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Electrostatic stability of insulating surfaces: Theory and applications
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Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, ES-08193 Bellaterra, Spain
(Received 8 August 2011; revised manuscript received 17 October 2011; published 16 November 2011)

We analyze the electrostatic stability of insulating surfaces in the framework of the bulk modern theory
of polarization. We show that heuristic arguments based on a fully ionic limit find formal justification at the
microscopic level, even in solids where the bonding has a mixed ionic and covalent character. Based on these
arguments, we propose simple criteria to construct arbitrary nonpolar terminations of a given bulk crystal. We
illustrate our ideas by performing model calculations of several LaAlO3 and SrTiO3 surfaces. We find in the case
of ideal LaAlO3 surfaces that cleavage along a higher-index (01n) direction is energetically favorable compared to
the polar (100) orientation. In the presence of external adsorbates or defects, the picture can change dramatically,
as we demonstrate in the case of H2O/LaAlO3(100).
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I. INTRODUCTION

A uniformly charged plane separating two semi-infinite
regions of space yields a divergent electrostatic energy; for this
reason, polar surfaces or interfaces can not exist.1 Yet, thanks
to recent progress in epitaxial growth techniques, nominally
polar terminations of insulating crystals are now routinely
prepared and characterized within well-controlled experi-
mental conditions.2,3 This is possible because, in practice,
there are several mechanisms available for a polar surface to
neutralize the problematic excess charge, and possibly become
thermodynamically stable. These include adsorption of foreign
gas-phase species, changes in the surface stoichiometry, ionic
and/or electronic reconstructions, or local metallization via
accumulation of intrinsic free carriers; each of the above
can, in principle, prevent the “polar catastrophe” by restoring
the correct charge balance at the surface. Understanding and
controlling these compensation mechanisms is a subject of
great importance for many areas of fundamental science and
technology, ranging from catalysis, gas sensing and energy
applications,4–6 to nanoelectronics.7–10 Central to rationalizing
all these phenomena is the intimate relationship between
surface charge and bulk polarization in crystalline insulators,
which was formally established by Vanderbilt and King-Smith
in 1993.11

From the point of view of the theoretical analysis, it is
crucial to establish an unambiguous criterion to classify a
given surface as “polar compensated” (i.e., an originally polar
surface that was neutralized via one of the aforementioned
mechanisms) or intrinsically nonpolar.1 This is not just a matter
of nomenclature, but has very concrete practical relevance:
nonpolar terminations generally tend to be more stable, as
extrinsic (i.e., not originated from the primitive building blocks
of the insulating bulk crystal) sources of compensating charge
may have a high energy cost. Furthermore, if a given surface
is polar, one needs to know precisely how much external
charge is needed to neutralize it; this greatly facilitates the
structural determination by restricting the number of possible
candidate geometries. We shall see in the following that, while
the energetics is a genuine surface property, an exact answer to
the latter question can be given already at the bulk level. Many
authors have already addressed this issue in the past; we shall

briefly mention hereafter the approaches that are most directly
relevant to our work.

Tasker12 modeled a given ionic crystal as a lattice of
point charges, corresponding to the nominal valence of the
ions. Based on an abrupt truncation of this lattice, a given
surface is then classified as polar or nonpolar, depending
on the behavior of the electrostatic energy. In particular, in
the former (polar) case, the bulk repeated unit cell carries a
finite dipole moment; this produces a diverging electrostatic
potential unless compensated by an equal and opposite external
surface charge density. This model, despite its simplicity,
turned out to be surprisingly effective, and was able to correctly
predict, at least at the qualitative level, the polar or nonpolar
nature of the vast majority of insulating surfaces. However,
at the quantitative level, this model has clear limitations.
Many oxides and semiconductors display a marked covalent
character, and the bulk polarization departs significantly from
the value that can be inferred from atomic positions and
nominal valence charges; hence the need for a more accurate
treatment.

To address these issues, and adopt a more realistic de-
scription of the charge density of the solid, Goniakowski
et al.1 proposed a different criterion for classifying surfaces
as polar or nonpolar. At the heart of the strategy of Ref. 1 is
the concept of “dipole-free” unit cell. Given a certain plane
orientation, one can demonstrate that it is always possible
to choose a dipole-free repeated unit along the normal to
that plane; then, the remainder charge that is left at the
surface (once the bulk units have been removed) determines
the polar or nonpolar character of the termination. This
criterion, however, is not free from ambiguities (see Sec. II G 2
for a detailed discussion). Also, identifying the dipole-free
unit cell might be cumbersome in the case of higher-index
surfaces, where the structural complexity of the larger cell
complicates this type of analysis. Finally, the intuitive appeal
of Tasker’s model is apparently lost in the strategy of Ref. 1:
one needs to look at the ground-state charge density (e.g., as
provided by a first-principles calculation) before drawing a
conclusion.

There are two further issues that are common to both
methods. First, it is universally agreed that surface polarity
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is a property of the actual lattice termination. This means
that, for a given material and surface-plane orientation, there
might be polar and nonpolar terminations, depending on
the surface stoichiometry. However, there is no established
recipe to unambiguously decide, given a compound crystal
and a surface orientation, whether a stoichiometric 1 × 1
nonpolar termination is allowed at all. Furthermore, it is
not clear how to construct, in general, a nonpolar candidate
structure without relying on a heuristic counting of the
layer charges. Second, it was correctly recognized by both
Tasker and Goniakowski that the issue of surface polarity
is directly related to the bulk polarization of the material.
However, neither model traces a formal link to the modern
theory of polarization in periodic insulators,13,14 where the
macroscopic P is a multivalued vector field, written in
terms of the phases of the wave functions. Only the total
charge density (modulus of the wave functions) is considered
in the model of Ref. 1, while explicit electronic orbitals
are not addressed by Tasker’s approach. Recent theoretical
works have indeed highlighted the importance of the formal
Berry-phase polarization in discussing polarity at surfaces5

and interfaces,15 but a general formulation of the problem,
based on the formalism established in Ref. 11, is still
missing.

Here, we show that a Wannier-function representation16,17

together with the “surface theorem” of Ref. 11 provide a very
natural framework for addressing the above issues. Wannier
functions were already shown to be very useful tools, in
layered superlattices,18,19 for partitioning the polarization of
a crystal into the contribution of individual charge-neutral
units. Most importantly, Wannier functions are intimately
linked to the modern theory of polarization in solids,20 and
therefore appear to be ideally suited to discussing the issue
of surface polarity, where the basic question concerns the
existence of a nonzero component of P perpendicular to the
surface plane. We shall provide, based on this description,
precise criteria to establish whether truncating a bulk crys-
tal along a given crystallographic orientation can yield a
nonpolar surface. We shall demonstrate that answering this
question involves only an analysis of the bulk, and that our
scheme naturally leads to candidate structures that can be
used as a starting point for the subsequent determination
of the thermodynamic ground state. To demonstrate our
arguments, we focus on the surfaces of LaAlO3 (LAO) and
SrTiO3 (STO), two prototypical perovskite materials that have
been at the center of the attention in the past few years
as their polar (100) interface exhibits numerous peculiar
properties.

This work is organized as follows. In Sec. II, we introduce
our definition of polar surface and its formal relationship to
the theory of bulk polarization; we also establish a direct link
to Tasker’s model and compare it to the “dipole-free” cell
approach. In Sec. III, we apply this formalism to a variety of
systems, including nonpolar LaAlO3(01n) and SrTiO3(111)
surfaces, and discuss electronic and ionic compensation
mechanisms of polar LaAlO3(100). In Sec. IV, we briefly
address some related topics, including the case of ferroelectric
surfaces and possible extensions to covalent semiconductors.
Finally, in Sec. V, we present a brief summary and the
conclusions.

II. THEORY

A. Definition of polar surface

In full generality, for the surface of a crystalline insulator
to be electrostatically stable, it must have a vanishing density
of physical surface charge σsurf = 0. In order to introduce the
notion of surface polarity, it is useful to separate σsurf into two
distinct contributions and rewrite the stability condition as

σext + Pbulk · n̂ = 0. (1)

Here, Pbulk is the bulk polarization, n̂ is the normal to the
surface plane, and σext is a surface density of “external”
compensating charges, which encompasses all contributions
that can not conveniently be described as “bulklike” in nature
(we include the latter in Pbulk). σext typically includes free
charges (e.g., in the form of a confined electron gas) and/or
bound charges (either in the form of surface adsorbates, vacan-
cies, nonstoichiometric reconstructions, or nonisoelectronic
substitutions).

We define a given surface as nonpolar if the stability
criterion [Eq. (1)] can be satisfied in the absence of external
charges σext, which implies

Pbulk · n̂ = 0. (2)

This equation, at first sight, looks inconsistent with the current
understanding of the surface polarity problem. It is now widely
accepted that the polar or nonpolar attribute is a property of
the termination, not only of the material and surface-plane
orientation, contrary to what Eq. (2) seems to suggest. We shall
see in the following section that the choice of the termination
is only apparently absent from Eq. (2). It is implicitly included
through the intrinsically multivalued nature of Pbulk.13,14

B. Bulk polarization

1. As a Berry phase

We consider a crystalline insulator described by three
primitive translation vectors a1,...,3 and a basis of N atoms
located at positions Rα , with α = 1, . . . ,N . The “formal”20

bulk polarization is usually defined as

Pbulk = 1

�

(
N∑

α=1

RαZα − 2e

3∑
i=1

φ
(i)
el ai

2π

)
. (3)

Here, Zα is the charge of the ionic core α, e is the (positive)
electron charge, and φ

(i)
el is the Berry phase13,14 along the

reciprocal-space vector i; for simplicity, we assume spin
pairing, hence the factor of 2 in the electronic contribution.

It is important to note that Pbulk, as defined in Eq. (3), is only
defined modulo a “quantum of polarization”; in other words,
it is a multivalued function of the electronic and structural
degrees of freedom. This indeterminacy concerns both the
ionic and the electronic parts in Eq. (3). On one hand, one
has the freedom to choose any of the periodically repeated
images of each atomic species, and thus change Rα by an
arbitrary translation vector of the type �R = n1a1 + n2a2 +
n3a3. On the other hand, φ

(i)
el are phases of complex numbers

and, therefore, only defined modulo 2π .
In the following sections, we shall use the equivalent

formulation of Pbulk in terms of Wannier functions to illustrate
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the relationship between the multivaluedness of Pbulk and the
termination of the crystal lattice.

2. From the Wannier functions

We shall explicitly assume, from now on, a single-particle
picture, in terms of a Kohn-Sham set of orbitals, and a conven-
tional (as opposed to topological) insulating state. Within these
assumptions, it is possible to express the electronic ground
state of the bulk solid in terms of a set of maximally localized
Wannier functions,16 which are exponentially localized in
direct space.21 Based on this representation, Eq. (3) can be
rewritten as

Pbulk = 1

�

(
N∑

α=1

RαZα − 2e

Nel/2∑
j=1

〈r〉j
)

, (4)

where Nel is the total number of electrons in the primitive
cell, and 〈r〉j is the location of the center of the j th Wannier
function.

Alternatively, we can think in terms of a charge-density
distribution that consists in the basis of atomic point charges
together with the Wannier densities

ρcell(r) =
N∑

α=1

Zαδ(r − Rα) − 2e

Nel/2∑
j=1

|wj (r)|2, (5)

where wj (r) is the j th Wannier function of the primitive cell.
By construction, the sum of all the periodic images of ρcell

“tiles” the total charge density of the extended solid. Then,
by combining Eqs. (4) and (5), one immediately obtains the
intuitive connection to the Clausius-Mossotti formula

Pbulk = d
�

, (6)

where d is the dipole moment of ρcell.
This formulation provides a transparent way to partition

the total charge density into individual primitive units, the
dipole moment of which correctly yields the formal value of
Pbulk. In doing so, the phase indeterminacy of the electronic
contribution to the polarization discussed in the previous
section has been reduced to a lattice indeterminacy, in all
respects analogous to that characterizing the ionic contri-
bution. In other words, all the complications related to the
quantum-mechanical nature of the electrons have been mapped
into a system of classical point charges, where the atoms and
the electrons are formally treated on the same footing. In the
following section, we discuss how this Wannier representation
can be further partitioned into smaller units that retain the
chemical information about the formal oxidation state of each
ion, which is central to the notion of “polar surface.”

C. Formal ionic charges

The location of the Wannier functions generally reflects the
bonding properties of the material: In ionic solids, they cluster
around the atoms, while in covalent materials, they tend to
occupy the bond centers. We shall assume that the solid has
at least a certain degree of ionic character, so it is possible
to “assign” each Wannier function to a given atom without
ambiguities;22 this is certainly true in most known oxide
materials. (With some caution, the ideas developed here can

be conveniently adapted to any crystalline insulator; we shall
briefly discuss the example of purely covalent semiconductors
in Sec. IV.) We then combine each ion α with the Wannier
orbitals j that “belong” to it and define a set of compound
charge distributions that we call “Wannier ions” (WI):

ρ
(α)
WI (r) = Zαδ(r) − 2e

∑
j∈α

|wj (r + Rα)|2. (7)

(We operated a translation so that the nucleus sits in the
origin.) As the Wannier-function locations usually agree
remarkably well with chemical intuition, each of these N

charge distributions will carry a monopole Qα corresponding
to the “nominal” charge of the ion (e.g., −2e for O, +2e

for Sr, +4e for Ti). In addition to their net charge, the WI
are nonspherical and generally carry nonzero dipole moments
dα . (Higher multipoles are also present, but are not directly
relevant for the present discussion.) ρcell(r) can now be
rewritten in terms of the WI densities

ρcell(r) =
∑

α

ρ
(α)
WI (r − Rα), (8)

which is equivalent to Eq. (5) except that here we use
precautions to keep the basic WI units intact. It follows that
the dipole moment of ρcell(r) can be written in terms of two
contributions

d = dPC + dWI. (9)

The first term is the dipole moment of a system of point charges
located at positions Rα ,

dPC =
∑

α

RαQα. (10)

The second term is the sum of the individual dipole moments
of the WI,

dWI =
∑

α

dα. (11)

It is possible to show that dWI is a single-valued, gauge-
invariant quantity; this number contains all the nontrivial
electronic contributions to the polarization that are due to the
deformation of the ionic orbitals in the crystalline environment.
The gauge invariance of dWI might be surprising at first
sight, as the individual dipole moments dα are manifestly
gauge dependent, i.e., they depend on the specific algorithm
used to localize the Wannier functions. This arbitrariness
cancels out when all dα are summed up as long as the
assignment of each Wannier function to a specific lattice site
remains unambiguous. This is equivalent to stating that a given
choice of Rα uniquely determines the branch choice of the
electronic polarization, which is a reasonable assumption in
ionic materials where the nature of the valence wave function
has typically a marked atomic character.

With this new decomposition of d, we have overcome
an important drawback of Eqs. (4) and (3): In the latter
two equations, the decomposition of Pbulk into ionic and
electronic contributions is physically meaningless; only the
sum of the two terms is well defined.23 Here, both dPC and
dWI are formally meaningful objects. All the indeterminacy
in the definition of d has been recast into the term dPC,
which has an intuitive interpretation as the dipole moment
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of a system of classical ions, each of them carrying their
formal valence charge. The term that contains the quantum-
mechanical information about the electronic polarization
effects is dWI, which is a single-valued quantity; this has a
simple physical interpretation as the total dipole moment of
the electronic clouds of the WI, and directly relates to what
in the ferroelectrics community is known as the “anomalous”
contribution to the dynamical charge tensor.24

Before closing this part, it is useful to point out a
direct relationship between our formalism and the “layer
polarizations” (LP) pl , introduced in Refs. 18 and 19. If one is
interested in layered perovskites with stacking axis along the
(001) direction, it is useful to consider a decomposition of the
charge density of the ABO3 cell into individual AO and BO2

layers. In the framework of this work, this implies grouping
together the WI that belong to a given oxide layer. In particular,
the total charge density of each layer l can be then written as
a sum of all WI densities that belong to layer l:

ρl(r) =
∑
α∈l

ρ
(α)
WI (r − Rα). (12)

In II-IV perovskites, the layers are formally charge neutral.18,19

ρl(r) then carries a well-defined dipole moment, which is
directly related to the LP:

pl =
∫

ρ̄l(z)z dz = 1

S

∑
α∈l

(dα + RαQα) · ẑ. (13)

(The bar indicates in-plane averaging, and the integral is
carried out along the stacking axis; S is the cell cross section.)
We shall illustrate this layer-by-layer decomposition of the
total charge density with practical examples in Sec. II G 2.

D. Crystal termination as a bulk property

We shall illustrate in this section that the multivaluedness
of the term dPC can be formally related to the surface
termination of a semi-infinite crystal. This fact is not new
and was rigorously established within the modern theory
of polarization.11 Here, we discuss the implications of the
“interface theorem” for the electrostatics of polar surfaces.

Following Goniakowski et al.,1 we define a frozen bulk
termination as a surface that is obtained by piling up “bulk
unit cells” without any further electronic or ionic relaxation.
For the time being, we shall limit our discussion of surface
polarity to this (somewhat unrealistic) type of surface, which
we further specify hereafter; we shall make the link to more
realistic surface models in the next section. In contrast with
Goniakowski et al.,1 here we define our “bulk unit cell” as a
charge-density distribution that results from a superposition
of bulk WI, as in Eq. (8). Then, we construct the charge-
density distribution of the semi-infinite surface system as a
superposition of ρcell(r):

ρ(r) =
∑

R·n̂�0

ρcell(r − R), (14)

where R = n1a1 + n2a2 + n3a3 is a real-space translation
vector, and again n̂ is the normal to the surface plane. This
way of defining a frozen bulk termination has two crucial
advantages: (i) The choice of using the compound WI as our
“elementary particles” naturally ensures that every ion in the

surface system will have exactly the same formal oxidation
state as in the bulk. This is a central point in the definition of a
polar surface; if we allowed for fractional orbital occupations,
no surface would be polar. (ii) The choice of cleaving the
Bravais lattice rather than the crystal lattice is particularly
advantageous, as it naturally preserves the bulk stoichiometry
everywhere in the system (if we allowed for stoichiometry
changes or reconstructions, again the notion of polar surface
would be inconsistent).

It can be easily verified that several types of unreconstructed
surfaces can be generated by using Eq. (14) simply by changing
the definition of ρcell(r). In particular, we have the freedom to
construct ρcell(r) in many different ways simply by shifting
each WI in the basis by an arbitrary Bravais lattice vector �R.
Thus, the choice of the basis vectors ri uniquely determines the
surface structure, according to Eqs. (8) and (14). (Of course,
different choices of ri can lead to the same termination; the
“{ri} → termination” relationship is a many-to-one function.)
On the other hand, we have shown in the preceding section that
the choice of {ri} uniquely determines the value of Pbulk out of
the infinite possibilities allowed precisely by the arbitrariness
in the choice of the basis vectors. This formally establishes the
relationship between Pbulk and the termination of the lattice.11

By construction, the physical net charge that lies at the surface
of a frozen bulk termination as defined above is simply σsurf =
Pbulk · n̂, where Pbulk is the dipole moment (per unit volume) of
an appropriate bulk unit cell, i.e., one that tiles the semi-infinite
solid according to Eq. (14).

Within these assumptions, we define a frozen bulk termi-
nation polar if the bulk building block used to construct it has
a net dipole perpendicular to the surface plane; we define it
as nonpolar otherwise. The problem of determining whether
a surface is polar or not is, therefore, reduced to the problem
of calculating the dipole moment of a bulk unit cell made
of WI. This, in turn, can be directly related to the result of
a Berry-phase calculation in the bulk crystal, which can be
routinely performed with most publicly available codes. In
other words, the termination itself can be understood as a bulk
property.

E. Frozen and relaxed surfaces

It might appear artificial to consider surfaces that are
constructed by stacking electronic orbitals corresponding to
bulk Wannier functions. At a real surface, electronic states
always depart from their bulk counterparts because of the
peculiar chemical and electrostatic environment produced by
the truncation of the crystal. Furthermore, also the ionic
lattice undergoes nontrivial structural relaxations in the surface
layers, in response to the perturbation of the bonding network.
A central point of our formalism is that both (electronic and
ionic) surface relaxation effects are essentially irrelevant in
the context of deciding whether a given surface is polar or
nonpolar. As a matter of fact, either type of relaxation only
affects the surface dipole moment, and not the surface charge
density. Thus, genuine surface properties (e.g., the alignment
between the bulk bands and the vacuum levels, or the surface
energy) certainly depend on these mechanisms, but the polarity
(which depends only on the physical surface charge) will not
be affected. This formally establishes the surface polarity as a
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property that can be completely understood at the bulk level;
note that the termination dependence can also be understood
as a bulk property as specified in the preceding section. Then,
all mechanisms that alter the surface charge (either in the form
of a local composition change or as a modification of the
formal oxidation state of the surface ions) are unambiguously
understood as external compensation effects, and enter the
definition of σext.

F. Construction of arbitrary nonpolar terminations

So far, we have addressed the question of deciding whether a
given surface, of a certain orientation and termination, is polar
or nonpolar. One could wonder now for a given bulk compound
(i) whether nonpolar terminations can be constructed at all;
(ii) if yes, along which surface-plane orientation; finally, it
would be helpful to (iii) identify candidate nonpolar surface
structures based only on bulk information. In this section, we
shall illustrate how this is done within the present definition of
surface polarity.

Essentially, the question (i) boils down to finding all
possible values of Pbulk. This is, within the modern theory
of polarization, a periodic lattice of points. The difference
between two arbitrary values of P is a multiple of a real-space
primitive translation vector

P′
bulk − Pbulk = Q0

�
(ia1 + ja2 + ka3). (15)

Here, Q0 = ne is an integer n times the electron charge e. n,
which determines the resolution of the Pbulk mesh, depends
on the convention of how the Wannier functions and the ion
cores are grouped together. In particular, the constraint adopted
here of assigning each Wannier function to a specific ionic
site generally restricts the lattice of possible values of Pbulk

to a subset of those allowed by Eqs. (4) and (3). This can
be understood by observing that the new elementary building
blocks of the lattice are the “compound objects” WI rather
than single electrons or ions.

Answering question (ii) consists in finding the intersections
between the infinite lattice of Pbulk values and a given surface
plane, which is a straightforward geometrical problem.

Answering question (iii) then is easy by recalling the direct
relationship between a given value of Pbulk and the dipole
moment of a well-defined bulk unit. More specifically, once
a value (or a subset of values) of Pbulk is found for which
Pbulk · n̂ = 0, models of the nonpolar surface can be readily
built by stacking [using Eq. (14)] bulk unit cells that correspond
to those same values of Pbulk. We shall present several practical
examples of this strategy in Sec. III.

G. Relationship to previous approaches

1. Tasker model

Equation (9) constitutes the rigorous link between Tasker’s
model12 and the modern theory of polarization in periodic
insulators. Within our formalism, the total excess charge at a
frozen bulk termination can be exactly written as

σsurf = Pbulk · n̂ = (
∑

α RαQα + dWI) · n̂

�
, (16)

where the sum is extended over all atoms in the semi-infinite
crystal. The only difference between Tasker’s model and
Eq. (16) is the additional, purely electronic contribution dWI,
which comes from the polarization of the Wannier ions in
the crystalline environment. This contribution vanishes in all
solids that are characterized by a center of symmetry; in these
materials, the discussion of the surface polarity problem in
terms of nominal charges is therefore rigorous and exact.
Even in materials where dWI �= 0, neglecting this term is
usually not crucial to assessing the polar or nonpolar nature
of a given surface. However, considering the WI contribution
is essential for a quantitative estimation of σ (which is the
excess charge that needs to be compensated); this is especially
true in ferroelectric materials, which generally have a large
anomalous contribution to P. Thus, our formalism provides
a formal justification to Tasker’s model and completes it
by introducing an additional well-defined electronic dipolar
contribution dWI.

In addition to this, our strategy has important practical
advantages. Tasker’s approach involves a direct calculation of
Eq. (16) by means of an infinite lattice sum, the convergence of
which is ensured by using Ewald summation techniques. This
procedure might be cumbersome in practice and it requires
a specialized computer code to perform the calculation. Our
strategy greatly simplifies the problem by reducing it to the
calculation of the dipole moment of a small set of point
charges. This can be done with paper and pencil in a few
minutes for a surface of arbitrary orientation, provided that
one knows dWI. This vanishes in many cases of practical
interest; whenever it does not vanish, only a single bulk
Berry-phase calculation is needed to evaluate this contribution.
Moreover, our strategy allows one to easily answer a number of
physical questions that were difficult to address within Tasker’s
approach, e.g., those discussed in the preceding section.

2. Dipole-free unit cell and “weak polarity”

In order to fully appreciate the advantages of our formalism,
it is useful to compare it, in a practical case, with the alternative
notion of the “dipole-free unit cell” proposed by Goniakowski
et al.1 For illustrative purposes, we consider the (100) surfaces
of two prototypical perovskite materials LaAlO3 and SrTiO3

in their cubic high-symmetry phase.25

In Fig. 1, we plot, along the (001)-oriented z axis, the
calculated xy-planar average of the total valence-charge
density of the periodic bulk materials. (The left panels refer to
LaAlO3, the right ones to SrTiO3.) The upper panels show a
possible decomposition of the electronic charge that leads to
a dipole-free unit cell, which we construct as follows. First,
we count the total charge of the ionic cores of the individual
oxide layers. With the pseudopotentials used in this work,
these are LaO(+17), AlO2(+15), SrO(+16), and TiO2(+24).
Next, we decompose the total valence charge by cutting it
with abrupt (001) planes located in the interstitial regions.
The location of those planes is chosen so as to (i) respect the
inversion symmetry of the crystal, and to (ii) assign to each
layer an electron density that exactly cancels the positive core
charge of that layer. The resulting electron charge assigned
to the AO layers is highlighted with a dark shading (light
for the BO2 layers). By construction, the “unit cell” obtained
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FIG. 1. (Color online) (a), (b) Decomposition of the total valence-charge density according to the “dipole-free unit-cell” picture. Light and
dark shadings indicate the portions that belong to the BO2 and AO layers, respectively. We impose both distributions to be symmetric around
the respective atomic-layer locations and to contain a number of electrons equal to the total valence charge of the ions. The unit cell indicated
by the arrow and the dashed lines have zero dipole moment by construction in both LaAlO3 (a) and SrTiO3 (b). (c), (d) Decomposition of the
total valence charge based on maximally localized Wannier functions. The total Wannier densities of the AO and BO2 layers are shown by
thick solid and thick dashed curves, respectively. The total charge density (obtained by the superposition of the periodically repeated Wannier
densities) is shown as a thin solid line.

by combining two adjacent layers (evidenced by the arrow
and dashed lines in the figure) has zero dipole moment in both
LaAlO3 and SrTiO3. Hence, this construction fails at detecting
any fundamental difference between LaAlO3 and SrTiO3: both
are predicted to have nonpolar (001) surfaces. Of course, this
prediction relies on a completely arbitrary partition of the total
electronic charge density. There are many other ways to do
it. For example, if one chooses a different location of the
cut planes (e.g., at the midpoint distance between the atomic
planes), or yet a more sophisticated prescription (e.g., based on
the Bader analysis), one generally gets a nonvanishing layer
charge in both LaAlO3 and SrTiO3. From this perspective,
one would have to conclude that the (001) surfaces of both
materials are polar. The main point that we want to stress here
is that, if we base our analysis solely on the total electronic
density [as we have done in Figs. 1(a) and 1(b)], (i) the choice
between one partitioning scheme and the other is arbitrary;
(ii) any statement about the surface polarity inferred from
such a partitioning is ambiguous; and (iii) such an analysis
can not be linked in any ways to the bulk polarization
of the material (the latter can not be defined, even in
principle, in terms of the total charge density of a periodic
crystal14).

In Figs. 1(c) and 1(d), we demonstrate how the Wannier-
based decomposition of the valence density solves this

problem. The thin solid lines show, as above, the ground-state
electronic charge densities ρ̄(z) (again, the bar symbol on ρ

indicates that an in-plane averaging was performed). The total
Wannier densities of each layer, defined as ρ̄l in Eq. (12), are
shown as thick lines (solid for the AO layers, dashed for the
BO2 layers). Note that we show the electron density as positive,
and we omit the bare pseudopotential charges from the plots.
(These are a lattice of Dirac delta functions, centered at the
oxide-layer locations.) As the Wannier functions are discrete
objects, the total electronic charges are integer numbers.
Most importantly, the Wannier functions carry some crucial
information (that is absent in the total valence density) on how
the localized bound charges are organized in the insulating
state of each compound. It turns out that (summing up the
contributions from the cores) the LaO and AlO2 layers have
a total charge of +1 and −1, respectively, while the SrO
and TiO2 layers result charge neutral, in perfect agreement
with the naive assumption of perfect ionicity. Thus, the
Wannier decomposition correctly identifies LaAlO3(001) as
polar and SrTiO3 as nonpolar, in agreement with Tasker’s
classification.

To corroborate our arguments, a further consideration is
in order. One could be tempted to criticize our reasoning by
observing that Wannier functions are by no means uniquely
defined starting from a given set of Bloch orbitals. In Figs. 1(c)
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and 1(d), we have chosen a maximally localized16 representa-
tion, but there is nothing really fundamental behind this choice.
Is the identification of a surface as polar or nonpolar robust
against this arbitrariness? The answer is yes. The formal proof
of this statement was derived in 1993,11 several years before
the maximally localized Wannier functions were first intro-
duced. Our choice of a maximally localized representation is
motivated by its intuitive relationship to elementary chemical
concepts (e.g., formal valence), but the reader should keep in
mind that this is just a convenient way of expressing a result
that has solid mathematical grounds. In particular, the exact
value of the surface charge can be computed at the bulk level,
regardless of the degree of ionicity of the material.11

Before closing this section, it is worth commenting briefly
on the concept of “weakly polar” surface, which was intro-
duced by Goniakowski, Finocchi, and Noguera1 to account
for covalency effects at the ideal (100) terminations of
SrTiO3 and related materials. The authors of Ref. 1 use the
“dipole-free-cell” approach to claim that SrTiO3(100) is polar.
This conclusion apparently contrasts with the outcome of
first-principles calculations, which show a perfectly insulating
and stable surface. To overcome this difficulty, the authors
invoke bond-breaking effects, which would be sufficient to
compensate surface polarity in this case, hence, the classifica-
tion of SrTiO3(100) as weakly polar. While these ideas have
certainly some merit, they are again based on an analysis of the
total charge density alone, and suffer from the inconsistencies
and ambiguities that we described in the above paragraphs.
We stress that only a wave-function-based partition of the
electron charge provides the formal link to the modern theory
of polarization and allows for a rigorous treatment of the
surface polarity problem. By stacking the bulk primitive units
shown in Figs. 1(c) and 1(d), the distinction between the
polar LaAlO3(100) and the nonpolar SrTiO3(100) surface is
unambiguous and clear, without the need for intermediate
categories. Using Wannier functions might appear unnatural
and complicated at first sight, but eventually they really lead to
drastic simplifications and to an intuitive physical picture. In
particular, if one wants to recover the intuitive classical formula
P · n̂ = σ , there is simply no other way around.11 Therefore,
we caution against the use of concepts such as weak polarity or
covalent charges, as they thwart the applicability of this simple
and powerful result.

III. APPLICATION TO PEROVSKITE SURFACES

A. LaAlO3 and SrTiO3: Bulk properties

We now use two prototypical perovskite materials LaAlO3

and SrTiO3 to illustrate our strategy in practice. This choice of
materials is motivated by the recent discovery of a conducting
electron gas at their polar (100) interface.26 This has generated
a lively excitement in the research community and a renewed
interest in the theoretical foundations of the surface and
interface polarity problem.15,27,28

We shall address questions (i)–(iii) raised in Sec. II F. For
simplicity, in both materials, we consider only surfaces of the
type (0ij ). This means that only the projection of Pbulk on the
yz plane is relevant, and our procedure can be conveniently
represented on two-dimensional (2D) graphs. Our strategy is
general, and this choice was made only to simplify the notation

and the graphical representations. We also consider both bulk
compounds within their high-symmetry cubic phase. (Both
materials are characterized by zone-boundary distortions,
related to rotations and tilts of the oxygen octahedral network;
however, as these distortions are nonpolar in nature, they are
irrelevant for the present discussion.)

To start with [question (i)], we need to find the lattice of
“allowed” values of Pbulk in either material. Recalling that
both compounds are characterized by a center of symmetry,
it follows that dWI = 0, and Pbulk is exactly determined by
the formal valence charges of the participating ions, all sitting
in their high-symmetry lattice sites. Now, the formal ionic
charges are La(+3), Al(+3) in LaAlO3, Sr(+2), Ti(+4) in
SrTiO3; oxygens in either compound have a formal charge of
(−2). In Fig. 2, we show how different choices of the crystal
basis of five atoms lead to different dipole moments per unit
cell and, hence, to a different formal polarization. If we could
take all (infinite) combinations, we would obtain an infinite
lattice of points, which is isomorphic with the real-space
Bravais lattice of the cubic crystal. The 2D projection of
the lattice of Pbulk in either compound is shown in Fig. 3.
Even if the two compounds are isostructural (recall that we
consider both LAO and STO in their cubic phase), there are
two important differences in their formal polarization lattice.
First, PSTO is centered in the origin, while PLAO is centered in
(1/2,1/2,1/2). Second, PSTO has a coarser mesh than PLAO:
the spacings are doubled because the constituent point charges
are all even in the former. Note that both Pbulk lattices are
centrosymmetric, consistent with the absence of a spontaneous
polarization in either material.20

To answer question (ii), we need to find all possible
intersections between a surface plane and the allowed values
of Pbulk; the projections of a few representative surface planes
are plotted in the left panel of Fig. 3. As it can be readily
appreciated from the diagram, the aforementioned qualitative
differences between the respective Pbulk lattices of STO and
LAO have important consequences on the electrostatics of

(−1/2,−1/2) (−5/2,−1/2) (1/2,−1/2)

(0,0)(0,0)

(−3/2,−1/2)

(0,0)(−2,0)

(c)(b)(a) (d)

FIG. 2. (Color online) Relationship between Pbulk and the dipole
moment of the bulk unit cell. Large red (dark gray) circles represent O
ions, with charge QO = −2e. Medium-size gold (light gray) circles
represent the A-site cation, either Sr (QSr = +2e) or La (QLa =
+2e); small green (light gray) circles superimposed to O are the
B-site cation, either Ti (QTi = +4e) or Al (QAl = +3e). The sketches
(a)–(d) represent the projection of the atomic positions onto a (100)-
oriented plane. On the top and the bottom are shown the values of
Pbulk (in units of e/a2

0 , where a0 is the lattice parameter in either
material), resulting in LaAlO3 and SrTiO3, respectively, from each
cell arrangement.
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(103)

(102)

(101)
_

_

_

FIG. 3. (Color online) Lattices of allowed values of Pbulk in
LaAlO3 (left) and SrTiO3 (right). In the left panel, we show four
possible surface-plane orientations. The polar orientations (dashed
red lines) have no intersections with the Pbulk lattice. The contrary is
true for the nonpolar orientation (solid black lines).

the surfaces. In particular, in STO, the origin belongs to
the allowed values of PSTO, and any surface plane intersects
the origin by construction; therefore, a nonpolar surface of
any possible orientation can be readily constructed [we shall
illustrate the case of STO(111) in Sec. III C]. Conversely, in
LAO, only specific plane orientations intersect the PLAO lattice
[note that the (100) orientation is correctly classified as polar].
In the following section, we shall consider a subset of these
(infinite) possibilities, i.e., the vicinal (01n) surfaces, where
n is an arbitrary odd integer number. We shall focus on the
lowest-index cases with n = 1,3,5.

B. Vicinal LaAlO3 surfaces

We first construct preliminary models for the (01n) surfaces
with n = 1,3,5. These are obtained by using slab geometries
within the supercell method. First, we choose a unit cell with
the appropriate translational periodicity in plane, and enough
room along the out-of-plane direction to accommodate both
the slab and a vacuum region (slab and vacuum thicknesses are
treated as convergence parameters). Second, we tile the slab
region with repeated copies of a well-defined primitive basis of
atoms, which is chosen in a such a way that its dipole moment
lies exactly parallel to the surface plane. (This implies that the
choice of the basis depends on the surface orientation.) This
procedure leads to the slab models sketched in Fig. 4.

The first observation is that all these surface models
[except maybe the (011) case] present alternating LaO-type
and AlO2-type terraces, and these terraces tend to grow wider
and wider for increasing n. Note that [again, with the only
exception of the (011) case] the construction described above
produces, in fact, two inequivalent surface structures for each
orientation. In other words, the models of Fig. 4 do not enjoy
inversion symmetry. We shall refer to these two surfaces as
“type A” and “type B”, where type A presents LaO-type step
edges and type B has AlO-type edges. Remarkably, it is easy to
realize [see Fig. 4 (015)] that one can change from A type to B
type simply by displacing an oxygen atom from one step edge
to the neighboring one. This way, starting from the “mixed”
AB-type slabs in Fig. 4, one can readily construct pure AA
or BB slabs. One can verify that the resulting AA and BB
models do enjoy inversion symmetry. Since going from A to B

(011)

A

B

(013)

A

B

(015)

FIG. 4. (Color online) Slab models for the vicinal LAO surfaces
described in the text. Top: (011). Center: (013). Bottom: (015). Color
code for atoms is the same as in Fig. 2. Thick dashed lines indicate
the supercells used in the simulations. Thin lines are guides to the
eye. Shaded areas highlight the basic primitive unit that was used to
construct the slab model. Thick arrows indicate the dipole moment
of the basic unit, parallel to the surface plane. By displacing a surface
O atom to a neighboring step edge, one can change the surface type
from “A” to “B” (curved gray arrow in the bottom panel) and, hence,
obtain pure AA or BB centrosymmetric slabs.

preserves the bulk stoichiometry, this allows for a rigorous
definition of the surface energy for all individual surface
structures.
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TABLE I. Calculated energy per area for the LAO surfaces
described in the text. An ideal cleavage of the crystal is assumed
to leave a pair of A and B surfaces. All values are in J/m2.

Surface type Surface orientation

(011) (013) (015)

A 1.93 2.23 2.15
B 1.93 1.85 1.83

Cleavage 3.86 4.08 3.98

In practice, in the simulations we use a slab thickness of
approximately 4–5 LAO cells in each case, which is more
than sufficient to obtain a well-converged value of the surface
energy. The surface energy is defined as

Esurf = 1

2S
(Eslab − NEbulk), (17)

where Eslab and Ebulk are the relaxed total energy of the slab
supercell and of LAO bulk, N is the total number of LAO units
in the slab model, and S = a2

0

√
1 + n2 is the surface area in

each case (a0 is the lattice parameter of cubic LAO; the factor
of 2 takes into account the fact that a slab has two surfaces).
In Table I, we report the results. Comparing these values with
previous literature studies is difficult, as studies of vicinal
perovskite surfaces are scarce. Only the lowest-index (011)
surface type has been investigated to some extent, although
we were not able to find data specific to LAO. Concerning
other perovskite materials, Eglitis and Vanderbilt29 reported
an energy of 1.52 J/m2 for an isostructural O-terminated
SrTiO3(011) surface structure. The value we obtain for LAO,
1.93 J/m2, is somewhat larger but otherwise of comparable
magnitude. Note that in the study of Ref. 29, a different
(hybrid) functional was used: local density approximation
(LDA) might well overestimate surface-energy values due to
the well-known overbinding issues.

It is interesting to note that, in the case of B-type surfaces,
the energy decreases slightly for increasing index n. We ascribe
this behavior to the lower steps-to-terraces ratio in the (013)
and (015) surfaces (undercoordinated step sites are likely to
be less favorable). We consider it unlikely, however, that this
energy be further reduced for n > 5. Increasing n would lead
to larger and larger terraces that are locally charged [either
of the LaO(+) or AlO2(−) type], and the electrostatic cost
(roughly linear in n) would eventually dominate over the
step energy (proportional to 1/n) in a way that bears many
analogies to Kittel’s theory of domain walls. Still, the increased
stability of the vicinal (013) and (015) surfaces [compared to
the (011) orientation] suggests that these geometries could,
in principle, be fabricated under appropriate experimental
conditions. The simultaneous presence AO and BO2 domains
appears promising for applications, e.g., in selective self-
assembly of functional nanostructures, as it was recently
shown in the case of SrTiO3.30

The above considerations on the energetics have not an-
swered an important question yet: How can we verify that these
surfaces are indeed nonpolar, consistent with our predictions?
A useful indication comes from the density of states. If a
surface is polar, then there is a need for compensation via
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FIG. 5. (Color online) Total density of states of the LAO (013)
slab models. Surface A (black curve), B (red dashed curve), and bulk
(shaded area) are shown.

additional charge carriers (either electron or holes) that deplete
or populate the energy bands of the crystal in proximity of the
problematic termination. This typically results in a metallic
surface. Conversely, if the surface is nonpolar, the bulk-derived
Wannier functions alone are sufficient to ensure electrostatic
stability, and therefore the system can remain insulating. In
Fig. 5, we show the total density of states extracted from a
(013) (A- or B-type) slab model, compared with the bulk LAO
density of states. In all cases, there is a wide gap separating the
unoccupied from the occupied states. This fact, together with
the inversion symmetry and perfect bulk stoichiometry of the
slabs, directly demonstrates that the surfaces are nonpolar, and
that every atom contributes with a total number of electrons
that exactly correspond to its formal ionic valence. Similar
considerations apply to the (011) and (015) surface models
(not shown).

It is important to stress that, contrary to a common
misconception, all these surfaces are perfectly stoichiometric
by construction, and they are nonreconstructed as they have the
highest possible translational symmetry that is allowed by each
plane orientation. It is often assumed that the only “legitimate”
structures that can be named frozen bulk terminations are those
that are obtained upon cleavage of the crystal lattice, i.e.,
preserving the integrity of the bulklike atomic planes. This
is, however, just a convention that has nothing fundamental
to it. We believe it is more practical to truncate the Bravais
lattice instead. This automatically preserves stoichiometry
and translational symmetry, and dramatically simplifies the
description of surface electrostatics.

As a final remark, it is fairly easy to realize that all the
(01n) surface models presented in this section are nonpolar for
any nonferroelectric perovskite material (or for a ferroelectric
one in its high-temperature symmetric phase). This can be
simply understood by observing that, by replacing the cations
in each bulk primitive basis (see Fig. 4) with those of a different
charge family (i.e., I-V or II-IV), the dipole moment changes
its magnitude but not its direction. Therefore, many of the
considerations made here in relationship to the specific LAO
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FIG. 6. (Color online) Primitive bulk SrTiO3 unit cells for the
model A (left) and B (right) (111) slabs. Sr atoms (large green circle)
lie at the corners of the cube; O atoms (small red circles) lie at the
face-centered sites; Ti atoms lie at the center of the cube. Both choices
of the primitive unit have zero dipole moment along any direction.

case are actually completely general, and apply to all cubic
perovskite compounds.

C. Nonpolar SrTiO3(111) surfaces

To further illustrate our arguments, we move now to the case
of SrTiO3. According to our definition of polar surface, and by
observing that the simplest choice of the SrTiO3 bulk unit has
zero dipole moment, one would conclude that, in SrTiO3, any
surface orientation is “nonpolar.” To illustrate this point, we
shall consider here the (111) surface, which has been classified
as polar by most authors. Note that this surface is indeed polar
if one insists on terminating the crystal lattice with either a
Ti or a SrO3 layer. Our prescription of cleaving the Bravais
lattice and tiling it with well-defined bulklike formula units
is less restrictive and allows for nonpolar terminations, as we
shall see in the following.

We build two inequivalent stoichiometric slab models
(that we call A and B) by stacking the primitive building
blocks schematically shown in Fig. 6. It is easy to verify
that both choices of the primitive cell have zero dipole
moment. (Again, to compute the dipole moment, we use the
formal charges. This is substantiated by the Wannier-based
decomposition described in Sec. II.) The primitive translation
vectors of the supercell are (in units of the bulk equilib-
rium lattice parameter a0 = 7.275 a.u.) a1 = (

√
1/2,

√
3/2,0),

a2 = (
√

1/2, − √
3/2,0), and a3 = (0,0,10); the out-of-plane

spacing a3 was chosen in order to include a sufficiently thick
vacuum region separating the repeated images of the 10-layer
slabs. As the slabs do not enjoy inversion symmetry (there
are a total of four inequivalent surfaces in our simulations),
we apply a dipole correction in the vacuum layer to avoid
unphysical macroscopic fields in the bulk region of the SrTiO3

films. We use a regular (8 × 8 × 1) 
-centered k-point mesh
to sample the surface Brillouin zone, and we fully relax our
structures within the symmetry constraints allowed by the
surface composition. Note that the A-type slab preserves the
point group of the bulk (111) orientation, while the B-type slab
has a lower symmetry due to the presence of an incomplete
oxygen plane on one side.

In Fig. 7, we show the relaxed structures of the two slab
models described above (the primitive unit of the supercell
was repeated three times in both in-plane directions to obtain

A1

A2

B1

B2

FIG. 7. (Color online) Relaxed geometries of the two (111) slabs
described in the text. The left structure corresponds to model A and
the right one to model B.

a clearer view of the structure). Henceforth, we shall indicate
A1, A2, B1, and B2 as the four inequivalent surfaces, where
A and B refer to the specific slab model, and 1/2 refer to the
top/bottom surface, respectively. A1 has a TiO3-type termina-
tion (i.e., an ideal Ti-type surface where the Sr atom has been
removed from the topmost SrO3 layer) and, correspondingly,
A2 contains a Sr-type termination, where undercoordinated
Sr atoms protrude from the underlying oxygen group. B1
has a supplementary O atom accommodated on top of an
ideal Ti-terminated surface, and this atom forms a tetrahedron
surrounding the topmost Ti atom. B2 has an O vacancy in the
terminating SrO2 layer; model B can be therefore obtained
from model A simply by displacing a neutral SrO unit from
the 2 (bottom) to the 1 (top) surface. Most of these surfaces
were already considered in Ref. 31 and indicated as “small
unit-cell reconstructions” of SrTiO3(111). We note that surface
reconstructions are typically associated with a reduction in
the translational symmetry group, which is not the case for
any of these models. Therefore, we rather regard these as
primitive, stoichiometric bulk terminations. Whatever is the
nomenclature, the authors of Ref. 31 correctly recognized
the formal charge neutrality of these “valence-compensated”
terminations.

Similarly to the LaAlO3 case, we analyze the electronic
properties of these surface models to verify their insulating
character. We plot in Fig. 8 the local density of states (LDOS)
integrated on spheres of radius 3.0 bohr surrounding the Ti
atoms. In the main panels, we show the average Ti LDOS
in the middle of the slab (gray shaded areas), which we take
as our bulklike SrTiO3 reference curve. We also show the
LDOS corresponding to the outermost Ti atom at the top
(red dashed curve) and bottom (solid blue curve) surfaces.
At A1, the gap is smaller than in the bulk, as a narrow band
of Ti-derived unoccupied orbitals splits from the conduction
band. The band-gap narrowing is rather extreme at A2, where
a highly dispersive surface state makes the gap as small as
0.1 eV at the 
 point (presumably, this free-electron-like
state is originated from the s and p states of the protruding
Sr ions). To better illustrate this, we show a blowup of the
LDOS in the inset. Here, we also plot (thin black curve) the
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FIG. 8. (Color online) Local density of states (LDOS) on the Ti
atoms for the two slab models described in the text. The Ti atom
closest to top surface (type 1) corresponds to the red dashed curve;
that lying closest to the bottom (type 2) surface is indicated as a solid
blue curve. The average LDOS on the two central Ti atoms of either
slab is shown as a shaded gray area. Top panel: model A; the inset
shows a blowup of the spectrum in a neighborhood of the Fermi level
(the LDOS of the Sr atom closest to the bottom A2 surface is also
plotted as a thin solid curve). Bottom panel: model B; the inset shows
the atomiclike spectrum of the topmost O atom (solid red curve with
white shading), as compared with the bulklike spectrum of an O atom
lying far from the surfaces (dark areas). Note that in the A case (top
panel), we used a finer (16 × 16 × 1) k-point grid to compute the
LDOS in order to better describe the dispersive surface state at the
A2 termination.

LDOS of the outermost Sr atom, where the surface state has
its maximum weight. The nearly flat DOS (the wiggles are
caused by the finite k resolution) between 0 and 1.5–2 eV,
typical of a parabolic band in 2D, is clear. The B slab presents,
overall, an energy gap that is much closer to the bulk value;
this suggests that the system is electronically more stable
than in A. Both at B1 and B2, the gap reduction is caused
by valence-band-derived surface states; these are reminiscent
of the states that are found at some BO2-terminated (100)
perovskite surfaces. Conversely, no conduction-band-derived
states are present. Especially interesting are the sharp peaks
appearing at B1; these are derived from the atomiclike orbitals

of the outermost O atom. To illustrate this point, we plot in the
inset the LDOS on the terminating O, which lies at the vertex
of the surface tetrahedron surrounding Ti; for comparison, we
also show the LDOS of a bulklike oxygen far from the surfaces.
The 2s- and the 2p-derived features of the surface O appear
extremely sharp and atomiclike, in contrast with the substantial
broadening in the SrTiO3 bulk caused by band dispersion. A
tetrahedral coordination might look unusual for Ti, which tends
to adopt octahedral coordination in most (if not all) stable bulk
oxide phases. Nevertheless, at the SrTiO3 surface, analogous
tetrahedral units were recently shown both experimentally and
theoretically to be energetically favorable,2 even in the case
of the (011) orientation where there exist alternative (1 × 1)
structures with relatively low energy.29

Finally, we shall comment on the relative energy of these
structures. Unlike the (01n) models discussed in the preceding
section, here it is not possible to construct a stoichiometric and
symmetric slab; therefore, we can only calculate a cleavage
energy for A and B, i.e., Ecl. Resolving this value into
the contributions of the top and bottom terminations would
require further considerations about the chemical potential
of Sr, Ti, and O; this goes beyond the scope of this work.
We find Ecl(A) = 6.27 J/m2 and Ecl(B) = 3.94 J/m2. These
values are both larger than the previously reported cleavage
energies along the (100) or (011) directions. Especially, the
A model has a high energy cost, consistent with the “open”
nature of the low-coordinated surface sites and with the
relatively unfavorable electronic configuration discussed in
the preceding section. Model B, on the other hand, has a
cleavage energy that is significantly smaller and (on average)
reasonably close to typical (011) surface energies. Ecl(B) can
be directly compared to the values reported in Ref. 31, where
it appears to correspond to the sum of the surface energies of
models 3 and 4. The authors of Ref. 31 did not use LDA but
a variety of different density functionals, with values ranging
from 4.94 eV [Perdew-Burke-Ernzerhof (PBE)] to 6.41 eV
(hybrid TPSS)32 per surface cell. Our LDA value of 6.31 eV
per surface cell compares favorably with the highest value
reported there, consistent with the systematic tendency of LDA
toward overbinding.

It is interesting to compare our calculated Ecl(A) =
10.0 eV/cell to the energy associated with the “textbook”
cleavage, i.e., that leaving atomically flat, metallic, and polar
Ti/SrO3 terminations. Assuming that our LDA values are
comparable to the TPSSh results of Marks et al., we can
infer the Ti/SrO3 cleavage energy by summing up the TPSSh
surface energies of models 1 and 2 in the aforementioned
work; this yields a value of 12.3 eV/cell. As surprising as it
may sound, our nonpolar cleavage model A, with the severely
undercoordinated Sr atoms protruding from surface A2, is
still about 2 eV/cell lower in energy than the atomically
flat cleavage model. This fact highlights the importance of
achieving electrostatic stability from bulklike building blocks,
without invoking external compensation mechanisms (such as
hole or electron doping as in the case of Ti/SrO3).

D. Polarity compensation of LaAlO3(100)

So far, we restricted our analysis to ideal nonpolar surfaces,
i.e., systems where only bulklike building blocks are present.
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To complete our discussion, we now consider a prototypical
polar surface LaAlO3(100), and illustrate how our arguments
apply to the analysis of selected compensation mechanisms,
where we introduce extrinsic sources of compensating charge
σext.

1. Via metallic carriers

First, we consider the clean (1 × 1) LaO- and AlO2-
terminated (100) surfaces. Due to the built-in dipole of the
bulk unit cell that we must use to construct these terminations,
there is an excess charge of +0.5e and −0.5e per surface unit
cell, respectively. If we do not relax the translational symmetry,
the only possible compensation comes from metallic carriers,
either in the form of conduction-band electrons or valence
holes. By performing two separate calculations of symmet-
rically terminated 6.5-unit-cell-thick slabs, we indeed obtain
metallic surfaces. In Fig. 9, we plot the total density of states
for both slabs, where the Fermi level clearly crosses either the
valence band (AlO2 termination) or the conduction band (LaO
termination).

An interesting feature of the DOS of Figs. 9(a) and 9(c) is
that, in both cases, a clear gap persists in the spectrum. This
means that, in spite of the partial metallization, the conduction
and valence bands preserve their respective identities. This
observation implies that we can rigorously separate what we
consider “bound charges” (which are all of bulk origin here,
as we do not introduce extrinsic species in the supercell) from
“external compensating charge,” following the prescriptions of
Refs. 33 and 34. The former, which we take as the total charge
density of the (completely filled) valence-band manifold, are
implicitly included in the definition of Pbulk; the latter can be

-10 -5 0
Energy (eV)

D
O

S
 (

ar
b.

un
it

s)

L
aO

L
aO

L
aO

L
aO

0

1

2

E
le

ct
ro

n 
de

ns
it

y 
(1

0-3
 b

oh
r-3

)

-5 0 5
Energy (eV)

D
O

S
 (

ar
b.

un
it

s)

A
lO

2

A
lO

2

A
lO

2

A
lO

2-6

-4

-2

0

E
le

ct
ro

n 
de

ns
it

y 
(1

0-3
 b

oh
r-3

)

(a) (b)

(d)(c)

FIG. 9. (Color online) (a), (c): Total DOS of the (100) LaAlO3

slabs, highlighting the population of the states involved in the
compensation of the surface polarity (shaded area, indicated with
an arrow). (b), (d): Plane-averaged density of compensating charge,
related to the shaded portion of the DOS in (a) and (c). Top [(a) and (b)]
and bottom [(c) and (d)] panels refer to the LaO- and AlO2-terminated
slabs, respectively.

either a positive external density of valence-band holes (ext,h)
or a negative density of conduction-band electrons (ext,e):

ρext,e(z) =
∫ EF

Emidgap

ρ̃(E,z)dE, (18)

ρext,h(z) = −
∫ Emidgap

EF

ρ̃(E,z)dE. (19)

Here, ρ̃(E,z) is the planar-averaged and energy-smeared local
density of states defined in Ref. 33, and EF is the Fermi level.
The electronic states that contribute to the integrated charge
densities ρext,e and ρext,h are evidenced as shaded areas in the
DOS plot of Fig. 9. [Note that the DOS is the volume integral
of ρ̃(E,z).] In Figs. 9(b) and 9(d), we plot the compensating
surface densities ρext,e and ρext,h. Both appear localized to the
surface region, although they display a relatively slow decay
into bulk LaAlO3 and amount (within machine precision) to a
total of exactly plus or minus half an electron per side. This
demonstrates the full consistency [in the sense of Eq. (1)]
between the “external charge” defined in Eqs. (18) and (19)
and the prediction of excess bound charge coming from the
analysis of Pbulk. Note that, in the case of the LaO-terminated
slab, part of the charge spills out into the vacuum region. This
is a consequence of the vacuum level being very close to the
conduction-band edge. Conversely, only O(2p)-derived states
contribute to ρext,h. By combining the total energies of the
reference slabs and subtracting an appropriate number of bulk
reference units, we obtain a relaxed cleavage energy of 4.53 eV
per surface cell (5.13 J/m2). This is larger than the cleavage
energies we computed in Sec. III B for the primitive nonpolar
(01n) surface models.

2. Via external ionic charges

We shall now consider a different compensation mechanism
where, instead of metallic carriers, the surface acquires bound
charge via adsorption of external species. As a matter of fact,
this is of concrete relevance for the interpretation of a vast
number of physical phenomena. A real surface is always in
contact with an atmosphere where various gas-phase species
are present, and a number of exchange/adsorption/redox
processes are usually thermodynamically accessible. On a
more general basis, there are many situations where the
surface layer differs, either compositionally and chemically,
from the bulk of the crystal. Consider, for instance, the
Sr-decorated Si(100) surface that is used to promote coherent
epitaxial growth of SrTiO3.35,36 Given their technological and
fundamental importance, it is useful here to provide some
examples, without the pretention to be exhaustive, of how our
arguments can be translated to address those situations.

In the specific case of LaAlO3, H atoms adsorbed at the
surface of a film deposited on a SrTiO3 substrate were found
to significantly alter the electrical boundary conditions, e.g.,
by reducing or enhancing the residual internal electric field
in LaAlO3 and by influencing the free carrier concentration
at the interface.9 Experimentally, a humid atmosphere was
demonstrated to be necessary to stabilize conducting paths
at the buried interface.37 In turn, these “writing” and “eras-
ing” processes7 appear to be mediated by charged surface
adsorbates.8 All in all, there is growing evidence that OH and
H species are crucial to explain many outstanding phenomena
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experimentally observed at LaAlO3 surfaces and thin films.
Hence, the motivation for studying H2O-based compensation
mechanisms, where the surface retains the insulating character
of the bulk.

Adding external species to a (1 × 1) surface will not make
it insulating, as the excess charge is half an electron per
cell (a periodic array of external species can provide only
integer multiples of e). Doubling the surface unit cell leads
to exactly plus or minus one electron, which now allows for
an insulating state. We compensate this excess charge with a
split water molecule (H adsorbed on the “negative” AlO2 side,
OH on the “positive” LaO side) per

√
2 × √

2 surface cell.
We use a stoichiometric LaAlO3 slab with a thickness of four
unit cells, a c(2 × 2) in-plane translational symmetry, and we
relax the structure without imposing any symmetry constraint.
As usual, we use a vacuum dipole correction to ensure the
correct cancellation of the macroscopic electric fields due to
the asymmetry of the slab. At equilibrium, the structure appears
as in Fig. 10. Note the tilted position of the H atoms on the
AlO2 side, consistent with the geometry found in Ref. 9 for
the H-LaAlO3/SrTiO3 system. The OH groups on the LaO
side lie in a bridge site between two surface La atoms, thus
occupying a natural lattice site for O. (An analogous location of
the OH group was found on the SrO-terminated SrTiO3 surface
decorated with dissociated water.38) The system has a large
insulating gap, almost equal to the bulk value, suggesting that
this configuration might be fairly stable. We can estimate the
energetics by considering a “wet cleavage” experiment where
two LaAlO3(001) surfaces are created and, at the same time,
one free H2O molecule is split between the two terminations

Ecl = Eslab − 8Ebulk − EH2O. (20)

Here, Eslab is the energy of the supercell described above with
two LaAlO3 cells per surface unit and a thickness of four

FIG. 10. (Color online) Relaxed structure of the LaAlO3(100)
slab with LaO (top) and AlO2 (bottom) terminations, compensated
with OH(−) and H(+) groups, respectively.

unit cells; Ebulk is the bulk energy, calculated by including
the antiferrodistortive tilt of the O octahedra, which now are
allowed by symmetry; EH2O is the energy of a free water
molecule, calculated by using a cubic box of approximately
10 Å lateral size. The resulting cleavage energy per surface
area is 2.50 J/m2, which is the lowest value calculated in
this work. This result suggests that adsorption of OH and H
groups, which are ubiquitous in most experimental setups, is a
very likely candidate to stabilize the LaAlO3 surface polarity.
A study of LaAlO3(100) compensation via point defects was
also recently reported in Ref. 39.

As a final remark, note that bound compensating charges,
unlike the metallic carriers mediating electronic compensation,
come in discrete units of e. Therefore, in cases where bound-
charge compensation occurs, it is most appropriate to “count”
the external charges per unit area, which must satisfy the
relationship

Pbulk · n̂ = −Q

S
. (21)

Here, Q = ne (with n integer) is the formal oxidation state
of the external defect or adsorbate, and S is the surface area
per defect. Note that there exist defects (e.g., transition-metal
cations) that are stable in several oxidation states; of course,
the actual Q that occurs in the situation of interest must be
used in Eq. (21). In case of doubt, the Wannier-based analysis
of Sec. II can be used to assess the formal oxidation state of a
given defect.

IV. DISCUSSION

Here, we shall specify the relationship between the insu-
lating and nonpolar nature of a surface, and generalize our
arguments to other types of materials not explicitly considered
in this work.

A. Insulating nature of the surface

As we mentioned several times when discussing our
applications, it is likely that a nonpolar (in the sense specified
in this work) primitive surface will have a well-defined surface
band gap. Here, we shall further specify this point to prevent
dangerous generalizations.

It is certainly true that a polar surface with all the atoms
in their bulk oxidation state can not exist. If we insist on
keeping the local stoichiometry fixed, some of the atoms must
change their valence in order to avoid a diverging electrostatic
energy. In many cases, this produces partially filled electronic
bands and a metallic surface. It is not difficult to imagine
cases, however, where the surface atoms may change their
oxidation state while preserving a gap in the spectrum. This
would happen, for example, whenever the excess or defect
charge amounts to an integer number of electrons, and there are
ions in the lattice that have multiple stable oxidation states, e.g.,
most transition metals. Oxygen might also, in principle, change
its formal valence from −2 to −1 to compensate a net surface
charge; such a mechanism, stabilized via the formation of a
peroxo bond, was reported in the case of a SrTiO3 surface by
Bottin et al.40 Therefore, a polar surface does not necessarily
lead to a metallic surface. There are several other compensation
mechanisms available (often accompanied by a reduction in
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the translational periodicity) that leave the surface insulating
even without changes in the stoichiometry. We stress that, in
this latter case, however, the formal oxidation state of some
atoms must change.

Also, the statement that nonpolar surfaces are insulating
is far from universal. Indeed, by replicating a sufficiently
pathological choice for the bulk primitive unit, one might
end up with a surface that has a very awkward bonding
configuration. This might produce a dramatic departure from
the bulk bonding environment, and in such cases it is well
possible that one or more surface bands may close the band
gap. An example of how this may happen is provided by our
A2-type SrTiO3 surface, where the band gap is reduced to
a tiny value of about 0.1 eV. Gap closure would also occur
for our (01n) LaAlO3 surface models for a large enough n;
at some point, the electrostatic energy of the large LaO- and
AlO2-type terraces would become too large and eventually the
gap would close. Note that surface relaxation usually helps
stabilizing the truncated bonding network; in cases where our
arguments would predict an insulating and nonpolar surface,
it is not infrequent to observe that a sizable band gap opens
only after full atomic relaxation.

In conclusion, the relationship between electrostatic stabil-
ity and insulating nature is certainly not a rigorous one. It is
nonetheless a useful guideline in the sense that, if the surface
bonding environment is not too pathological and the solid has a
marked ionic character, one usually expects a nonpolar surface
to be insulating.

B. Other oxide surfaces

1. Ferroelectric perovskites

As the concept of surface polarity is intimately linked to the
polarization of the bulk solid Pbulk, it is particularly insightful
to discuss cases where Pbulk has a nontrivial behavior, as in
ferroelectric perovskite materials. Consider a (100)-oriented
slab of BaTiO3 with the spontaneous polarization vector PS

oriented along the normal to the surface. Imagine that we have a
stoichiometric slab with ideal BaO and TiO2 terminations, and
a monodomain state with perfect 1 × 1 periodicity; assume,
also, that P points toward the TiO2-type surface.

Both surfaces are polar, as Pbulk · n̂ = PS �= 0. Contrary to
the LaAlO3 example, however, here Pbulk · n̂ is not a simple
fraction (plus or minus one half) of the polarization quantum
e/S. Here, PS = pe/S, where p is a real number of the order
of 0.25–0.35 (depending on the in-plane strain imposed to
the film). Therefore, it might be technically difficult in a
calculation to construct a commensurate supercell where PS is
accurately compensated by an appropriate coverage of charged
adsorbates or defects (unless p happens by accident to be
exactly equal to a rational number with a small denominator).
A possible trick to circumvent this difficulty is using the
so-called “virtual crystal approximation” (VCA).33 Here, a
fractionally charged pseudopotential is introduced at the
surface to reproduce the effect of a disordered array of defects
with the appropriate coverage. This way, the surface can be
made insulating and charge neutral at a low computational
cost; the price to pay is that the VCA does not lend itself
easily to the calculation of surface-specific properties, e.g., the
energetics of a given compensation mechanism.

A second important example is that of I-V ferroelectric
perovskites, e.g., KNbO3. Here, the ferroelectric contribution
to the polarization PS adds up to the “compositional” built-in
cell dipole,34 which is P0 = ±e/2S (as in LaAlO3, the layers
are formally charged, although here AO layers are negative
and BO2 are positive). Note that, if |PS| were (again, by
accident) equal to half a quantum of polarization, both NbO2-
and KO-terminated (100) surfaces would be nonpolar (i.e.,
PS would cancel out P0), provided that the spontaneous
polarization points in the correct direction. This would be
away from the surface for the p-type NbO2 termination and
toward the surface for the KO termination.

Finally, it is worthwhile mentioning the case of BiFeO3.
This material appears complicated at first sight because of
the tilted polarization axis [PS is oriented along the (111)
direction] and the compositional layer charges of ±1 (both
Fe and Bi are formally 3+ ions). However, within the
formalism established in this work, predicting the excess
surface charge density that will be present at a given ideal
termination becomes trivially simple. For example, at the
FeO2(100) termination, we have [just as in the case of the
AlO2-terminated LaAlO3(100) surface] an excess built-in
charge of −e/2S ∼ −0.5 C/m2. To this value we need to
add the projection of PS along the (100) axis, which amounts
to approximately the same value.41 Therefore, if PS points
toward the FeO2-type (100) termination, this surface will be,
in practice, only very weakly charged or even neutral. It goes
without saying that the composition of the surface “pins” the
out-of-plane component of the polarization to a fixed value
that can not be switched [unless the surface composition itself
is changed, see (Ref. 42)].

2. ZnO

The use of ZnO in many technological areas, as well
as the recent progress in fabricating tailored nanostructures
and functional surfaces with this material, has generated
a widespread interest in the fundamental properties of its
polar (0001) surface.3,43,44 Several possible compensation
mechanisms involving, e.g., metallic free carriers,43 hydroxy-
lation and protonation,44 or stoichiometry changes3 have been
proposed over the years. In spite of this activity, the question
of exactly how much excess charge is present at the polar Zn-
or O- terminated surfaces is still a source of confusion.

For instance, there is a common belief that, starting from
an ideal unreconstructed termination, removal of 1/4 of the
surface ions will lead to perfect compensation of the polarity.3

This would be true if ZnO crystallized in zinc-blende phase.
However, bulk ZnO is wurtzite type, which means that, on
top of the compositional (zinc-blende-like) dipole, it has
also a nontrivial spontaneous PS.45 This PS is of course
not switchable, unlike the ferroelectric materials discussed
in the preceding section, but it does need to be taken into
account when computing the surface charge. First-principles
calculations of PS have reported relatively small values
(compared to a hypothetical zinc-blende reference structure)
of PS in bulk ZnO, of the order of 0.02–0.07 C/m2.45,46 This
implies that the necessary correction to the zinc-blende-like
excess charge of 0.5e per surface cell is of the order of
0.01–0.03 electrons. Even if this correction is not large, one
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should keep in mind that, in a hypothetical free-slab calculation
of ZnO where 1/4 of the O (and Zn) surface ions have
been removed, after full relaxation, there will be a nonzero
residual macroscopic electric field in the slab of approximately
Eslab = PS/(ε0εr). Here, ε0 is the vacuum permittivity and εr is
the static dielectric constant of ZnO (including piezoelectric
effects). In fact, this observation was used to calculate the
spontaneous polarization of wurtzite BeO several years before
the modern theory of polarization was developed.47

C. Semiconductor surfaces

While our arguments apply most naturally to ionic materi-
als, where the assignment of the localized Wannier charges to a
given atom is unambiguous, with some care they can be easily
adapted to covalently bonded insulators. The main difficulty
is that in semiconductors (e.g., Si), the maximally localized
Wannier functions tend to occupy bond-centered sites and are
shared between two atoms: assigning a given Wannier function
to either atom that participates to the bond is then entirely
arbitrary. Nevertheless, one can usually establish a reasonable
convention for partitioning the bulk solid into well-defined
units. For instance, in Si, one could assign four spin-up
Wannier functions (their centers would form a tetrahedron
around the nucleus) to one atom and four spin-down Wannier
functions to the other atom in the basis. (It might appear
somewhat artificial to use such a spin-split basis; however,
for the present discussion, the information about the spin is
irrelevant, only the charge density of the Wannier functions
really matters.) Then, this decomposition yields a basis of
two WIs that individually retain the full symmetry of the
lattice, are charge neutral, and have zero dipole moment.
Primitive Si surfaces are then predicted to be nonpolar, but
chemically they will be highly reactive because of the singly
occupied “dangling bonds”; this picture is consistent with
the widely accepted understanding of Si surfaces. It is easy
to see that, by saturating these bonds with H, one always
obtains a nonpolar and chemically stable surface (H does
not add a net charge density as it contributes one electron
and one proton to each dangling orbital). Alternatively, one
could supply one Sr atom every two dangling bonds; this
stabilization mechanism is important for growth of perovskite
oxide films on Si(100) substrates.35,36 Interestingly, in the case
of the Sr-decorated surface, further oxidation does not change
the surface-charge count,35 as additional O atoms achieve a
closed-shell configuration by incorporating the electron pairs
already present in the saturated dangling bonds. This is a
system where oxygen adsorption does not change the surface
charge, in striking contrast with typical ferroelectric surfaces.42

Of course, one could prefer to use other conventions, e.g.,
assign two doubly occupied Wannier functions to each Si atom.
This way, the Si(100) or (111) surfaces would be understood
as “polar,” and they are indeed polar if one insists on counting
electrons two-by-two (the dangling bonds would need to be
either empty or saturated, without the necessary countercharge
to balance the electrostatics). This means that the concept of
polar surface becomes somewhat ill defined if the solid has no
ionic character whatsoever. Note that the formalism developed
in Ref. 11, on which this work heavily relies, provides always
a rigorous means of calculating the surface charge from bulk

properties, regardless of the (ionic or nonionic) nature of the
insulator, and independently of the convention that one uses to
“assign” the bound electron charges to a given lattice site. A
more extensive treatment of the covalent case can be found in
Ref. 11, and was recently discussed also in Ref. 28.

D. Interfaces

In this work, we decided to focus on surfaces, which are
a special case of interface between two materials (one of
them is vacuum). Whenever the second material is another
crystalline insulator, the same arguments apply, but the
“electrostatic phase diagram” can be substantially richer. The
simplest case is that of two materials that have the same
crystal structure, and we assume coherent epitaxy, i.e., both
semi-infinite regions have the same in-plane periodicity and
the same crystallographic orientation of the atomic planes.
However, there might be more complex cases; for example, the
participating materials have different bulk structures, or they
are not oriented along the same crystallographic direction. In
any case, the electrostatics is always governed by the intuitive
classical formula

(P2 − P1) · n̂ = σext. (22)

Here, P1,2 is the polarization in either material, calculated by
choosing a certain basis for the primitive basis of atoms and
Wannier functions; σext is the “remainder” interface charge,
which is left behind once one removes all the bulklike primitive
units on either side; n̂ is the normal to the surface plane. As
in the case of surfaces, we define an interface nonpolar if,
for an ideal termination of both materials with the maximum
allowed translational symmetry, one has σext = 0. Based on the
analysis presented in this work, we can predict, for example,
the absence of a “polar discontinuity” at a hypothetical (011)
interface between LaAlO3 and SrTiO3, assuming an atomically
sharp and stoichiometric junction.

V. CONCLUSIONS

In summary, we have revisited the concept of polar
surface within the context of the modern theory of bulk
polarization. Our definition, which is consistent with the
bound (and discrete) nature of electrons in the insulating state
of matter, puts Tasker’s classification on firmer theoretical
grounds and corroborates it at the microscopic level. We
further complete Tasker’s formalism with an additional term,
which comes from the polarization of the electron cloud in
solids that spontaneously break space inversion symmetry.
Our calculations of nonpolar LaAlO3(01n) and SrTiO3(111)
surfaces, and of compensation mechanisms at LaAlO3(100),
demonstrate that our formalism provides a convenient way of
describing the net surface charge in terms of bulk polarization
and external sources (either “bound” or “free”). We have
also illustrated some practical analysis tools that can be
used to monitor the equilibrium distribution of compensating
charge in a calculation. We hope that these techniques will be
helpful for future first-principles studies, and more generally
as a conceptual basis to rationalize the many interesting
phenomena occurring at the surfaces of insulating materials.
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