) h̄γ /E0 = 5 × 10−4,
1 × 10−3, 2 × 10−3, 5 × 10−3, and 5 × 10−2. Energies in units of
E0 = h̄vF /d .

FIG. 12. (Color online) Imaginary part of the linear susceptibility
for a graphene-like system with αG = 2.4. Energy in units of E0 =
h̄vF /d .

that the Auger contributions not only increase the exciton
binding energy significantly, but they are also responsible
for the splitting of the individual resonances. In the absence
of the Auger contributions, the two distinct projection states
of the angular momentum onto the propagation direction of
the incident light are degenerated. As the Auger contributions
invert the rotational symmetry they remove this degeneracy.
The splitting of the resonances increases with increasing
strength of the Auger terms and is symmetric with respect to the
energy shift. The oscillator strength is distributed nonequally
among the resonances. The curves in Fig. 12 show Im(j/A),
which differs by a factor 1/ω from the absorption spectra. This
presentation shows that the heights of the absorption peaks
vary like 1/ω with a constant prefactor that is considerably
larger for the lowest-lying state and independent of the strength
of the Auger terms. As the Auger terms vanish for s-like states,
the splitting confirms the p-like symmetry of the optically
bright exciton resonances.

In Fig. 13, the absorption spectra for several values of
the coupling strength and a fixed dephasing rate h̄γ = 13
meV are shown. Variation of the effective coupling strength
can be realized by embedding the graphene sheet in, or
putting it on top of a dielectric medium, altering the static
screening ε = εr or ε = (1 + εr )/2, respectively. In the strong
Coulombic regime with αG � 1/2, all spectra show one
clearly recognizable discrete absorption peak and a flat con-
tinuum response. Increasing the coupling strength results in a

FIG. 13. (Color online) Imaginary part of the linear susceptibility
for a graphene-like system for αG = 0.9 (solid yellow line), αG = 1.0
(long-dashed green line), αG = 1.1 (medium-dashed blue line) and
αG = 1.2 (short-dashed purple line). The αG-dependent energy gap
(dotted line) marks the onset of the free-particle continuum (shaded
area). These spectra correspond to the gap-equations solutions in
Fig. 7 and to the band structures in Fig. 9.
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significantly increased oscillator strength and a blueshift of the
dominant absorption peak.

The blueshift of the excitonic resonance is in strong
contrast to the expected behavior of an intrinsic direct-gap
semiconductor, and is a clear signature of the excitonic ground
state. In a conventional semiconductor quantum well (QW)
system with a gap larger than the 1s-exciton binding energy,
the linear susceptibility is given by the Elliot formula

χQW(ω) = −|dcv|2
∑

λ

[ |ψλ(r = 0)|2
h̄(ω + iγ ) − (Eg + Eλ)

− |ψλ(r = 0)|2
h̄(ω + iγ ) + (Eg + Eλ)

]
,

where dcv is the dipole moment and Eλ and ψλ are the
eigenvalues and eigenfunctions of the 2D hydrogenic Wan-
nier equation, respectively. The resulting linear absorption
∝Im(χQW) shows resonances at h̄ω = Eg + Eλ with an
oscillator strength ∝|ψλ(r = 0)|2. Hence, only s-like states
contribute to the linear absorption of a QW system in contrast
to the bright states with p-like symmetry in graphene. Defining
the effective coupling strength as αeff = e2/εh̄c = α/ε, in the
strict 2D limit, the eigenvalues are proportional to the exciton
energy unit E0 = α2

effmrc
2 and ψλ(r = 0) ∝ 1/a0 = αeff/λc.

Here, mr is the reduced mass of the electron-hole pair, λc =
h̄/(mrc) is the corresponding Compton wavelength, and a0 is
the exciton Bohr radius, respectively. Hence, both the exciton
binding energy and the oscillator strength scale quadratically
with the coupling strength. As long as the band gap is
independent of the background screening, the spectral position
of the lowest exciton experiences a redshift proportional
to α2

eff .
Clearly, in graphene, the dependence on the effective

coupling strength is much more complicated. As the occur-
rence of the excitonic resonances requires the opening of
the gap, the coupling must exceed the critical value for the
excitonic transition of the ground state. Once the coupling
exceeds the critical value, both the exciton binding energy and
oscillator strength increase with increasing coupling strength.
Whereas stronger exciton binding and larger oscillator strength
also appear in conventional semiconductors, in graphene, the
simultaneous shift of the band edge toward higher energies
results in the net blueshift of the lowest excitonic resonance,
see Fig. 9, which is in strong contrast to the above discussed
excitonic redshift in conventional semiconductors.

V. SUMMARY AND CONCLUSIONS

In conclusion, we presented a framework to determine the
ground state and optical response of graphene and graphene-
like systems. Our method is based on the equations of motion
for the basic variables combined with a variational ansatz
for the ground state. Even though we have only presented
results on the singlet level, our method can be extended for a
systematic and self-consistent inclusion of, for example, higher
order many-body correlations or dynamical screening, treating
the ground-state properties and excitation dynamics on equal
footing. The presented theoretical scheme can be generalized
to finite temperatures, adapted to other strongly correlated
systems, or can include additional constraints like doping.

Within the Hartree-Fock approximation, our procedure
produces the gap equations describing an excitonic ground
state, including a renormalization of the single-particle energy.
Similar equations without energy renormalization have been
derived within a Dyson-Schwinger formalism,8 and, including
the single-particle energy renormalization, within a variational
approach applied to an explicit excitonic wave function
ansatz.18–20 As has been discussed in Refs. 19 and 20, the
instability of the TB ground state is closely related to the
existence of bound-state solutions of the corresponding two-
body problem. Indeed, we could relate the criterion for exciton
condensation of the ground state with the existence of bound
s-exciton solutions of the linear Wannier equation discussed
in Ref. 32.

Our numerical analysis of the gap equations predicts an
insulating ground state with gapped single-particle dispersion
if the effective coupling constant αG � 1/2, which is in general
agreement with other nonperturbative approaches studying
the semimetal-to-insulator transition,11,12,18–20 and with an
analysis of the low-density graphene Wannier equation,32

where a second-order phase transition from a weakly to
a strongly Coulomb interacting regime was predicted. Our
analysis fully includes finite-size effects arising from the
carbonic atomic orbitals, yielding a well behaved transition
into an excitonic ground state. This way, we evade any
instability or need for ultraviolet cutoff parameters allowing
us to determine the magnitude of the opened quasiparticle gap
quantitatively, which is a precondition for an experimental
verification.

On the basis of our approximation for the ground state,
we derived the graphene Bloch equations for the strongly
interacting regime on the singlet level. The self-consistent nu-
merical solutions allow us to predict the optical response from
the BCS ground state. Unlike in direct-gap semiconductors,
where electron-hole recombinations are dipole allowed, s-like
excitons in graphene are optically dark and hence radiatively
stable, while bright excitons have p-like symmetry. As a
hallmark of an excitonic ground state, the excitonic resonances
undergo a blue shift if the effective coupling strength is
increased, which can be achieved within a certain range
by manipulation of the dielectric environment. Assuming a
nominal coupling strength αG = 2.4 for graphene in air, the
effective coupling strength for graphene on a typical substrate
like SiC or SiO2 covered by air is αG ≈ 0.53 and αG ≈ 1.08,
respectively. Additional fine-tuning can be achieved, e.g., by
controllably depositing various layers of ice or oil on the
graphene sheet.39

As intrinsic screening may alter the nominal value of
the fine-structure constant,16,40 it may turn out to be cru-
cial for the realization of an excitonic ground state in
graphene. Studies on the excitonic instability in graphene
that include different screening models predict an increased
value of the critical coupling constant depending on the
model20 used, still well below 2.4. However, to clarify this
issue, screening must be included self-consistently with the
evolving gapped quasiparticle dispersion, which is one of
the topics of our ongoing studies. Other topics of future
research are the inclusion of higher-order correlations, the
inclusion of Coulomb scattering, and the extension to optical
nonlinearities.
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