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Electronic and optical properties of a circular graphene quantum dot in a magnetic field: Influence
of the boundary conditions
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An analytical approach, using the Dirac-Weyl equation, is implemented to obtain the energy spectrum and
optical absorption of a circular graphene quantum dot in the presence of an external magnetic field. Results
are obtained for the infinite-mass and zigzag boundary conditions. We found that the energy spectrum of a dot
with the zigzag boundary condition exhibits a zero-energy band regardless of the value of the magnetic field,
while for the infinite-mass boundary condition, the zero-energy states appear only for high magnetic fields. The
analytical results are compared to those obtained from the tight-binding model: (i) we show the validity range
of the continuum model and (ii) we find that the continuum model with the infinite-mass boundary condition
describes rather well its tight-binding analog, which can be partially attributed to the blurring of the mixed edges

by the staggered potential.
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I. INTRODUCTION

Graphene is an allotrope of carbon that, due to its novel
properties, has attracted considerable attention recently.:> The
energy spectrum of graphene is linear at two inequivalent
points (K and K’) in the Brillouin zone. Such a linear
behavior is a characteristic of relativistic massless particles,
which can be described by the Dirac-Weyl equation.> Due
to the well-known Klein tunneling effect,* which prevents
carrier confinement, manufacturing graphene-based quantum
structures is a big challenge for future applications in electronic
devices. However, the energy of charge-carrier states in
graphene can be manipulated either by using external magnetic
fields, which leads to the appearance of Landau levels for
an infinite graphene sheet, or by using finite-size graphene
quantum dots (GQD’s).?

The energy levels of circular graphene dots in the presence
of a perpendicular magnetic field were recently investigated
analytically in Ref. 6 for the special case of the infinite-
mass boundary condition (IMBC). On the other hand, it was
recently shown that the electron and hole states in graphene
nanostructures depend sensitively on the edge topology. For
instance, for a zigzag termination in graphene nanoribbons and
graphene flakes, such as triangular and hexagonal GQD’s, a
band of zero-energy edge-localized states is found.”® Except
for the case in which all the edges of the graphene flake are
armchair, the appearance of the zero-energy states seems to
be robust with respect to edge roughness, as demonstrated by
the persistent finite density of these states observed in realistic
quasicircular GQD’s.!”

It has been shown that graphene structures with zigzag
segments on the edge having zero-energy states are prone
to spontaneous magnetic ordering'' when electron-electron
interaction is included. This many-particle interaction leads to
a small energy gap. In such systems, spin polarization is found
in zigzag-edge-dominated GQD’s.!> In the presence of an
IMBGC, the single-particle energy spectrum of a GQD exhibits
already a gap around zero energy for low magnetic fields.®
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Thus in this case no magnetic ordering is expected. Therefore,
it is important to determine what notable differences in the
energy spectra may arise from the application of different
boundary conditions. Furthermore, because of the possible
applications of the GQD’s for light detection and solar energy
conversion,'? it is interesting to explore how the choice of the
boundary condition affects the absorption spectrum.

In this paper, we analytically solve the Dirac-Weyl equation
for a circular graphene quantum dot in the presence of a
perpendicular magnetic field for both infinite-mass and zigzag
boundary conditions. A comparison between the energy spec-
tra and angular current densities obtained for each boundary
condition is made. In addition to the exact solutions, we also
present analytic expressions where the magnetic field is treated
as a perturbation, which agrees well with the exact solution for
small fields. Further, we discuss the effect of a magnetic field
on the optical spectrum of a circular GQD, where we analyze
the effect of different boundary conditions (i.e., ZZBC and
IMBC) on the interband optical transitions.

To validate the continuum model, we present here also the
results obtained within the tight-binding (TB) model, where
there is no ambiguity as far as the boundary conditions are
concerned.'* We compare the analytical spectra obtained by
the Dirac-Weyl equation to those obtained by the TB model
for circular dots. Two kinds of dots are considered in the TB
model: (i) a circular dot cut out from a graphene honeycomb
lattice, and (ii) a circular confinement region delimited by an
infinite-mass barrier. The former case has an admixture of
zigzag and armchair edges, and, due to the zigzag parts, a
band of quasi-zero-energy levels is found. In the latter case,
no zero-energy states are present. We critically examine how
the continuum model results compare to the TB results, and
which microscopical details in the latter are not captured by
the approximations made in the former.

The paper is organized as follows. We present the analytical
results (i.e., energy spectrum, current density, and optical
absorption spectra) based on the continuum model in Sec. II.
The results obtained from the TB model are given in Sec. III.
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The paper is concluded in Sec. IV. In the Appendix, details
of the calculations for the approximate energy levels in small
magnetic fields (using perturbation theory) are presented.

II. THE CONTINUUM APPROACH

The Dirac-Weyl Hamiltonian for low-energy electron states
in graphene, in the presence of a perpendicular magnetic field
and a mass-related potential, reads

H=vp(p+eA)- o+ V(r)o,. €))]

Here A = (0,Bp/2,0) is the vector potential in symmetric
gauge and o denotes the Pauli matrices, which takes into
account contributions of two different graphene sublattices.
This equation holds for the K valley states, and o in this
equation should be replaced by its complex conjugate o*
when considering states in the K’ valley. We assume that the
carriers are confined in a circular area of radius R, which is
modeled by an infinite mass outside the dot, i.e., V(r) =0
for r < R and V(r) — oo for r > R, where r is the radial
coordinate of the cylindrical coordinates system. In the case
of the adopted ZZBC, the two Dirac cones are labeled by the
quantum number k, which has the value +1 in the K valley
and —1 in the K’ valley. For the IMBC, however, we use the
so called valley-isotropic form of the Hamiltonian, with fixed
k = +1, and the valleys are differentiated by another quantum
number 7, which appears in the boundary condition itself.!?
Furthermore, we introduce the dimensionless variables p =
r/R, B = R*/2l3 = ¢eBR*/2h, and ¢ = E/Ey = ER/hvr,
where E is the carrier energy, v is the Fermi velocity, and
lp = /N /eB is the magnetic length. The Dirac equation (1) in
these dimensionless units reduces to the form

0 T |:¢1(,07¢):| —¢ |:1/f1(/0:¢)1| (2)
7 O | Lao.9) Va(0.8) |’
where 7y = —ie**?[9, + %B(p F kBp]. Because of the cou-
pling between the orbital angular momentum L, and pseu-
dospin 7io,/2, we define the total momentum J, = L, +
ho,/2. We have [H,J,] = 0, i.e., the total angular momentum
is a conserved quantity, and thus the two-component wave
function has the form
x1(p)
) ; 3)

— imeo )
o0 = (L

where m =0, =1, &2, ... is the total angular momentum
quantum number. The two components of the wave function
correspond to different sublattices, i.e., x; corresponds to the
sublattice A and x; corresponds to the sublattice B.

Equation (2) is solved with the boundary condition that
expresses that the outward current at the graphene edge is
zero. This leads to the following relation at the dot edge:'®

tan(¢) = —Re[y{'(1,¢)y2(1,)1/Im[y{(1,$)¥2(1.9)],  (4)

where Re (Im) is the real (imaginary) part. The two boundary
conditions

V) e () o
n(1.) ()
¥1(1,9) =0~ (1) =0, (5b)
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both satisfy Eq. (4). The condition given by Eq. (5a) is called
the infinite-mass boundary condition (IMBC)'¢ and imposes
the requirement that the region outside the dot is forbidden for
particles due to the relationship vy o 1/m, as demonstrated
in Ref. 17. T = +1(—1) is used for the K(K’) states. The
condition Eq. (5b) requires that one of the wave-function
components is zero at the dot edge, which is called the zigzag
boundary condition (ZZBC).'® Note that a graphene quantum
dot with circular geometry in principle includes both armchair
and zigzag edges at the boundary, which will be considered in
Sec. III within the TBM model. Here, within the continuum
model, we consider for definiteness only ZZBC at the edges.
In the case of armchair edges, the boundary condition includes
the wave spinors corresponding to both K and K’ points, which
is given by

leeiK-r + I/flK,é’iK"r — 0’ (63)
KelKr pyK KT — . (6b)

In addition to k and t, we show below that the states in
the analyzed circular GQD are labeled by the total angular
quantum number m and the principal quantum number n.
Therefore, it is convenient to denote them by the symbol (m2,7).
The symbol 7 is also identified as the Landau level number.
In discussing the various properties of the spectrum in the
continuum model, we use the notation 55, mons where p € e (h)
denotes electron (hole) eigenvalues, k is the valley index, and
it is equal to k or T when considering the ZZBC or IMBC
spectrum, respectively. Furthermore, n is omitted in zero-field
discussions.

A. Zero-energy solutions

When ¢ = 0, the differential equations (2) are decoupled,

d k
)S(p ) K (p) — kBpa(p) = O, (7a)
o P
d k+1
)ng ) Rt D )+ kBoxa) =0, (Tb)

which offers straightforward solutions of the form y;(p) =
Clpmkekﬂp2/2 and XZ(;O) — Czp—(mk-‘rl)e—kﬂpz/Z‘

These solutions cannot simultaneously satisfy the IMBC
of Eq. (5a) and be normalizable. Namely, if the normalization
condition is imposed, either C or C;, depending on the sign of
m, should vanish, which prevents Eq. (5a) from being satisfied.
Thus, we conclude that there are no zero-energy states in the
IMBC spectrum.

If the ZZBC, Eq. (5b), is employed, it is possible to find
normalizable zero-energy solutions in both valleys. Those
solutions are constructed by assuming C; = 0 and C; # 0 for
boththe m < O statesinthe K valley and them > O states in the
K’ valley. Therefore, adopting ZZBC allows the appearance of
azero-energy band. Those wave-function components have the
form x1(p) =0 and xa(p) = Cp~"kTDe=kBr*/2 | with mk =
—1,—2,—3,.... Obviously, these states are completely
pseudo-spin-polarized and reside on the B sublattice sites.
The form of the wave function indicates that all states, except
mk = —1, are edge-localized, as is expected for zero-energy
zigzag states. Furthermore, states with larger |m| are localized
closer to the edge.
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B. Nonzero-energy solutions for § = 0

When ¢ # 0and when the magnetic field is zero, i.e., 8 = O,
Egs. (2) are coupled. Substitution of y, from the second into
the first differential equation leads to the Bessel differential
equation

d*xi(p)  dxi(p)
0 p ) L (207 iy pa(0) =0, (®)
dp dp
with the solution
x1(0) = C1Ju(ep). &)

From Eq. (2), the relation between the first and second
component of the wave function follows,

lk¢ k
Valp.¢) = — <_iap + ;3¢ + ikﬂp) Vi(p,¢), (10)

and thus

x2(p) = ikCy Jnii(€p). an

The boundary condition (5a) leads to the equation 7 J,,(g) =
Jm+1(€), while the boundary condition (5b) gives J,,(¢) =0
Recalling that the Bessel functions obey the properties J,, (&) =
(=D"™J_u(e) and J, () = (—1)" J,n(—e), several interesting
properties of the zero-field energy spectra are derived: (i)
There is electron-hole symmetry in both valleys for ZZBC,
which is reflected via the expression &%, ,, = —gh 41, Unlike
Z7ZBC, IMBC is known to break electron-hole symmetry,18
so the former relations do not hold. However, there is a
similar symmetry property for IMBC, for which the expression
Ly, = —aiqu(m +1) holds. (ii) Intervalley spectrum symme-
try is present for ZZBC, si]f’m = si{’m, whereas for IMBC,

e = _m+1)- The latter two properties for IMBC further

indicate 1ntervalley electron- hole symmetry between states of
the same m, i.e., %, , = ﬁ - (ii1) Finally, we may deduce
that the energy spectrum within each valley is either doubly
degenerate (for m # 0, sif o =& il ) Or nondegenerate
(for m = 0) if ZZBC is adopted, Whereas this is not the case
for IMBC.

C. Nonzero energy solutions for 8 # 0

For the general case ¢ # 0 and S # 0, we obtain the
differential equation for y;,

d2+1d
dp*  pdp

where the symmetric gauge is used for the magnetic field. This
equation has the normalizable solution

m
22 2 _
|:2ﬂ(m + k)+;+.3 p —¢ i|> x1(0) =0,
(12)

Vi(p.§) = Ce™p"e 2
~ (2m+k+1 &2
Rl 1
x 1Fy < 2 48’ ,m~+1,Bp )

13)

where we used the relation ¥1(p,¢) = € x1(p), obtained
from Eqs. (2) and (3), and | F\(a,b,z) is the regularized
confluent hypergeometric function. The second component
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of the wave function is extracted from Eq. (10), and for the
K(k = 1) and K'(k = —1) valleys it reads

1&”2(107(1))

_ ko 2" A=k A+ ke
£ 2 2 4
~ (2m+k+1 g
gt g2 2T 2 k+1.80°
X e 1F1 < > 4ﬁ’m +k+ 1,807 ).

(14)

The IMBC leads to the following eigenvalue equation:

4p

~ &2
— F 11— —, 1, =0, 15
1 1<m+ 4,3m+ ,3) (15)

76 ~ g2
71F1 m+1l——m+2p

while for the ZZBC we obtain

~ (2m+k+1 ¢
FF|——— — 1 1
1 1( > 4,3m+ ﬂ) (16)

From (15) and (16) we may deduce that for each BC the
magnetic field breaks all but one symmetry property, which
were stated in previous section. Thus from Eq. (15) one may
notice that the energy levels of the K and K’ valleys are
symmetric as &%, , = ;1 - On the other hand, when the

Z7ZBC is adopted, Eq. (16) depends on &2, and consequently
the electron and hole states in each valley are symmetric with
respect to each other.

D. Energy spectrum

We now analyze the magnetic field dependence of the
energy spectra in more detail. In Fig. 1, we show the energy
levels of a circular dot with radius R = 70 nm and —4 <
m < 4 for both the (a) IMBC and (b) ZZBC cases. The
spectrum at the K valley is displayed by the solid blue curves,
whereas the red dashed curves denote the energy levels in
the K’ valley. The zero-energy localized zigzag state (ZES)
is shown by the horizontal solid black line in Fig. 1(b).
Notice that IMBC leads to an energy gap in the spectrum,
as is evident in Fig. 1(a). The lowest nonzero electron energy
level in both IMBC and ZZBC initially decreases linearly with
magnetic field (as is similar for semiconductor quantum dots)
but then decreases as a Gaussian at high magnetic fields (which
is different from the 1/8 behavior found in semiconductor
quantum dots). We fitted the energy level to a Gaussian
function e(8) = a exp{—([8 — b]/c)*} [see green solid curves
in Figs. 1(a) and 1(b)], where (a,b,c)msc = (3, — 3.9,4.55)
and (a,b,c)zzpc = (4.47, — 7.1,9) are the fitting parameters,
respectively, for the IMBC and ZZBC. We found a relation
between the parameter ¢ of the different energy levels: clype ~
1.15¢ime and b pe & chohe (With i being the eigenstate
index), respectively, for IMBC and ZZBC.

The magnetic ordering at the dot edge breaks reversal
symmetry, and thus the electron-hole symmetry for each
valley is broken, even when an external magnetic field is
absent. Therefore, the energies of the electron and hole states
in a given valley are not mutually related. However, the
magnetic ordering cannot break the intervalley electron-hole
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FIG. 1. (Color online) Energy spectrum of a circular graphene
quantum dot with R = 70 nm in a perpendicular magnetic field for
(a) IMBC and (b) ZZBC. The energy levels corresponding to the
K and K’ valleys are shown, respectively, by the blue solid curves
and the red dashed curves. The zigzag zero-energy state (ZES) is
shown by the black solid line. The green solid curves display the
fitted function to the first energy levels. Only the six lowest electron
and hole energy levels are shown for —4 < m < 4. The inset of panel
(a) shows an enlargement of the energy levels, corresponding to the
K valley, around the region where the quantum dot states merge to
form the first LL for both IMBC (solid curves) and ZZBC (dashed
curves).

symmetry for IMBC, which is apparent from the &%, , =

—¢”, , relationship shown in Fig. 1(a).%

Unlike the IMBC, the ZZBC produces the ZES, composed
of the m < —1 states in the K valley and m > +1 states
in the K’ valley (see Sec. Il A). Zero-energy states are a
trademark feature of infinite structures with bipartite lattices,
which have the property of a global imbalance in the number of
sublattice sites. These states are pseudo-spin-polarized, inhab-
iting exclusively one sublattice, and are found at exactly zero
energy. On the other hand, GQD’s possess local imbalance in
the number of sublattice sites, and should therefore exhibit
quasi-zero-energy states, without pseudo-spin-polarization.
As a matter of fact, the shift from zero energy occurs due to
the hybridization between close sites with a different character
of the imbalance.'® This means that the zigzag edges in real
GQD’s will be host to quasi-zero-energy states, a properly
which is not captured well with the Dirac-Weyl model, since
we find a band of states at exactly zero energy in the case of
the zigzag boundary condition. This issue will be discussed in
more detail in Sec. III, where we use the TB model when
calculating the energy spectrum of a circular GQD. For a
different geometry that includes both zigzag and armchair
edges at the boundaries, e.g., a rectangular graphene flake,
the energy spectrum exhibits zero-energy states due to the
presence of the zigzag edge. It was shown in Ref. 20 that for the
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case of a rectangular graphene dot, the number of degenerate
zero-energy states depends on the number of armchair atoms.

With increasing magnetic field, the quantum-dot states
merge to form the Landau levels (LL’s) of graphene. In contrast
with semiconductors, the LL’s in graphene are nonequidistant
and exhibit square-root dependence on the magnetic field.?!
For the IMBC, the first LL (n = 1) is composed of m < 0
states, and the higher-energy (n > 1) LL’s are formed out of
m < n states in both the K and K’ valleys. Such a behavior is
similar to semiconductor QD’s.2! This behavior is also true for
the LL’s in the K valley of the ZZBC, displayed by the solid
lines in Fig. 1(b). The m < 0 states in the K’ valley spectrum
for the adopted ZZBC and the m < 0O states in both valleys
for the applied IMBC form the zero-energy (n = 0) Landau
level (ZLL). We point out that for both IMBC and ZZBC, only
one of the valleys contributes to the zeroth Landau level in
each band, which is known to be the case in bulk graphene,
and is the reason behind the anomalous QHE.3 For the IMBC,
Egs. (7a) and (7b) do not exhibit a physical solution at zero
energy, therefore the quantum dot states that form the ZLL
cannot have exactly zero energy in the employed continuum
model.

The asymptotic dependence of the energy levels (except for
the n = O state) in both the K and K’ valleys for the employed
IMBC and large 8 is given by

et n(B) = i\/4ﬂ (n " 'm'%) a7

where the sign in front accounts for the particle type. For the
ZZBC,? this relationship also holds for the K valley LL’s,
whereas the energy level dependence on magnetic field in the
K’ valley for large 8 is given by

e n(B) = £y/2B 20, + [m| +m —20(m)].  (18)

Here n, =1,2,3, ... is the radial quantum number, which
labels the solutions of Egs. (15) and (16), and 6(m) is
the Heaviside step function. For m = 0, Eq. (18) leads to
Eq. (17) for IMBC. Note that each expression in parentheses
in Egs. (17) and (18) is equal to an integer, and therefore has
the meaning of the Landau level index n. Furthermore, two
different regimes of carrier confinement might be resolved:
at low magnetic fields, the confinement is due to graphene
termination (i.e., edge confinement). The influence of the
edge is suppressed when the magnetic field is large, and the
confinement becomes dominated by magnetic field. However,
in the continuum model, no matter how large the magnetic
field is, it will not suppress the zero-energy band. ZES and its
degeneracy will persist throughout the magnetic confinement
regime in the ZZBC spectrum, while its wave function is
pushed inward toward the center of the dot (see Sec. II A).
For both adopted boundary conditions, the transition between
the two confinement regimes takes place as the magnetic field
increases (see Fig. 1). We may define the transition points
between the two regimes as the points where the energies of
the states in the quantum dot differ negligibly from the LL
energy. These transitions shift toward larger magnetic field
with lower m. We should note that the observed dependence
of the electron and hole energy levels on magnetic field differs
from the one in semiconductor quantum dots, where neither
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FIG. 2. (Color online) Energy levels of a circular graphene dot
as a function of magnetic field, 8 = eBR?/2h with R = 70 nm. The
red dashed curves show the approximated spectrum in low magnetic
fields, while the exact results are shown by the black solid curves.

ZES nor n = 0 LL are found, and the Landau levels increase
linearly with 8. Moreover, energies of the negative m states
obtained from (15) have a tendency to undershoot the positive
m energies of the same Landau level, which is not the case for
solutions of Eq. (16), as displayed in the inset in Fig. 1(a).

Approximate variations of the electron energy levels with
magnetic field, as obtained from first-order perturbation theory
(see the Appendix), are displayed in Fig. 2. These energy
levels are compared with the exact solutions for the IMBC
K valley. Because the applied magnetic field is considered to
be a perturbation for the zero-field states, a good agreement
between the approximate and exact energy levels is found at
low magnetic fields. As a matter of fact, the two approaches
start to disagree when the confinement starts to be dominated
by the magnetic field. Except for the ZES, similar agreement
between the exact calculations and the perturbation theory is
found for the states in both valleys when the ZZBC is adopted.
Notice that the approximate model cannot describe the states
that form the n = O LL.

E. Angular current

In spite of the major differences in nature of the low-
energy quasiparticles, there are some unexpected similarities
between semiconductor and graphene quantum dots. One such
similarity is the magnetic field dependence of the spatial
distribution of the angular current density. The angular current
for K valley states is given by

Jj = vrlyloyyl, (19)
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(a) m=+1, n=2 (b) m=-4, n=0
a 0.5
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FIG. 3. (Color online) Contour plot of the angular current density
for several states vs the normalized magnetic field and the radius. (a)
The (+1,2) state, (b) the (—4,0) state, (c) the (—10,1) state, and (d)
the (—1,1) state. The counterclockwise and clockwise currents are
denoted by red and blue colors, respectively.

where
_ 0 —iei® 20)
% = iet® 0 ’

For the K’ valley, one has to use the complex conjugate of
the previous operator. The final expressions for the angular
currents are

(21a)
(21b)

Jok = —2ivE X1 X2,
Jok = 2ivp X1 X2

A density plot of the angular current as a function of
magnetic field and radial coordinate is shown in Fig. 3. The
ZES exhibits a peculiar property of zero angular current due to
its pseudo-spin-polarization. Equation (21b) indeed indicates
that if either of the two wave-function components is zero, the
current vanishes. The angular currents for the m = +1,n = 2;
m=-—-4n=0,m=—-10n=1; and m = —1,n = 1 states
are shown in Fig. 3. We show results for the positive m states,
the states that form the ZLL, and the m < O states that form
the n = 1 LL. The angular currents are shown for the IMBC
K valley, but quite similar contour plots are obtained for the
IMBC K’ valley, and both valleys for the ZZBC. The angular
currents for the non-negative m states have the same direction
as the current of classical orbits [see Fig. 3(a)]. The internal
magnetic field (due to the motion of the electron) is in the
opposite direction to the external magnetic field, therefore all
non-negative m states exhibit diamagnetic behavior.

Conversely, the state (m,n) = (—4,0), which forms the
ZLL, shows weak paramagnetism (small angular current) at
low magnetic fields, which diminishes when the magnetic
field increases, as displayed in Fig. 3(b). Such a paramagnetic
behavior might be explained by edge-skipping orbits close to
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the edge of the dot that result in a clockwise current. However,
as the magnetic field increases, the angular current in the
n = 0 states vanishes due to the sublattice polarization, as
in the ZES. Indeed, a closer look at Eqgs. (10) reveals the
reason behind it: since |y,| ~ |Y]/¢€, shrinking ¢ will cause
the second sublattice wave function to increase in magnitude
as compared to the first sublattice wave function. Hence, the
ZLL state becomes almost completely localized on the second
sublattice with increasing magnetic field, which results in the
reduction of the angular current.

The m < 0 and n > O states exhibit a different behavior
with increasing magnetic field, as demonstrated in Figs. 3(c)
and 3(d) for the (—10,1) and (—1,1) states. Both of these
states converge to the n = 1 Landau level as B increases. As is
depicted, paramagnetic, i.e., clockwise current located mostly
close to the edge is the prominent feature of an uncondensed
state (—10,1) at low B. On the other hand, the (—1,1) state
is energetically closer to the respective Landau level at 8 = 0
than (—10, 1), which accounts for the larger diamagnetic part of
the angular current in this state. As the magnetic field increases,
three effects take place: (i) The regions of clockwise current
shift toward the ring center, which might be explained as the
displacement of the centers of the electron classical orbits
inward, i.e., toward the dot center. (ii) Two concentric regions
of oppositely oriented angular currents become distinct, i.e.,
increasing field gives rise to a counterclockwise current on
the outer side of the orbits. In fact, the latter property is
related to the degree of Landau level condensation of each
state, i.e., to the energy difference between the quantum dot
state and the Landau level. The lower this difference is, the
more pronounced is the diamagnetic component. This is made
clear in Fig. 3(d) for the (—1,1) state, which is closer to the
first Landau level than (—10,1), and thus has comparatively
stronger counterclockwise current. (iii) The region of the
counterclockwise current shifts inward too, almost parallel to
the region of the clockwise current, as shown in both Figs. 3(c)
and 3(d).

In order to describe in more detail how the magnetic
field affects the electron localization and the angular currents
analyzed above, we show in Fig. 4 contour plots of |y |?
and |y»|?> in the p and B plane for the same states as in
Fig. 3. All the states become localized close to the dot center
with increasing magnetic field, with the n = 0 state resisting
the most. Notice that the components of the wave function
of the (+1,2) state are comparable to each other over the
considered magnetic field range. The latter state has |v/|?
localized close to the dot edge when the magnetic field is low.
For the (—4,0) state, when 8 increases, 1, starts to dominate,
as previously explained, and at high magnetic field (8 = 10)
it becomes pseudo-spin-polarized, as shown in Figs. 4(c)
and 4(d). Notice the transition from a nonpolarized to a
polarized pseudospin state, which also highlights the transition
from the edge-dominated to the magnetic-field-dominated
confinement regime. The eigenfunction representing the nth
Landau level in an infinite monolayer graphene sheet, con-
sidering the Landau gauge for the vector potential, is given

by23
et E(yln — 1))
s n — s 22
(x,yl¥r) N7 ( (vl (22)
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FIG. 4. (Color online) Contour plot of the sublattice contributions
for several states vs the normalized magnetic field and the radius. (a)
m = +1,n =2 state; (b) m = —4,n = 0; (c) m = —10,n = 1 state;
and (d) m = —1,n = 1 state. Red and blue denote electron weights
on sublattices 2 and 1, respectively.

where k, is the wave vector in the x direction and |n) is the
nth eigenfunction of the quantum harmonic oscillator in the y
direction. For the ZLL (n = 0), the upper component is zero
and, consequently, this state is fully pseudo-spin-polarized for
an infinite graphene sample. In the GQD case, as the magnetic
field increases, the lowest energy states, which are not pseudo-
spin-polarized in the edge-confinement regime, approach the
ZLL and become pseudo-spin-polarized, as expected for this
level if no edges are present, i.e., in the regime where the
magnetic field confinement dominates. Figures 4(e) and 4(f)
show how the wave-function components vary in the (—10,1)
state. The spatial localization in this state is less affected by the
magnetic field than the localization of the (—1, 1) state, which is
displayed in Figs. 4(g) and 4(h). However, |y|(p) of both the
(—10,1) and (—1,1) states have two maxima, which is related
to the simultaneous presence of paramagnetic and diamagnetic
currents in these states shown in Figs. 3(c) and 3(d).

F. Optical absorption

Optical absorption, for the transition between states i and
j» is measured by |M;;|* = [(¥;|re'?|W;)]?, where ¢, is
formally the polarization angle, having no impact on the final
result. Having calculated the matrix elements describing the
transition for each possible pair of states, we introduce a
Lorentzian-type broadening for the absorption spectrum, and
we consider Fermi-Dirac statistics:

A (E) = Tij [fep(ei.er.T) — frn(ej.er, T)IM;;
Y w (e—sij)z—i—l“izj

, (23

where T is the temperature and w corresponds to the energy
of the incident photon (E = hw). fpp is the Fermi-Dirac
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distribution and I';; is the broadening parameter, which is
assumed to be 1 meV in our calculations. The total absorption
spectrum is taken to be the sum of all individual transitions
A(E) = Zi,j A, j(E) for both valleys.

The integral with respect to ¢ in the matrix element M;; is
nonzero only when m; = m;. Furthermore, no selection rule
applies to n, which differs from the case of massive graphene,
where transitions are allowed only between adjacent Landau
levels.?* Although transitions between states that do not differ
by %1 in the value of n are allowed in the GQD, we found
that their contribution to the overall absorption is a few orders
of magnitude smaller than the contribution of the n — n £ 1
transitions. The matrix elements between the six lowest energy
states for m in the range [—4, + 4] are taken into account
when computing the absorption spectra, which are displayed
as contour plots in Fig. 5 for the applied IMBC and two
values of temperature, 7 = 100 and 300 K. For each T, the
absorption spectra are computed for (dimensionless) Fermi
energies ep = —5, 0, +5. In all cases displayed in Fig. 5,
there exist bright spots around &;; = 3. They arise from the
n=-2—->n=-—1and n =1 — n = 2 transitions, and are
appreciable when the Fermi level is either in the conduction or
the valence band [Figs. 5(a), 5(b), 5(e), and 5(f)]. Because of
the peculiar statistical distribution for e = 0 at temperature as
low as T = 100 K, the central bright spot disappears from the
absorption spectrum, as Fig. 5(c) indicates. However, when T
increases to 300 K, the statistical distribution of the initial and
final states changes, and the bright spot reappears for e = 0
[see Fig. 5(d)].

5 15 25 5 15 25
B B

FIG. 5. (Color online) Contour plot of the total absorption
spectrum A(g) for the IMBC vs magnetic field and transition energy
for different values of temperature. Left and right panels correspond,
respectively, to temperatures 7 = 100 and 300 K. (a) e = =5,
T =100 K; (b) e, =—-5, T=300 K; (c) e, =0, T =100 K;
d)erp=0,T =300K; (e) e =45, T =100 K; and (f) e =5,
T =300 K.
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FIG. 6. (Color online) The same as in Fig. 5, but for the ZZBC.

The absorption spectra for the ZZBC shown in Fig. 6
display similar features to the absorption for the IMBC in
Fig. 5. In addition to the bright spot, the absorption spectra
for both applied boundary conditions exhibit the bright and
narrow absorption line that traverses all diagrams in Figs. 5
and 6 nearly diagonally, and it is stronger for the IMBC.
This absorption takes place by means of then = —1 - n =0
and n = 0 — n =1 transitions in the case of the IMBC. For
this case, the energies of the transitions between the states
in the two valleys are equal, which favors the appearance
of this line. On the other hand, for the adopted ZZBC, the
energy spectra of the electron and hole are symmetric within
each valley, whereas intervalley electron-hole symmetry is
absent. This leads to a less pronounced central absorption
peak in the spectrum, which is due to transitions between the
ZES and n = £1 LL in both valleys. The other noteworthy
feature for the ZZBC and e¢r = 0 is the absorption due to
interband transitions between the n = 0 quantum-dot states in
the K’ valley, whose transition energy tends to zero when the
magnetic field increases.

The absorption spectra for e = 0 and three values of the
magnetic field, 8 =5, 10, and 15, are shown in the left and
right panel of Fig. 7 for T = 100 and 300 K, respectively. The
strongest absorption line is due to the n = —1 — n = 0 and
n =0 — n =1 transitions for the IMBC and for transitions
between ZES and n = +1 LL for the ZZBC. As previously
explained, the lack of intervalley electron-hole symmetry for
the ZZBC leads to much smaller absorption than for the IMBC.
Furthermore, the absorption might increase when the magnetic
field increases.

III. THE TIGHT-BINDING MODEL

It is clear that the advantage of using the continuum model
lies in the fact that it provides analytical solutions that are easy
to handle. However, the continuum model was derived from
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FIG. 7. (Color online) The absorption spectra A(e) for e =0
and two different boundary conditions. Results are shown for T =
100 and 300 K, which are displayed in the left and right panels,
respectively. (a) The IMBC and T = 100 K, (b) the IMBC and T =
300 K, (c) the ZZBC and T = 100 K, and (d) the ZZBC and T =
300 K.

the tight-binding model” for an infinite graphene sheet, under
the restriction of low-energy charge carriers around the Dirac
cones in K and K'. Therefore, it is of interest to investigate
the validity range of the continuum model for GQD’s.

Actual dot structures are normally cut out from a graphene
honeycomb lattice, instead of being surrounded by an infinite-
mass media, and therefore cannot have only one type of edge,
as illustrated in Fig. 8. However, we intend to demonstrate
that the simple boundary conditions described above still
provide some agreement with the TB results. The results in
this section are obtained from a first-nearest-neighbor tight
binding Hamiltonian, which is given by

H = Z E,,cjlcn + Z tezmcp"”'cj,cm, 24)
n nm

where E, is the on-site energy and c; (ciT) is the annihilation
(creation) operator, t = 2.7 eV 1is the zero-magnetic-field
hopping term, where the C-C distance is ap = 0.142 nm,
D, = 4%0 /! :’" A -dr is the Peierls phase, with ¢y = h/e
being the magnetic quantum flux, and A = Bxy is the
vector potential taken in the Landau gauge with perpendicular
magnetic field B.

Let us first analyze the case of a circular dot cut out from a
graphene lattice, as shown in Fig. 8(a). The energy spectrum
in this case is shown in Fig. 9(a) as a function of the magnetic
flux through one carbon hexagon ¢ = (3\/§a§/2)B, which
looks qualitatively similar to the one shown in Fig. 1(b),
for a circular dot with ZZBC within the continuum model.
In both cases, groups of states decrease in energy with
increasing magnetic field, eventually converging to the Landau
levels, and a zero-energy level is observed for any value of
magnetic field. On the other hand, some details of the energy
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FIG. 8. (Color online) Sketch of the two circular graphene dots
of radius R considered in our TB calculations: (a) A circular dot
cut out from the graphene honeycomb lattice, where the red (blue)
sites refer to zigzag (armchair) boundaries. (b) A circular region
(green) surrounded by an infinite-mass media, which is obtained
by considering a staggered potential, i.e., a +10 (—10) eV on-site
potential for lattice A (B) sites, represented by red (blue) atoms. In
both cases, the dot is made out of all the atomic sites that are inside
a circle of radius R and that have at least two nearest-neighbor sites
inside the circle.

spectrum for lower magnetic fields are not captured properly
by the continuum model, even for the low-energy levels. For
instance, in the results for both the continuum and TB models,
the first nonzero level decreases with increasing field whereas
the second level starts to increase with the field until it crosses
a higher-energy level. However, the anticrossings observed
immediately above the described crossing in the TB results
are not observed in the continuum model with the ZZBC. The
IMBCresults in Fig. 1(a) also do not exhibit such anticrossings.
Notice this feature is already observed even for the low-energy
levels, which are supposed to be within the validity range of
the continuum approximation. This can be interpreted as a
breakdown of the continuum model.

There is also a surprising feature in this energy spectrum
obtained within the TB model: as we zoom in around the zero-
energy region, we realize that it is not really a single £ = 0
curve, but rather a band of curves, as shown in Fig. 10. We
considered three different ranges of energy and found curves
that exhibit a self-similar-like pattern, which persists until we
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FIG. 9. (Color online) Energy spectrum as a function of the
magnetic field, obtained from the TB model for (a) the cut-out
graphene dot and (b) the infinite mass defined quantum dot illustrated
in Fig. 8 with R = 10 nm. The red curves represent the Landau levels
in graphene. The blue solid curve in panel (b) shows the fitted function
to the first energy level.

find the lowest energy levels, which are indeed very close to
zero (1078 eV). The results in Figs. 9 and 10 were obtained
for R = 10 nm. As the dot radius is reduced, similar results
are observed but the low-energy states appear farther away
from the zero level. For example, for R = 2 nm, the lowest
level has an energy E = 0.095 eV, i.e., a 0.190 eV energy
gap, even though the dot still exhibits zigzag edge segments.
The wave function of these small energy states is localized at
the zigzag edges of the circular dot (see Fig. 11). The lowest
energy states consist of wave-function pockets localized at the
largest width zigzag edge regions [i.e., regions indicated by
the red dots in Fig. 8(a)]. Notice, furthermore, that for B &~ (0
those low-energy levels are in three groups: (i) the two lowest
are degenerate for B = 0 and their wave functions are identical
up to a rotation of 60°, and (ii) the third level has a slightly
larger energy with a wave function consisting of more pockets
localized at the edge with a higher rotational symmetry as
compared to the previous two. As the magnetic flux increases,
the degeneracy of the two lowest levels is lifted in each group
and the second state crosses the third (nondegenerate) state at
some value of magnetic flux. For higher flux, all these states
decrease and end up forming the zeroth Landau level.

Similar to the continuum results, the first energy levels for
both IMBC and ZZBC can be fitted to a Gaussian function,
ie, f(®)=aexp{—(® —bl/c)*}, where (a,b,c)pc =
(0.16, — 0.0006,0.0007) are the fitting parameters for the
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FIG. 10. (Color online) Magnification of the results in Fig. 9(a)
for three different energy scales. The red solid curves display the
fitted functions to several lowest energy states.

IMBC [see the blue solid curve in Fig. 9(b)] and (a,b,¢)zzpc =
(0.0008, — 11,92) x 107> are the fitting parameters for the
first energy level with ZZBC [see the red solid curve
in Fig. 10(c)]. Notice that the upper energy levels (those
decreasing with magnetic field) can also be fitted to a Gaussian
function as shown by the red curves in Figs. 10(a) and 10(b)
for the ZZBC [(a,b,c)sppe = (0.13, — 0.0022,0.0018) and

(@.b,0)%)s = (0.0053, —0.00018,0.0001) are the fitting

(a) E=0.027 eV

E=0.85x10% eV

FIG. 11. (Color online) Electron densities corresponding to the
energy levels shown by the red solid curves in Fig. 10 for &/ &y = 0.
The black dots are the position of the C atoms where we showed only
a small strip of the quadrant of the circular graphene flake.

205441-9



M. GRUIJIC et al.

parameters, respectively, for the indicated energy state in
Figs. 10(a) and 10(b)].

We now analyze the case of a circular dot surrounded by
an infinite-mass media, as illustrated in Fig. 8(b). Although
the sublattice symmetry breaking in epitaxial graphene is still
a big challenge in order to realize graphene-based electronic
devices, recent experiments demonstrated that by choosing
the appropriate substrate,>>?® this can be realized. Such a
symmetry breaking is translated into a mass term in the Dirac-
Weyl Hamiltonian for graphene. This suggests that a circular
graphene dot embedded in an infinite-mass media might be
experimentally feasible by means of substrate engineering.
Besides, as previously mentioned, an IMBC provides a good
description of the magnetization of the edges in a graphene
dot. This motivated us to study circular GQD surrounded
by a staggered potential, as illustrated in Fig. 8(b). The
results obtained by the TB model for such a system are
indeed comparable to those from the IMBC in the continuum
model: both cases have no zero energy levels, and the
anticrossings found for the structure in Fig. 9(a) are not present
in the energy spectrum for the infinite-mass confinement in
the TB model, which causes it to agree much better with
the IMBC results. On the other hand, a broad energy band
is found around the Landau levels in the TB results, which
is not observed in the continuum model. Nevertheless, this
band occurs for high-energy states, which are not expected
to be described by the Dirac-Weyl equation, although they
follow qualitatively the Landau levels predicted by this
equation.

Finally, we investigate how the size of the graphene dot
affects their energy spectrum, and we compare the results from
the TB and continuum models. Figure 12(a) shows the energy
spectrum as a function of the dot radius obtained by the TB
model (symbols) for the mass-confinement dot illustrated in
Fig. 8(b). The Dirac-Weyl results considering IMBC are shown
as red curves, which exhibit very good agreement with the TB
results, especially for the lower-energy states and larger dots.
Some curves in the TB results do not decay monotonically
as « 1/R; instead, they exhibit a fluctuating behavior, which
is more pronounced for smaller radii. Such fluctuations can
be linked to the fact that the GQD’s studied within the TB
model are never perfectly circular, as one can verify in the
sketch in Fig. 8(b). In other words, the microscopic details
become important as R decreases, and these details cannot
be described properly by the analytical model for circular
GQD’s, based on the continuum approach. For larger dot radii,
these edge imperfections are less important, which explains
the less pronounced fluctuations in the energy levels as R
increases.

The energy spectrum as a function of the radius of the
circular dot when cut out from the graphene layer, shown in
Fig. 12(b), exhibits the following: (i) even larger fluctuations,
(ii) the energies decrease much faster than 1/ R with increasing
R, and (iii) the energy levels are spread out more evenly
in the shown energy window. This is due to the fact that,
besides the imperfections in the circular shape of the dot,
the variations in the number of zigzag and armchair atoms at
the edge of the dot also play a role in the energy spectrum
as R increases. We notice that as R increases, lower-energy
states merge into a very dense E = 0 band. This is not
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FIG. 12. (Color online) Energy spectrum as a function of the
dot radius, in the absence of a magnetic field, obtained from the
continuum (red curves) and TB models (symbols), (a) for the infinite
mass defined quantum dot illustrated in Fig. 8(b), and (b) for the
quantum dot cut out from the graphene layer, illustrated in Fig. 8(a).

expected to be the case in the continuum approximation,
where the zero-energy-band states are perfectly degenerate
with zero energy even for small radius, and higher-energy
states approach zero only for R — oo. Thus, this feature, along
with the self-similarity behavior mentioned earlier, are pure
manifestations of the microscopic character of such GQD’s,
which cannot be described by our IMBC and ZZBC, or by
any analytical model within the continuum approach known
to date. Indeed, the results obtained by the ZZBC in the
continuum model (red curves) give no hint about the energy
spectrum, except for the fact that they predict the 1/ R behavior
of some states observed in the TB results. The energy states that
decrease much faster than 1/R can be fitted to an exponential
function, i.e., E' = Ele /% where E} and R} are fitting
parameters and i indicates the eigenstate index. In Fig. 12(b),
the five lowest energy levels are shown by the green solid
curves, where Ej~"> =[33.3,17.96,6.24,3.78,3.82] eV
and R="*° =1[0.67,0.87,1.2,1.58,1.84] nm. The param-
eters R} can be related to each other by R} ~ 1.3 x R

IV. CONCLUSION

The electron and hole states in a monolayer graphene
circular quantum dot were modeled using the Dirac-Weyl
equation. Two distinct types of boundary conditions are
employed, namely the infinite-mass and the zigzag boundary
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conditions. An energy gap near zero energy is only found for
the case with an infinite-mass boundary condition, whereas
the peculiar zero energy state, which is pseudo-spin-polarized
and localized close to the zigzag boundary, exists when
the zigzag boundary condition is imposed. An increase
of the magnetic field diminishes the influence of the edge on the
electron confinement, and the states merge into Landau levels.
The obtained spectra exhibit different symmetries between
the electron and hole spectra, and also different intervalley
symmetries. However, the variation of the angular current
density with magnetic field is quite similar for the two adopted
boundary conditions.

The states that collapse into the n = 0 Landau level (for
B — 00) are found to exhibit paramagnetic behavior due to the
influence of the edge, and they become pseudo-spin-polarized
when the magnetic field increases. Negative m states are
found to exhibit both clockwise and counterclockwise currents
when the magnetic field increases. Furthermore, the boundary
conditions and the intervalley symmetry are found to influence
the absorption spectra. Equal transition energies in the two
valleys lead to the most intense absorption line for the adopted
infinite-mass boundary condition. On the other hand, different
transition energies in the two valleys lead to much smaller
absorption oscillator strength if the zigzag boundary condition
is used.

Finally, we found that many features of the more realistic
TB quantum dots can be described by simplifications made
for the circular dots within the continuum approach. Namely,
the energy states in the continuum and TB models converge
to the LL’s at high magnetic field in a similar way. However,
due to their inevitable zigzag edges, circular GQD’s cut out
from a graphene lattice exhibit a dense quasi-zero-energy band,
formed by groups of states that exhibit self-similarity. This is
a manifestation of the microscopical character of these dots,
and can hardly be described by any continuum-based model.
Nevertheless, for circular dots based on mass confinement, the
TB results and the analytical IMBC results agree very well
for lower energies and a larger dot radius. Thus, a secondary
conclusion comes from the comparison above: the IMBC for
the Dirac-Weyl equation, frequently used to simulate electron
states in GQD’s, can describe only quantum dots created

A(m)

B [y 32 (ST p)dp _m+1 2Fs(m+ Lom +2im + Lm +3.2m + 15 —€29)
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by mass-related confinement, whereas the actual GQD’s cut
out from a graphene layer obtained in recent experiments
have a much more complex spectrum that, at least in the
absence of possible additional potential terms (due to, e.g.,
edge reconstruction, magnetization, etc.), cannot be described
either by IMBC or by ZZBC when using the continuum model.
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APPENDIX: ENERGY LEVELS FOR LOW
MAGNETIC FIELDS

We start from Eq. (8) for zero magnetic field, which can be
rewritten as

DOx?) = 2" x1?), (A1)

2 2 0
where the operator D© = —[f? + %% -1 A0 =
(81?:]3%[)2 (with i being the eigenvalue index), and |xﬂ(p))

is given by Eq. (9). For the case of nonzero magnetic field, we
have

00+ 0+ D)l =4l A
where D(ll):2(m+l) and D;l):pz. We assume that

|Xf})) = |Xf?)) for small magnetic fields. Multiplying ( X{?)|

on both sides of the above equation, we have

(20217

)

AV =30 L 28m+ 1)+ B2 (A3)

and finally we obtain

S mn(B) = \/ (500 ) 4 28(m + 1)+ B2A(m), (A4)

where

Ce2(eSrO pYdp M A2 Fy(m o+ L im o+ Lm +2.2m + 15 —e,))
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