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We demonstrate that the condensed matter quantum systems encompassing two reservoirs connected by a
junction permit a natural definition of flows of conserved measures, i.e., Rényi entropies. Such flows are similar
to the flows of physical conserved quantities such as charge and energy. We develop a perturbation technique
that permits efficient computation of Rényi entropy flows and analyze second- and fourth-order contributions.
Second-order approximation was shown to correspond directly to the transition events in the system and thereby
to possess a set of intuitive features. The analysis of fourth-order corrections reveals a more complicated picture:
The intuitive relations do not hold anymore, and the corrections exhibit divergencies in low-temperature limit,
manifesting an intriguing nonanalytical dependence of the flows on coupling strength in the limit of weak
couplings and vanishing temperatures.
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I. INTRODUCTION

Modern condensed matter theory borrows concepts from
quantum information theory, in particular, entanglement.
There is an explosive growth of applications of these concepts.1

Although the measures of entanglement are not linear in
density matrix and, as such, can not be directly related to
quantum observables, these measures proved to provide insight
into complex structure of many-body wave functions, and in
many cases can be efficiently computed numerically.2 Most
applications are restricted to an equilibrium situation where
the object of interest is the wave function of the ground state
of a system |�〉. The system is cut into two subsystems A,B

(typically, in real space). Partial trace over a subsystem gives a
reduced density matrix R̂(A) = TrB{|�〉〈�|} in Hilbert space
of another subsystem. Roughly, the von Neumann entropy of R̂

can be ascribed to the boundary between the subsystems. There
are a number of illuminating theoretical results1,3,4 related to
the von Neumann entropy of the boundary and its scaling with
the boundary area. Not only entropy is under scrutiny: the
attention is paid to, and the information is gathered from,
the whole spectrum of the reduced density matrix R̂.2,5,6

The information about the spectrum can be compactified to
a set of quantities that have been introduced in the context
of information theory by Alfred Rényi7 and are called Rényi
entropies. We define them as follows:8

SM = Tr{R̂M}.
Logs of SM are obviously extensive quantities: if R̂ can be
presented as a direct product over a number of subsystems,
their contributions to ln SM add. The von Neumann entropy is
obtained by taking a formal limit

S = − lim
M→1

∂SM

∂M
= − lim

M→1

∂ ln SM

∂M
.

Several works address time evolution of entropies in the
course of transition processes such as a quantum quench.9

There are interesting results concerning von Neumann entropy
production in stationary nonequilibrium systems, in particular,
in quantum point contacts.10 A simplest quantum point contact
is a single-channel conductor with transmission coefficient T0,

which connects two electronic reservoirs. The entropy flow for
zero temperature in the reservoirs was shown to be10

dS

dt
= −dNatt

dt
[T0 ln T0 + (1 − T0) ln(1 − T0)]. (1)

Here, (dNatt/dt) is the number of electrons per unit time
that attempt to transfer the contact (dNatt/dt) = eV/(2πh̄).
The energy flow to either reservoir is given by dE/dt =
(dNatt/dt)T0eV/2. The approach of Ref. 10 was rather heuris-
tic, relying on the representation of the electron many-body
state in terms of a sequence of individual single-electron
scattering events,11 which is instrumental in the field of full
counting statistics. Levitov and Klich in Ref. 12 have rederived
these results with a more microscopic approach, extended
those to the case of a general time-dependent scatterer, and
discovered a remarkable correspondence between the entropy
flow and full counting statistics of electron transfers. This
has been further elaborated in Ref. 13. References 12 and 13
reproduce Eq. (1).

There are two interesting peculiarities in the relation (1)
that have not received a proper discussion so far. First,
nonanalyticity of the expression (1) at small T0 should indicate
an intriguing divergence of perturbation series in T0 that
measures coupling strength between the reservoirs. Second,
the second law of thermodynamics relates the entropy and heat
increments for a system in thermal equilibrium at temperature
T . From this, one would conjecture the relation between
entropy and energy flows

dS

dt
= 1

kBT

dE

dt
, (2)

which would seem to have a textbook status. However,
the result (1) is not compatible with this conjecture. The
initial motivation for the research presented in this paper
was to understand these peculiarities in a general calculable
framework rather than for a restrictive case of quantum point
contact.

The main result of this paper is that the flows of Rényi
entropies (Re-flows in short) are well defined in standard
condensed matter setups comprising two reservoirs connected
by a junction. Importantly, they permit a detailed evaluation
in the framework of a quantum perturbation theory developed
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here. This is in contrast to the entropy flow, albeit the latter
can readily be obtained by analytical continuation from integer
to continuous M . We study the second and fourth orders
of perturbation theory. The second-order results were shown
to be very special: they satisfy the textbook relation (2)
as well as some extra intuitive relations outlined in the
text. This is because the second-order results can be put
into direct correspondence with the transition events taking
place in the system. Neither this correspondence nor intuitive
relations hold for fourth-order corrections. These corrections
exhibit nonanalytical low-temperature behavior manifesting
nonanalytical dependence of the flows on coupling strength in
the limit of weak couplings and vanishing temperatures.

An obvious point of criticism is that the Re-flows are
unphysical since they are nonlinear in density matrix and
therefore can not readily be associated with (the flows of)
measurable quantities. The author shares the opinion and idea
of Levitov and Klich12 that the flows of quantum information
quantities may be related to the statistics of flows of quantum
observables by universal relations, the general form of which
is yet to be discovered. If this is true, a measurement of
such statistics would in fact constitute a measurement of an
unphysical flow. An alternative proposal to transfer the Rényi
entropies to physical flows has been recently put forward by
Cardy.14 In any case, the Re-flows characterize information
exchange between the reservoirs in a rather detailed way. This
makes their evaluation useful.

The structure of the paper is as follows. In Sec. II, we detail
and illustrate the definition of Rényi entropies. In Sec. III, we
show that Re-flows can be associated with conserving currents,
these currents being rather similar to electric or energy current
through a junction in quantum transport setups. Section IV is
devoted to the description of a generalized Keldysh technique,
which enables perturbative calculation of Re-flows in an
arbitrary setup. We evaluate the flows in the second-order
approximation in Sec. V. The second-order approximation is
characterized by a set of specific relations, i.e., those outlined
in Secs. VI and VII. In Sec. VIII, we derive the fourth-
order corrections. We demonstrate that these corrections are
singular in temperature in the limit of vanishing temperature
(Sec. IX). For the von Neumann entropy flow, the fourth
term exponentially diverges upon decreasing temperature. This
indicates an interesting nonanalytical dependence of the flows
in the limit of small couplings. We conclude in Sec. X.

II. CONSERVED MEASURES

Let us discuss the definition and straightforward properties
of Rényi entropies. We start with an isolated finite quantum
system, which is characterized by density matrix R̂. We define
the Rényi entropies as traces of integer powers of R̂:

SM = Tr{R̂M}. (3)

This definition can be easily extended to noninteger M ,

SM = Tr{exp(M ln R̂)},

which identifies SM as Laplace transform of the spectral
function of the operator ln R̂. This identification permits us
to relate the von Neumann entropy and Rényi entropies

S = −Tr{R̂ ln R̂} = − lim
M→1

SM = − lim
M→1

ln SM. (4)

If the system is in thermodynamic equilibrium at tempera-
ture T , the Rényi entropies are readily expressed in terms of the
temperature-dependent free energy F (T ) (see, e.g., Ref. 15):

ln SM = M

kBT
[F (T/M) − F (T )]. (5)

The Rényi entropies can easily be computed for simple
nonequilibrium quantum systems as well. The example we
will use in this paper concerns free fermions in a system
of single-particle levels labeled by k. We ascribe the levels’
arbitrary filling factors fk . The density matrix of the system
reads as

R̂ =
∏
k

[f̃k(1 − n̂k) + n̂kfk],

with n̂k ≡ â
†
kâk being number operator, âk being annihilation

operator in the level k, and f̃k ≡ 1 − fk . From this, the Rényi
entropies read as

ln SM =
∑

k

ln
(
f̃ M

k + f M
k

)
. (6)

For a degenerate Fermi gas in thermal equilibrium with
constant density of states δ−1

S near the Fermi energy, this
reduces to

ln SM = π2kBT

6δS

(
1

M
− M

)
. (7)

The quantum evolution of the system is governed by
a Hamiltonian Ĥ . The same Hamiltonian determines the
evolution of the density matrix

−ih̄
dR̂

dt
= [Ĥ ,R̂].

Since the density matrices in different moments of time are
related by unitary transform, the trace of any power of R̂ does
not depend on time.

We just proved that Rényi entropies provide a set of
conserved measures for density matrix of an isolated quantum
system

d

dt
SM = 0,

in similarity to the conserved physical quantities such as energy
or change. The difference is that SM are not linear in density
matrix and therefore can not be immediately associated with
any quantum observables.

While these definitions and properties may seem straight-
forward, there are some caveats to discuss. They are related
to the traditional classical definition of entropy and its use. To
illustrate, let us start with the nonequilibrium Fermi system in
a pure state where fk are either 1 or 0. Obviously, SM = 1 for
this pure state. Let us take Ĥ , which involves weak interaction
between the fermions. Common knowledge suggests that the
interaction causes thermalization of the fermion distribution
function. After some time, the filling factors fk will correspond
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to a Fermi distribution at some effective temperature T ∗, which
depends on the initial state. It may seem that the entropies are
now given by Eq. (7) and thus differ from 1. However, they
must conserve! Indeed, after the Hamiltonian evolution, the
system is still in a pure state.

The solution to this apparent paradox is that Eq. (6) can not
be used for an interacting fermion system, however small the
interaction is. We could have used an alternative definition of
the entropies that is close to the original classical definition of
Boltzman. Namely, we could reduce the true density matrix R̂

to 2 × 2 matrices ρk by taking partial trace over all fermion
Fock states not involving the level k, take the diagonal elements
of these matrices, and substitute them to (6). Such alternative
definition might even seem more useful, for instance, for
description of thermalization in an electron gas. However,
this definition would necessarily involve an entirely subjective
choice of a basis (that of noninteracting fermion Fock states)
and would not give rise to conveniently conserved measures.
On these grounds, we stick to quantum definition (3).

Let us now consider a bipartition of the Hilbert space A ⊗ B

corresponding to two systems A and B. We can now define
two sets of Rényi entropies as

S
(A)
M = TrA{(R̂(A))M}, S

(B)
M = TrB{(R̂(B))M}, (8)

where the reduced density matrices in two subspaces are
defined with the aid of the partial traces in these subspaces:

R̂(A) = TrB{R̂}, R̂(B) = TrA{R̂}. (9)

If the quantum evolutions of the systems are completely
independent,

Ĥ = ĤA + ĤB,

with HA,B being operators involving the corresponding sub-
spaces only, and both sets provide the conserved measures

d

dt
S

(A)
M = d

dt
S

(B)
M = 0.

It is interesting to note that the sets of Rényi entropies are
not the only conserved measures characteristic for a bipartition.
Any polynomial in density matrix that is invariant with respect
to the group UA ⊗ UB of unitary transforms in two subspaces
would provide such a measure. To give a minimal example,
let us label the states in A(B) with Latin (Greek) indices. The
quantity

K ≡
∑

a,b,c;α,β,γ

Raα,bγ Rbβ,cαRcγ,aβ (10)

is a conserved measure that can be reduced neither to the Rényi
entropies of the systems nor to the Rényi entropy of the whole
system. The characterization of all such measures forms an
interesting research task beyond the scope of this paper.

III. FLOWS

Let us complicate the bipartition situation by including a
Hamiltonian coupling between the systems A and B,

Ĥ = ĤA + ĤB + ĤAB, (11)

with ĤAB being an operator that involves degrees of freedom
in both subspaces.

FIG. 1. Two leads (reservoirs) A and B in a typical quantum
transport setup correspond to the bipartition A ⊗ B. The junction
connecting the two is associated with coupling Hamiltonian H (AB).
In similarity with the flows of charge and energy, one can define the
flows of Rényi entropies (Re-flows) in such setups.

We will assume that the systems A and B are infinitely large
and are characterized by continuous excitation spectrum given
by ĤA,B , respectively. However, HAB couples a relatively
small number of degrees of freedom in both systems. It is
convenient to assume that the systems A, B are in thermal
equilibrium at different temperatures TA,TB and/or chemical
potentials μA,μB and, thus, play a role of reservoirs. The
coupling is such that it does not lead to equilibration of TA,TB

(μA,μB). Rather, there is a constant energy and particle flow
between the systems that does not depend on actual volume of
A and B, nor on their detailed properties.

Examples of such an arrangement are common quantum
transport setups.16 An exemplary setup (Fig. 1) consists of
two (infinite) current-carrying leads A and B kept at different
chemical potentials. These leads are connected by a junction.
The simplest coupling that we will use in our examples is the
tunneling Hamiltonian

ĤAB =
∑
kA,kB

tkA,kB
(â†

kA
âkB

+ H.c), (12)

which describes particle transfer between the leads.
It is important in quantum transport setups that the value

to measure experimentally and compute theoretically is a flow
of a conserved quantity, with electric charge being a simplest
and most useful example. In principle, one defines a flow of
charge through a cross section of the setup; this cross section
may also define the bipartition. Owing to conservation, this
flow does not depend on the cross section. Therefore, the exact
bipartition is also not important. Owing to this, the current is
said to depend on the properties of the junction rather than
on details of the reservoirs. This enables the experimental
investigation of nanostructures: a signal in a measurement of a
nonconserving quantity would be most probably dominated by
massive leads rather than by a small nanostructure, while the
flow of conserved charge is determined by the nanostructure
forming the junction between the leads. The same pertains to
energy flow. Energy and charge are not the only conserved
quantities: approximately conserved spin currents17 provide
another practical example. Artificially constructed conserved
quantities appear useful in description of quantum coherence
in nanostructures, being the mathematical basis of the so-called
circuit theory of quantum transport.16

From analogy with the flows of conserved quantities in
quantum transport setups, we conjecture that there are finite
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flows of conserved measures, Rényi entropies (Re-flows), to
each subsystem A and B:

d

dt
ln S

(A),(B)
M ≡ F (A)

M .

Owing to conservation of Réneyi entropy in each system, the
Re-flows would not depend on exact bipartition of the system
and are determined by properties of the junction that is, in
principle, described by ĤAB .

There is an important difference. For physical quantities,
the conservation holds in the whole system as well as in each
subsystem. For instance, electrical currents to each lead must
satisfy IA + IB = 0.18 As far as Rényi entropies are concerned,
there is no exact conservation law for a sum ln S

(A)
M + ln S

(B)
M

at finite ĤAB , although these quantities are extensive. There
is a conservation law for the total Rényi entropy ln S(A+B).
However, the latter at finite ĤAB is the sum ln S

(A)
M + ln S

(B)
M

only approximately, up to the terms proportional to the volume
of the system.

Therefore, in general,

F (A)
M + F (B)

M �= 0.

Let us compute these Re-flows. We will always restrict
ourselves to the Re-flow to the system A; the Re-flow to the
system B is obtained by permutation of A and B. For brevity,
we will skip the index A in S

(A)
M and F (A)

M where this does not
lead to confusion.

IV. PERTURBATION TECHNIQUE

We will use a perturbation technique in ĤAB and keep
the calculation as general as possible. We assume adiabatic
switching of the perturbation.19 Far in the past, the coupling
is absent, and the density matrix is a direct product over
subspaces

R̂(−∞) = R̂A(−∞) ⊗ R̂B(−∞),

R̂A(−∞) =
∑

a

pa|a〉〈a|, R̂B(−∞) =
∑

α

pα|α〉〈α|.

[As above, we label the states in subspaces A (B) with Latin
(Greek) indexes.] The coupling slowly grows, achieving actual
values at time t . The time evolution is given by (from now on,
h̄ = 1)

R̂(t) = T exp

(
i

∫ t

−∞
dτ ĤAB(τ )

)
R̂(−∞)

× T̃ exp

(
− i

∫ t

−∞
dτ ĤAB(τ )

)
,

where ĤAB(τ ) is taken here in interaction representation,
T exp (T̃ exp) denote time (anti)ordering in the evolution
exponents. Expanding this in HAB(τ ) gives the perturbation
series most conveniently presented as diagrams involving
the Keldysh contour (Fig. 2). The operators in perturbation
series are ordered along the contour. Two parts of the
contour correspond to time evolution of bras and kets in the
density matrix. The crosses represent the (time-dependent)
perturbation HAB(t) at a certain time moment. The integration
over time moments of all perturbations is implied. There is a

FIG. 2. Perturbation theory for a single density matrix on the
Keldysh contour.

state index associated with each piece of the contour. Since
R̂(−∞) is diagonal, this index does not change when passing
this element. The index changes if a nondiagonal matrix
element of the perturbation is considered. Summation over
indices is implied.

The crucial observation is that this scheme can be straight-
forwardly generalized to any integer number M of density
matrices. These matrices undergo independent unitary evolu-
tion in time interval (−∞,t). It is constructive to think of a set
of M parallel worlds and draw the diagrams for perturbation
series using M parallel bra and ket contours. To compute SM (t)
with this set, we first need to split the contours to account for
possibly different ordering of operators in subspaces A and B

(black and white curves in Fig. 3). Then, we need to reconnect
the contours at τ = t . All white contours are closed within
each world; this corresponds to the partial trace over B for
each density matrix involved. In contrast to this, the black
contours are connected to form a single loop going through all
the worlds; this corresponds to the matrix multiplication in the
definition (3) of Rényi entropy. This conveniently represents

FIG. 3. A diagram of perturbation theory for S
(A)
M for M = 3. It

involves three parallel worlds. Reconnection of Keldysh contours for
subspaces A (black) and B (white) accounts for partial trace over B

and matrix multiplication in A.
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the rules of operator ordering for any diagram of particular
order in HAB .

It is interesting to note that reconnecting the contours in
a different fashion gives rise to perturbation theory for other
conserved measures, for instance, for K given by Eq. (10). It
is also interesting to see a connection between the approach
suggested here and the proposal of Cardy14 to measure Rényi
entropies with the aid of a quantum quench. The idea of the
proposal is as follows. Let us consider a system with bipartition
A ⊗ B. Let us take M identical copies of the system in its
ground state, numbered by j . At the time moment t = t0, the
sudden quantum quench happens: it amounts to reconnecting
the partitions in such a way that Aj is connected to Bj+1 at
t > t0 (if j = M , j + 1 = 1). After such an intrusion, there
is still a chance that the system remains in the ground state:
it happens to be given by SM .14 The proposal in fact aims to
physical realization of the outlined multiple-contour scheme.
The parallel worlds are the copies of the system, and a certain
type of contour reconnection is realized with the quantum
quench described.

It is natural to require that the matrix elements of HAB are
only nondiagonal, that is, H (AB)

aα,bβ = 0 if either a = b or α = β.
In this case, the first nonvanishing contributions to Re-flows
will be of the second order in HAB .

V. SECOND ORDER

Let us compute the Re-flows in the second order in HAB . It
is proficient to directly compute the time derivative of SM . For
diagrams, this corresponds to placing one of the perturbations
at τ = t . The only way to satisfy the continuity of state index
along the white contours is to place the second perturbation in
the same world. Four contributing diagrams are given in Fig. 4.
In fact, the same four diagrams arise in the derivation of the
golden rule transition rate and are familiar to anyone who made
use of the Keldysh perturbation theory for the density matrix.
The specifics of Rényi entropies is reflected in the extra factors
pM−1

a that the diagrams acquire in comparison with the case of
a single density matrix. Summing up the four diagrams yields

∂

∂t
SM =

⎛
⎝−M

∑
a,α;b,β

∣∣H (AB)
aα,bβ

∣∣2
pM

a pα

+ M
∑

a,α;b,β

∣∣H (AB)
aα,bβ

∣∣2
pbpβpM−1

a

⎞
⎠

×
∫ t

−∞
dt ′ 2 Re(ei(t−t ′)(Ei+Eα−Ej −Eβ )). (13)

The integral over time t ′ reduces to

2πδ(Ea + Eα − Eb − Eβ),

manifesting energy conservation between the initial state |aα〉
and final state |bβ〉.

This suggests that we can rewrite the whole expression in
terms of golden rule rates �aα,bβ of the transitions between the
states |aα〉 and |bβ〉:

�aα,bβ = 2π
∣∣H (AB)

aα,bβ

∣∣2
δ(Ea + Eα − Eb − Eβ). (14)

FIG. 4. Second-order diagrams for time derivative of a Rényi
entropy. The contributions come only from perturbations Ĥ (AB) in
the same world; only this world is shown in each diagram. For all
diagrams, the perturbations are taken at time moments t and t ′ < t .
The letters at the contours label the states involved.

With this, the flow reads as

(SM )FM = M
∑

a,α;b,β

�aα;bβ (pbpβ − papα)pM−1
a . (15)

We see that the flow vanishes if the systems are in thermo-
dynamic equilibrium at the same temperature. Indeed, in this
case, pbpβ/papα = exp[(Eb + Eβ − Ea − Eα)/kBT ] = 1.

Since the transition rates �aα,bβ in the golden rule approxi-
mation are symmetric with respect to a permutation aα ↔ bβ,
we can regroup the terms to arrive at

(SM )FM = M
∑
a,b

�a→bpa

(
pM−1

b − pM−1
a

)
, (16)

where

�a→b =
∑
α,β

�aα;bβpα

gives the total transition rate from the state |a〉 to the state
|b〉 averaged over all possible configurations of system B.
Let us use Eq. (16) to derive a simplified expression valid in
zero-temperature limit. In this limit, the system A is initially
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in the ground state |0〉, so that p0 = 1 and pa = 0 for a �= 0,
SM = 1. We obtain

FM = −M�0 (17)

with �0 being the total transition rate from the ground state
to any other state. Remarkably, this involves no assumption
concerning the system B: it can be very far from equilibrium.

Equation (16) is also a convenient starting point to derive
the expression for the von Neumann entropy flow. Taking the
limit M → 1, we obtain

−∂S

∂t
=

∑
a,b

ln(pb/pa)�a→bpa. (18)

Let us assume thermal equilibrium of A. In this case,
ln(pb/pa) = [(Ea − Eb)/kBT ]. Summing up the energy
changes Eb − Ea in the course of individual transitions from
a to b, we prove that the energy flow to the system A equals

dE

dt
=

∑
a,b

�a→b(Eb − Ea)pa.

Comparing this with Eq. (18), we recover the relation (2),
which appears to be universally valid within the second-order
perturbation theory. Remarkably, this involves no assumption
about the system B.

One can easily imagine the situation where dE/dt remains
constant at T → 0 [see Eq. (1)]. The entropy flow in this
case diverges as 1/T . One can wonder how it is compatible
with the fact that Re-flows approach finite limit at vanishing
temperature. The point is a hidden nonanalyticity of (17): the
flow does not vanish in the limit M → 1 as it is implied by more
general Eq. (16). Therefore, Eq. (17) can not be immediately
used to derive the flow of von Neumann entropy; rather, a
general formula valid for small but finite T is required for this
purpose. One can see it as noncommunicativity of the limits
of vanishing coupling HAB → 0 and vanishing temperature
T → 0.

VI. EXAMPLE: FERMI GAS

Let us explicitly compute the Re-flows for tunneling
between two nonequilibrium Fermi gases. In this case, a

(or b) is a number state defined by a set of occupation
numbers in all levels k {nk}, pa = ∏

k[f̃k(1 − nk) + fk(nk)].
The perturbation ĤAB is given by Eq. (12). Let us concentrate
on the transitions involving a level q. Since the probabilities
factorize, we can forget about the Fock states involving all
other levels since their contributions to the right-hand side of
Eq. (16) cancel with their contribution to SM . We can therefore
consider only two states spanned by level q, substituting
into Eq. (16) their contribution to SM = f M

q + f̃ M
q . The

probabilities of these states |0〉 (nq = 0) and |1〉 (nq = 1) are
fq and f̃q , respectively. Substituting this into Eq. (16) and
summing up over q yields

FM = M
∑

q

(�+
q f̃q − �−

q fq)
f M−1

q − f̃ M−1
q

f M
q + f̃ M

q

, (19)

with �+
q (�−

q ) being the rates of addition (extraction) of a
fermion to (from) the level q.

Let us outline a heuristic way to obtain the above relation.
This way does not involve any quantum mechanics: it is
something Boltzmann would do if given the problem. Let us
treat ln SM and fq as continuous quantities related by Eq. (6).
By virtue of the relation, the flux of ln SM would be expressed
in terms of fluxes of fq as

d

dt
ln SM =

∑
q

∂ ln SM

∂fk

(
dfk

dt

)
. (20)

Since fq is the average number of particles in the level q,

dfq

dt
= �+

q f̃q − �−
q fq.

Combining these two relations reproduces Eq. (19)! We stress
that we do not see any reason for this relation to hold, in
general, since both SM and nq change in discrete rather than
continuous fashion in the course of a tunneling transition.
Indeed, the inspection of fourth-order terms in perturbation
theory shows that the heuristic way does not generally work.

Let us assume that the filling factors in the system A depend
on single-particle energy E only. The Eq. (20) reduces to

FM = M

∫
dE(�+f̃ − �−f )

f M−1 − f̃ M−1

f M + f̃ M
, (21)

with �+,−(E) being addition (extraction) rates per energy
interval. In case of vanishing temperature (in the system A),
fq = �(−E + μ). The Rényi entropy flow reduces to

FM = M

∫
dE[�+(E)�(E − μ)

−�−(E)�(−E + μ)]sgn(E − μ)

= −M
d

dt
(N+ + N−)

with N± being numbers of added (extracted) particles. This
is in agreement with the general relation (17) since the
only events that happen in our setup are indeed additions or
extractions of single particles. As in the general case, analytical
continuation to M → 1 at vanishing temperature does not
work since the expression does not vanish in the limit M → 1.
One can work at nonzero temperature, where it does vanish.
Taking the derivative of Eq. (21) at M → 1 yields the flow of
von Neumann entropy

∂S

∂t
=

∫
dE[�+(E)f̃ (E) − �−(E)f (E)] ln

(
f

f̃

)
.

Substituting Fermi distribution, we recover once again the
relation (2) between the entropy and energy flows.

VII. MASTER-EQUATION APPROACH

In a single world, there is a simple way to resum the
perturbation series and arrive to a master equation that contains
only diagonal elements of density matrix (Fig. 5). For a
diagram, we split the timeline by perturbations into the blocks
as shown in the figure. The blocks come in two sorts: diagonal
with the same state index in both contours and nondiagonal
ones. Integration over time duration of nondiagonal blocks
gives golden rule transition rates. The integration over time
duration of diagonal blocks is divergent; this indicates that
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FIG. 5. Master equation in a single world is obtained from the
resummation of perturbation series whereby the timeline is separated
into diagonal and nondiagonal (gray shaded) blocks. One can do this
resummation in multiple worlds to compute the time evolution of
Rényi entropies.

the diagrams need to be resummed. The resummation gives
the master equation involving the diagonal elements of the
density matrix only. In the case of bipartition, this equation
reads as

d

dt
paα = −�aαpaα + �aα,bβpbβ. (22)

Here, �aα stands for the total transition rate from the state |aα〉,
that is, the sum of the partial transition rates �aα = ∑

bβ �aα,bβ .
Inspired by the above exercises with second-order dia-

grams, one can attempt the resummation in parallel worlds
in such a way that the perturbations in a nondiagonal block are
situated in the same world. In this case, we have independent
master equations governing the dynamics of density matrix in
each world.

Suppose we know the propagator of the master equation,
that is, a linear kernel P expressing the evolution of the
probabilities:

paα(t) = Paα,bβ (t,t ′)pbβ(t ′).

With this, we can easily express time evolution of SM in time
interval (0,t):

SM (t) =
∑

a

(∑
α

Paα,bβ (t,0)pb(0)pβ(0)

)M

(23)

and compute the Rényi entropy flows. We will not analyze
the general situation here since, as all systems described by a
master equation, it belongs to the realm of classical physics
anyway. Rather, we concentrate on a simple but constructive
example. We will assume that initially the systems were in a
pure product state. Let us denote this state |00〉. Let us further
assume that the transitions from this state as well from all other
state can happen to a great number of states. This number is so
big that, once the first transition has taken place, the system will
never get back to the original state. With this, the probability
to remain in the state |00〉 falls off exponentially:

p00 = exp(−�00t),

with �00 being the total rate of all transitions from |00〉. Under
the same conditions, the sum in SM is dominated by the
probability to remain in the state |00〉. The SM (t) just equals the
probability that, during this time interval, no transition event
occurs in any of M parallel worlds:

SM (t) = pM
00 = exp(−M�00t). (24)

The flow is, therefore, FM = −M�00, in full correspondence
with Eq. (17).

We note that the resummation of the diagrams we have done
is not complete since we have assumed that each nondiagonal
block comprises only two perturbations. The transition rates
are thus approximated by their golden rule expressions. In most
cases involving a master equation in a single world, this is not
important: the further orders of perturbation theory provide
small corrections to the rates not changing the structure of
the equation. It looks like this is not so in the case of parallel
worlds. The analysis of fourth-order perturbation corrections
presented below indicates the problems involved.

VIII. FOURTH ORDER

Let us analyze the fourth-order diagrams for the time
derivative of SM . As above, we assume that HAB does not
contain diagonal elements. Since white contours are closed
within each world, the four perturbations can either all come
in the same world or in two pairs in two different worlds. If
all four come in the same world, they describe a correction
to one of the golden rule transition rates. This correction is to
a coefficient in a second-order expression and therefore does
not bring anything new. Thus motivated, we disregard these
diagrams in further consideration.

An example diagram involving two different worlds is
given in Fig. 6. It is important to note that, in general, the
black contour entering a world with perturbations exits it
with a different state index a �= b. This is in contrast to
the second-order diagrams. For a particular case wherein
these indices are the same, a = b, the fourth-order diagram
diverges upon integration over time. This is not surprising. By
employing the perturbation technique, we expand the exponent
of a Re-flow SM (t) ∝ exp(FMt) rather than the Re-flow FM .
The fourth-order expansion we deal with should thus contain
the terms ∝(F (2)

M )2t/2, with F (2) being the second-order
contribution to the rate that we have already calculated. Indeed,

FIG. 6. A fourth-order quantum diagram for Rényi entropy flows.
The contributions come from perturbations Ĥ (AB) in two different
worlds; only these two worlds are shown. The letters on the contours
label the states involved.
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the inspection of the diagrams with a = b proves that they
provide the contribution expected [proportional to (F (2))2].
Therefore, the diagrams with a = b do not contribute to
the fourth-order correction to the flow, and their unpleasant
divergency can be safely disregarded.

We, thus, concentrate on the case a �= b. We dub these
diagrams quantum: We will see that they do not permit an
interpretation in terms of classical transition events. To keep
notations short, all expressions for F ,dS/dt further in this
section give the fourth-order corrections to the corresponding
Re-flows or entropy flow rather than the full quantities.

There are 16 diagrams of this sort to consider (only one is
shown in Fig. 6). Their number corresponds to the number of
ways the pairs of Ĥ (AB) in each world can be placed on bra
and ket contours. We need to sum up all of them intelligently,
so we can present the fourth-order correction in the following
form:

d

dt
S

(A)
M = π

∑
a,b

|Aab|2δ(Ea − Eb)
pM−1

a − pM−1
b

pa − pb

,

(25)

Aab =
∑
c,α,β

H
(AB)
aα,cβH

(AB)
cβ,bα

×
(

π [(pa+pb)pα−2pcpβ]δ(Ea + Eα−Ec−Eβ )

− i
pa − pb

Ea + Eα − Ec − Eβ

)
.

Let us try to comprehend the structure of the result and compare
it to familiar expressions of the usual quantum perturbation
theory not involving multiple worlds. The expression reminds
of a golden rule formula: It contains the square of the
amplitude, the delta-function of energy, which in the golden
rule case would guarantee energy conservation in the course
of transition between the initial and ground states, and an
expression involving probabilities. To support the golden rule
interpretation, the structure of the matrix elements in the
amplitude Aab is the same as for a second-order amplitude
of the transition from the state |aα〉 to the state |bα〉, that
is, without the change of the state of the subsystem B.
Such a transition would proceed via an intermediate virtual
state |c,β〉. However, the further analysis of the expression
does not support this interpretation. Rather, the probabilities
pa,pb,pα,pβ enter in a form suggesting that the transition
takes place between one of the states |aα〉,|bα〉, and the state
|cβ〉. Therefore, the expression (25) can be associated with
no classical transition and corresponds to no actual transition
rate. Its unconventional structure arises from the fact that we
address an unphysical quantum-informational quantity. This
example is important from a conceptual point of view since it
illustrates that quantum dynamics in parallel worlds can not
generally be described in terms of transitions: the validity of
such a description (Sec. VII) is restricted to the second order.

To proceed further, let us assume that the probabilities in
the system A depend only on energies of the corresponding
states (this assumption is less restrictive than the assumption
of thermal equilibrium). Then, it follows from Ea = Eb that
pa = pb. The term in Aab with the energy difference in the

denominator vanishes and the expression for the fourth-order
correction to a Re-flow reduces to

SMFM = (M − 1)π
∑
a,b

|Aab|2δ(Ea − Eb)pM−2
a ,

(26)
Aab = 2π

∑
c,α,β

H
(AB)
aα,cβH

(AB)
cβ,bα

×(papα − pcpβ)δ(Ea + Eα − Ec − Eβ).

We notice now that if the both systems are in thermal
equilibrium at the same temperature, it follows from Ea +
Eα = Ec + Eβ that papα − pcpβ and the amplitudes Aab

vanish. This explicitly proves the absence of Re-flows in
thermal equilibrium.

Let us compute the fourth-order contribution for our
favorite example of nonequilibrium Fermi gas. We pick up
two levels in the system A, k1,2, with Ek1 = Ek2 = E. Their
contribution to SM reads as SM = [fA(E) + f̃A(E)]2. Let the
state a correspond to |1〉k1 |0〉k2 and state b correspond to
|0〉k1 |1〉k2 : the probabilities of these states equal fA(E)f̃A(E).
The amplitude Aab is contributed by all levels q in the system
B with the energy Eq = E. To simplify further, we notice that
there are two possible virtual states |cβ〉. The first possibility
is an empty level q and both levels k1,2 occupied [pα =
fB(E), pβ = f̃B(E), pc = f 2

A(E)]. The second possibility
is an occupied level q and empty levels k1,2[pα = f̃B(E),
pβ = fB(E), pc = f̃ 2

A(E)]. Owing to anticommutativity of
fermionic creation and annihilation operators, these two con-
tributions to the amplitude come with opposite sign, yielding

Aab = 2π [fB(E) − fA(E)]
∑

q

tk1,q tk2,qδ(Eq − E). (27)

To get the contribution of the two levels k1,2 to the Re-flow,
we square Aab, multiply it with pM−2

α = (fAf̃A)M2 , and divide
with the contribution SM = (f M

A + f̃ M
A )2 of these levels to

Rényi entropy. At the next step, we sum over all states in an
energy interval (E,E + dE) and integrate over the energy E

to obtain the total Re-flow in terms of an integral over energy
rather then a sum over discrete levels. We obtain

FM = (1 − M)
∫

dE(fB − fA)2 (fAf̃A)M−2(
f M

A + f̃ M
A

)2 (E), (28)

where (E) is defined as

(E) = 8π2
∑

k,k′,q,q ′
tk,q tk′,q ′ tk′,q tk,q ′

×δ(E − Ek)δ(E − E′
k)δ(E − Eq)δ(E − E′

q).

Since the quantity (E) is contributed by many discrete levels,
its energy dependence is smooth in the limit of an infinite
system.

IX. LOW-TEMPERATURE SINGULARITIES

We will now explicitly demonstrate that the quantum
contribution (28) derived manifests serious problems with
the term-by-term perturbation theory in the limit of vanishing
temperature. This indicates a nonanalytical dependence of the
flows on the coupling strength in the limit of weak couplings
and vanishing temperatures.
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First, let us note that the contribution seems to have an
evident zero-temperature limit, namely, zero, at least if the
ground state of the system A is not degenerate. Indeed, in the
latter case, the delta function in Eq. (25) can not be satisfied for
any state b �= a, and the contribution vanishes if the system is in
a unique ground state, that is, at zero temperature. However, the
analytical continuation to noninteger M gives rise to problems:
the result of the continuation at finite temperature does not
have to vanish in the limit T → 0. Let us illustrate this by
computing (28) while assuming the thermal distribution and
the difference between chemical potentials in A and B, eV, to
be much bigger than kBT . To this end, we can set fB = 0 in
Eq. (28). By disregarding the energy dependence of  near the
Fermi surface, we obtain

FM = kBT 
1 − M

M

[
1 + 2π

M

(
1

sin π
M

− 1

sin 2π
M

)]
. (29)

While the flow vanishes at vanishing temperature, it ap-
proaches a finite limitF1 = 3kBT  at M → 1 where it should
vanish from the definition of Re-flows.

This signals a singular dependence of the Re-flow on
temperature. This singular dependence is not divergent at
M > 2. However, it becomes a real divergence in the limit
of M → 1, that is, the divergence of fourth-order contribution
to the flow of von Neumann entropy. Indeed, already from the
general expression (26), we deduce that

dS

dt
=

∑
a,b

|Aab|2δ(Ea − Eb)
1

pa

, (30)

that is, the states with lesser probabilities pa contribute most
to the entropy flow! For our Fermi gas example, the entropy
flow reduces to

dS

dt
= 

∫
dE

(fA − fB)2

fAf̃A

. (31)

For equal temperatures in the systems A and B, this gives

dS

dt
= 4kBT  sinh2 eV

2kBT
. (32)

The fourth-order contribution to the entropy flow thus diverges
exponentially upon T → 0.

We stress that this does not imply a divergence of the
entropy flow in the limit of vanishing temperature; rather, it
implies a singular, nonanalytical dependence on the coupling
strength in this limit. To illustrate with a concrete example, let
us turn to Eq. (1). The transmission coefficient T0 plays here
the role of the coupling strength. At T = 0, the equation gives
an evidently nonanalytical dependence T0 ln(T0) that can not

be expanded in Taylor series. Such expansion should, however,
hold at any nonvanishing temperatures,

dS

dt

dt

=
∑

n

An(T )T n
0 . (33)

The only way to reconcile this with the nonanalytical de-
pendence on T0 is to conclude that An(T ) diverge in the
limit of T → 0. Since T0 is proportional to the square of
transmission amplitudes, the results of this paper give A1

(second order) and A2 (fourth order). Indeed, we have obtained
that A1(T ) ∝ T −1, A2 ∝ T exp(eV/kBT ), that is, diverge. The
methods of Refs. 10 and 13 can, in principle, be applied to
evaluation of temperature-dependent entropy flow, however,
they have not been yet elaborated until the level that allows
explicit evaluation of the coefficients in the above relation.
The author is sure that the further elaboration of the results
of Refs. 10 and 13 will confirm the perturbative calculations
presented in this paper.

X. CONCLUSIONS

In this paper, we have shown that the flows of Rényi
entropies are well defined for common setups encompassing
a junction between two reservoirs A and B. They are similar
to flows of physical conserved quantities such as energy and
charge. They vanish in thermal equilibrium and can be induced
by the difference of chemical potentials and temperatures in
the reservoirs. The flows characterize (quantum) information
transfer between the reservoirs and generalize the flow of von
Neumann entropy.

We develop a general quantum perturbation technique to
compute these flows; this involves a set of parallel worlds.
We consider second- and fourth-order terms. In the second-
order approximation, the flows can be related to golden rule
transition events. As such, they satisfy a set of intuitive
relations expressed by Eqs. (2), (24), and (20).

Our analysis of fourth-order corrections reveals interesting
physics: the intuitive relations appear to be wrong, and the
orders of perturbation theory exhibit divergences in the limit
of low temperatures manifesting an intriguing nonanalytical
dependence of the flows on coupling strength in the limit of
weak couplings and vanishing temperatures.
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