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Modeling the constant-current distance-voltage mode of scanning tunneling spectroscopy
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We demonstrate the relationship between sample density of electronic states and constant-current distance-
voltage spectra starting from the usual expressions for tunneling current in scanning tunneling microscopy
experiments. First-order differential equations are derived for the tip position as a function of voltage drop across
the tunnel junction for both square and trapezoidal barrier transmission functions. Numerical solutions of the
square barrier equation are carried out for different sample density of states and compared with self-consistent
integration of the tunneling integral equation. It is shown that normalization of the distance vs voltage spectra
by taking logarithmic derivatives reproduces the peak positions in the sample density of states usually to within
0.1 eV. The use of differential equations is proposed as an accurate method for analyzing experimental data and
applied to the example case of the π∗ orbital of the c(8 × 2) phase of benzoate on Cu(110).
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I. INTRODUCTION

The ability to measure local electronic properties at
surfaces has been one of the most important outcomes of
the invention of the scanning tunneling microscope (STM).
Tunneling current in an STM junction depends not only on
surface topography but also on the density of electronic states
of the tip and the sample. The dependence on density of
states makes the STM a tool for revealing structure-function
connections at the atomic and nanometer length scale by
carrying out scanning tunneling spectroscopy (STS). Scanning
tunneling spectroscopy measurements have been used to study
surface states on metals1 and semiconductors,2 band gaps in
semiconductors,3 molecular orbital-derived states in organic
adsorbates,4 and superconducting gaps.5,6

The standard approach to STS was adapted from the
revolutionary tunneling studies of Giaever7 and others that
were crucial to the advance of condensed matter physics over
the past 50 years. Macroscopic planar tunnel junctions can be
created by growing a very thin (1–3 nm) and uniform insulating
film between two metallic electrodes. A bias applied over the
electrodes results in a measurable tunneling current through
the film. The normalized differential tunneling conductance in
this experiment has been extensively argued to be proportional
to the density of states in the sample.7–9 At its core, this can
be understood as an application of Fermi’s golden rule to
the scattering of a tunneling electron from one electrode to
another.

The analogous STS-based measurement of local electronic
structure at a surface involves positioning an STM tip above
a feature interest and measuring a local current-voltage (I/V)
characteristic at fixed tip height [Fig. 1(a)]. The conceptual
connection between local density of states (LDOS) of the
sample and the normalized first derivative of the I/V curve
is then strongly established by analogy with previous planar
tunneling studies. If ρS is the sample LDOS, the most common
way to express the relationship is:

V

I

dI

dV
∝ ρS(eV ), (1)

where the V/I factor is an empirical normalization that
corrects for the exponential background due to the tunneling

transmission function.10 The goal of this paper is to describe
the relationship between sample LDOS and a less commonly
used method of STS called constant-current distance-voltage
spectroscopy, or z(V) spectroscopy for short.

Since the earliest days of STM/STS, it has been recognized
that a local measurement of relative tip displacement as a
function of voltage [Fig. 1(b)] often exhibits abrupt step-like
features related to the high-bias electronic structure in the
tunneling junction.11,12 Initially, z(V) spectroscopy was used
to measure barrier resonances in the field emission regime11

and to relate these resonances to image potential-induced
surface states.12 Later, z(V) measurements were applied to
the study of electron and hole polaron levels in polymer and
organic films to provide an estimate of transport gaps.13,14 In
recent years, the primary use of z(V) spectroscopy has been
to study barrier resonances for the purpose of characterizing
local surface potential variations. It has been applied to
ultrathin insulating films,15,16 small organic molecules,17,18

semiconductors,19 fullerenes,20,21 and graphene.22,23

The basic z(V) measurement is very simple, as illustrated
schematically in Fig. 1(b). An STM tip is positioned over a
feature of interest under constant-current feedback control.
The voltage across the tunnel junction is then varied, and the
tip moves vertically in order to maintain a constant current
at the new voltage. If voltage increases, the tip retracts away
from the surface to maintain the setpoint current. If voltage
decreases, the tip advances toward the surface. Intuitively, the
rate of tip motion is proportional to the tunneling probability,
so it is expected that a bias regime with an enhanced LDOS
will result in an increase in the rate of vertical tip motion.

The major advantage of STS in z(V) mode is that
constant-current control allows more gentle probing of surface
structures. Small structures can often be strongly perturbed
by the injection of tunneling current from an STM tip. In
a constant-height [I(V)] measurement, the current increases
rapidly with voltage, making the probability of tip-induced
perturbations increase dramatically. In a z(V) measurement,
a small tunneling current can be maintained to minimize
this effect and allow STS measurements routinely at higher
biases than constant-height mode. This is a very significant
advantage for the study of molecular adsorbates which may
have important electronic states at high energies and are well
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FIG. 1. (Color online) Schematic illustration of (a) constant-
height current-voltage and (b) constant-current distance-voltage
tunneling spectroscopies.

known to be susceptible to tip-induced chemical reactions,24,25

diffusion,26 or desorption.27,28 Such instabilities are expected
to be a general concern for studies of almost any small
structure. A possible technical disadvantage of the z(V)
technique is that spatial resolution could degrade as the tip
moves farther from the surface. However, the total distance
moved by the tip is usually small (see results below), and
resolution at the scale of single organic molecules has been
demonstrated even in the field emission regime.17

The most significant drawback to the z(V) method is that
its theoretical interpretation has not been made as explicit as
the very heavily used constant-height spectroscopy [Eq. (1)].
This was pointed out recently by Ziegler et al.29 who showed
experimental evidence that constant-current spectra need to be
analyzed with great care. That paper suggested a numerical
procedure for extracting density of states information from
constant-current spectra that assumed a vanishingly small rate
of change of tip position with changing junction voltage.
In this paper, we address the detailed connection between
density of states and constant-current spectra from a more
general theoretical perspective that illustrates the conceptual
connection between DOS and z(V) spectra and also allows
quantitative analysis of a broad range of experimental data.

This paper is organized as follows. In Sec. II, we will
recount the basic tunneling equations as well as recent
progress in clarifying the analysis of traditional constant-
height measurements. We then derive an ordinary differential

equation for tip position as a function of voltage under
constant-current conditions for both square and trapezoidal
tunneling barriers. In Sec. III, we describe numerical methods
for solving this differential equation and characterizing its
accuracy. In Sec. IV, we present numerical results followed by
discussion of these results in Sec. V, including application to
previously published experimental data.

II. TUNNELING EQUATIONS

The starting point for considering most scanning tunneling
spectra is the expression for tunneling current that amounts to
Fermi’s golden rule using a tunneling transmission function
calculated in the Wentzels–Kramer–Brillouin (WKB) approx-
imation. For low temperatures where the Fermi functions of
both tip and sample are approximately step functions,30,31 this
can be written as:

I (z,V ) = B

∫ eV

0
ρS(E)ρT (E − eV )T (z,V,E)dE. (2)

In this expression, ρS is the LDOS of the sample, ρT

is the LDOS of the tip, T(z, V, E) is the WKB tunneling
transmission function, and B = (1/2) πeh̄3m−2A with A being
the effective tunneling junction area and m the mass of the
tunneling electron.32 We have explicitly indicated in Eq. (2)
that I is a function of both z and V. Keeping in mind that z
is also a function of V, we find the total derivative of I with
respect to V is:

dI/dV = ∂V I (z,V ) + ∂zI (z,V )dz/dV . (3)

This expression is a complete relationship between all of the
variables relevant to any kind of STS measurement: tunneling
current I, junction bias V, and tip height z. To proceed to
a more practical form of Eq. (3), the integral expression
in Eq. (2) is used to calculate the partial derivatives for
specific choices of barrier transmission function T(z, V, E).
In this paper, we consider the two most common cases of
square and trapezoidal barrier transmission functions. For the
square (voltage-dependent) barrier, the transmission function
is expressed as:29–31

T (z,V,E) = exp

(
−αz

√
φ + eV

2
− E

)
, (4)

where α = 2
√

2m/h̄, z is the distance between tip and sample,
φ the apparent barrier height of the tunneling junction, and E
the energy of the tunneling electron. We substitute this into the
integral in Eq. (2) and also make the common assumption that
the LDOS of the tip ρT is a constant. With these two steps, the
partial derivative of I with respect to V can be calculated (being
careful to consider the V dependence of the upper integration
limit using Leibniz’s rule):

∂V I (z,V ) = BeρS(eV )ρT (0)T (z,V,eV )

+B

∫ eV

0
ρS(E)ρT ∂V T (z,V,E)dE. (5)

At this point, if we were to assume a constant-height mea-
surement and that the transmission function is approximately
constant in the integration range, we would have the usual STS
result given by Eq. (1). As noted in several recent works,30,31
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it is rare that the transmission function will be approximately
constant, so the second term should not be neglected as a
matter of principle, even for traditional constant-height STS.
To proceed, with this term, we evaluate the partial derivative
of T(z, V, E) with respect to V:

∂V T (z,V,E) =− αez

4
√

φ+ eV
2 − E

exp

(
−αz

√
φ+ eV

2
− E

)
.

(6)

Since the prefactor multiplying the exponential in this
expression is slowly varying relative to the exponential, we
now approximate it as a constant by evaluating it at the
midpoint of the integration interval, eV/2, so that it can be
factored out of the integral in Eq. (5). This step was first applied
by Koslowski et al.30 in their analysis of constant-height STS,
though, in their case, it was described (equivalently to our
zeroth-order Taylor midpoint expansion) as an application of
a well-known generalized mean value theorem for integrals.
When the expanded prefactor is removed from the integral,
what is left is simply the original integrand for tunneling
current that appears in Eq. (2). Thus we can write the partial
of I with respect to V as:

∂V I = BeρS(eV )ρT T (z,V,E = eV ) − αezI

4
√

φ
. (7)

Calculating the partial derivative of I with respect z follows
precisely the same set of steps except that the only explicit
z dependence appears in the exponential of T(z, V, E). The
partial of T(z, V, E) with respect to z reads:

∂zT =
(

−α

√
φ + eV

2
− E

)
T . (8)

Once again, expanding the slowly varying prefactor to
lowest order allows the partial of current with respect to z
to be written as:

∂zI = −α
√

φI. (9)

With both partial derivatives in hand, we can substitute into
Eq. (3) to find the total derivative of I with respect to V:

dI

dV
= BeρS(eV )ρT T (z,V,eV ) − αezI

4
√

φ
− α

√
φI

dz

dV
. (10)

However, since we are considering constant-current mea-
surements, ideal electronic feedback will ensure that the total
derivative of I vanishes, resulting in the following differential
equation for tip position z as a function of voltage V:

α
√

φI
dz

dV
+ αeI

4
√

φ
z − eBρT ρS(eV )T (z,V,E = eV ) = 0,

(11)

with T(z, V, eV) given by Eq. (4). This relatively simple ex-
pression is analogous to the expression derived by Koslowski
et al.30 for dI/dV in constant-height mode STS [see their
Eq. (4)]. In addition, it modifies the approach to constant-
current STS proposed by Ziegler et al.29 by recognizing that
dz/dV cannot vanish in such measurements.

Equations (10) and (11) are the most important results of
this paper. They provide an explicit mathematical relationship

between a measured z(V) spectrum and the LDOS of a sample.
Subsequent sections are devoted to numerical studies of these
differential equations as well as discussion of their use in
the analysis of experimental STS data. However, the use of
a square barrier transmission function can be criticized for
consideration of high bias electronic structure where constant-
current spectroscopy is most severely needed. Therefore, we
will also consider the analog of Eq. (11) derived for the case
of a trapezoidal transmission function expressed as:32

T (z,V,E) = exp

{
−2

3
αz

[
(φ+ eV − E)3/2− (φ − E)3/2

eV

]}
.

(12)

Following similar steps to calculate partial derivatives and
approximating the prefactor functions by their midpoint values
yields:

αf1/2I
dz

dV
+ αf ′

1/2Iz− 3

2
eBρT ρS(eV )T (z,V,E = eV ) = 0,

(13)

where f1/2 = 1
eV

[(ϕ + eV/2)3/2 − (ϕ − eV/2)3/2] and f ′
1/2 −

1
v
( 3

2

√
ϕ + eV/2 − f1/2).

As described in Sec. IV below, consideration of the more
complicated trapezoidal transmission function does not appear
to significantly improve the accuracy of a self-consistent
integration of Eq. (2). Therefore, numerical study of Eq. (13)
is omitted from what follows in favor of focusing attention on
the simpler square barrier result, Eq. (11).

III. NUMERICAL METHODS

Numerical integration of the basic tunneling equation
[Eq. (2)] was carried out using the MatLab software package’s
adaptive Gauss–Kronrod quadrature. To simulate constant-
current spectra, we numerically integrated Eq. (2) to obtain
I, then iteratively adjusted z until we obtained a current equal
to the setpoint (Iset) within a tolerance of 10−16%. By doing
this procedure across a set of different voltage values (N =
200), the result is a self-consistent set of simulated z(V) data
at a constant current equal to Iset. During this process, one
can also record the final current values [I(V)] at each step
to yield a complete set of simulated data similar to what is
obtained during real measurements where an I(V) curve from
a constant-current mode measurement can be thought of as a
way of tracking measurement error.

The differential equation [Eq. (11)] was solved numerically
using the method of recursive Taylor coefficients (also known
as automatic differentiation),33 but we also confirmed that a
more standard fourth-order Runge–Kutta approach produces
the same results. Our numerical solutions of Eq. (11) by
this method were also done for 200 points over a given
voltage range with the Taylor expansion at each step taken
out to 24 terms. In order to obtain an initial value for the
differential equation that satisfies Eq. (2), we ran a self-
consistent integration at the first voltage point to derive an
appropriate starting tip height for the relevant apparent barrier
height and tip and sample densities of states.
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IV. NUMERICAL RESULTS

A. Numerical integration

As a benchmark for analyzing the differential equations
expressed in Eqs. (11) and (13), we directly integrated Eq. (2)
for constant-current conditions. This procedure was also used
to simulate constant-current STS by Ziegler et al.29 Figure 2
shows a sample LDOS function defined as a flat background
(ρ0) and a single Gaussian peak defined by its height (ρmax),
center (E0), and full-width at half-maximum (w). For our
example calculations, we have chosen various physically
motivated parameters and display spectra in corresponding
physical (nonarbitrary) units. We used an apparent barrier
height of 5.0 eV, which is typical for metal surfaces probed
with STM tips made from materials like tungsten or Pt-Ir. The
simulations used a current setpoint of 10 pA similar to the low
currents often used in this form of STS in real experiments.
We used a constant 1 eV−1nm−3 for the tip LDOS and a
baseline value of 10−3 eV−1nm−3 for the sample, following
the same typical numbers from the seminal work of Tersoff
and Hamman.34 We also approximated the tip by a circular
cross-sectional area of radius 1 nm in accordance with the
effective areas reported by Pitarke et al.35 It is shown in
Fig. 3 that the peaks in the LDOS of the sample translate to
peaks in dz/dV(V) with reasonable accuracy. This integration
method qualitatively confirms the intuition that peaks in LDOS
result in an enhanced rate of vertical tip motion that has
been the basis for interpreting previous studies using z(V)
spectroscopy.14,16,20

In agreement with Ziegler et al.,29 we also find that peaks
in the simulated dz/dV(V) spectra tend to be systematically
downshifted in energy compared to peaks in the LDOS. The
size of the downshift, �E, depends on the width and location
of the LDOS peak, as illustrated in Fig. 3 for LDOS peaks
with widths varying from 0.1 to 1.0 eV. The absolute value of
�E increases with increasing width of the peak as exhibited
by comparison of the dz/dV(V) spectra in Fig. 3(c) with the
LDOS functions in Fig. 3(a). For very wide low-energy peaks,
the downshift can be as much as 0.35 eV [Fig. 4]. We also note
that the peak width is qualitatively transferred from the LDOS
to the dz/dV(V) spectrum.

The origin of the systematic downshifts seen in Fig. 4 is
the comparable retraction rate due to the LDOS peak and

FIG. 2. Gaussian function used for example sample LDOS peaks.
Adjustable parameters include peak amplitude (ρmax), baseline (ρ0),
center (E0), and full-width at half-maximum (w).

(a)

(b)

(c)

FIG. 3. (Color online) (a) Example LDOS functions with varied
centers and widths (E0 = 1.0, 2.5, and 4.0 eV, and w = 0.1, 0.5,
and 1.0 eV). (b) Resulting z(V) curves found by solving the integral
tunneling equation [Eq. (2)] with the square barrier transmission
function (all middle and top curves are vertically offset for clarity).
(c) Numerical derivative of the z(V) curves from part (b).

the transmission function background. The closer these rates
are to one another, the more distorted peaks in dz/dV will
be compared to peaks in LDOS. Much like the case of STS
in constant-height dI/dV mode, it is crucial to correct for
the transmission function background. We have found that
the approach of taking the logarithmic derivative of z(V)
[d(ln z)/d(ln V)] as opposed to the simple derivatives in
Fig. 3(c) can correct the distortion due to this background
with a high degree of accuracy. The results of this procedure
are shown for the case of a square barrier in Fig. 5(a). The
offsets �E in peak position between the model LDOS and the
peaks in the logarithmic derivative of z(V) [i.e. V/z(dz/dV)] are
typically less than 0.1 eV in almost all experimentally relevant
cases, as indicated in Fig. 5(b).

The direct integration method is a brute force way to attack
the problem with the advantage that it can be easily and quickly
expanded to more complicated transmission functions, such as
the trapezoidal barrier function. In Fig. 6, we present the results
of self-consistent integration of Eq. (2) using the same example
LDOS functions and the trapezoidal barrier approximation.
We can see very similar behavior as compared with the use
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FIG. 4. (Color online) Peak location offsets for E0 = 1.5 eV
(blue, circle), 2.5 eV (green, box), and 4.0 eV (red, triangle) as a
function of peak width. Peak offset is defined as actual position in
LDOS minus position in dz/dV(V) curve. All dz/dV(V) curves are
found by solving the integral tunneling equation [Eq. (2)] with the
square barrier function.

of the square barrier approximation (Fig. 7). Peak positions
in the logarithmic derivative of z with respect to V (to within
∼0.1 eV) reflect peak positions in the LDOS. Peak widths are
translated accurately, and the monotonic background also has a
similar character. Since direct numerical integration shows no
significant differences between square and trapezoidal barrier
transmission functions, we restrict attention in what follows
to the simple square barrier that is most commonly used in
theoretical treatments of STS.

(a)

(b)

FIG. 5. (Color online) (a) Normalized dz/dV(V) curves for the
example LDOS function seen in Fig 3(a). (b) Peak location offsets
for E0 = 1.5 eV (blue, circle), 2.5 eV (green, box), and 4.0 eV
(red, triangle) as a function of peak width. Peak offset is defined
as actual position in LDOS minus position in (V/z)dz/dV(V)curve.
All (V/z)dz/dV(V) curves are found by solving the integral tunneling
equation [Eq. (2)] with the square barrier function.

(a)

(b)

FIG. 6. (Color online) (a) Here, z(V) curves found by solving the
integral tunneling equation [Eq. (2)] for LDOS functions in Fig. 3(a)
with the trapezoidal barrier transmission function (all middle and
top curves are vertically offset for clarity). (b)Logarithmic derivative
[(V/z)dz/dV] of the z(V) curves from part (a).

B. Differential equations for a square barrier

From our translation of Eq. (2) into a differential equation
[Eq. (11)] for the square barrier transmission function, one
can also simulate constant-current STS in an efficient manner
using standard numerical methods for first-order differential
equations. In addition, Eq. (11) provides a direct analogy for
constant-current spectra of the tunneling equations to those
used to describe constant-height STS derived by Koslowski
et al.30 This is of important conceptual value in defining the
spectroscopic information obtained in z(V) spectroscopy.

We solved Eq. (11) for the same model LDOSs considered
by numerical integration above. When evaluated over our set

FIG. 7. (Color online) Peak location offsets for E0 = 1.5 eV
(blue, circle), 2.5 eV (green, box), and 4.0 eV (red, triangle) as a
function of peak width. Peak offset is defined as actual position in
LDOS minus position in (V/z)dz/dV(V) curve. All (V/z)dz/dV(V)
curves are found by solving the integral tunneling equation [Eq. (2)]
with the trapezoidal barrier function.
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(a)

(b)

FIG. 8. (Color online) (a) Here, z(V) curves found by solving
the differential tunneling equation [Eq. (11)] for LDOS functions in
Fig. 3(a) (all middle and top curves are vertically offset for clarity).
(b) Logarithmic derivative [(V/z)dz/dV] of the z(V) curves from
part (a).

of center and width LDOS peak variations, as seen in Fig. 8,
we find this method is comparable to the direct integration.
The example z(V) curves obtained by solving the differential
equation [Eq. (11)] never vary more than 0.6% from the
z(V) curves obtained by self-consistent integration. The small
differences in the spectra can be seen as a measure of error
for the method and can be attributed to our approximation
of the transmission function derivatives and accumulation
error from the sequential differential equation solution. Due
to the small magnitude of this error, we consider it empirical
evidence validating the assumption of slowly varying prefactor
functions in Eqs. (6) and (8).

Figure 8 shows that when constant-current distance-voltage
spectra are modeled with Eq. (11), it is possible to accurately

FIG. 9. (Color online) Peak location offsets for E0 = 1.5 eV (blue,
circle), 2.5 eV (green, box), and 4.0 eV (red, triangle) as a function of
peak width. Peak offset is defined as actual position in LDOS minus
position in (V/z)dz/dV(V) curve. All (V/z)dz/dV(V) curves are found
by solving the differential tunneling equation [Eq. (11)].

associate peaks in V/z(dz/dV) with peaks in the LDOS. Both
peak width and peak position are preserved to good accuracy.
In addition, the small systematic downshifts are essentially
identical when compared to the self-consistent quadrature
solution described above as shown in Fig. 9.

V. DISCUSSION

A. Relating constant-current STS to density of states

The calculations described above establish a clear connec-
tion between structure in z(V) measurements and structure in
the sample local density of states. This is seen both by direct
self-consistent numerical integration of the standard tunneling
equation and solution of a corresponding differential equation.
Peaks in LDOS translate into peaks in the normalized dz/dV
spectra with widths accurately preserved and peak positions
preserved up to a systematic correction that is small in many
cases. Remarkably, the traditional normalization of dI/dV
tunneling spectra has a precise analog that arises empirically
from our numerical studies. To a good approximation, we find
that:

ρ(eV ) ∝ V

z

dz

dV
. (14)

Calculating the logarithmic derivative of a z(V) spectrum
allows determination of peak positions in the LDOS to an
accuracy of typically no worse than 0.1 eV. However, this
normalization is not perfect, as indicated by Fig. 5, where a
small systematic downshift of the peaks in the spectra still
exists compared to the model LDOS peak positions. For very
high accuracy prediction of expected z(V) spectra from a given
density of states, it is necessary to carry out the full solution of
Eq. (11). For maximum accuracy extraction of LDOS from
experimental z(V) data, it is necessary to use Eq. (11) to
directly solve for this quantity, as described in the following
section. This will be most important for low-temperature STS
experiments, where intrinsic energy resolution may be very
high.

B. Application to experimental data

In experiment, constant-current conditions will only be
approximate, especially when the sample LDOS changes very
rapidly with changing energy near peaks. Equation (11) can be
used to solve for the sample LDOS function directly but should
be modified to allow for a nonzero dI/dV that must be measured
in the experiment in addition to z(V). The resulting equation for
sample LDOS using the square barrier transmission function
is the following,

ρS(E) = 2m2

πe2h̄8Aρt

[
dI

dV
(V ) + α

√
ϕI (V )

dz

dV
(V )

+ eα

4
√

ϕ
I (V )z(V )

]
eαz(V)

√
ϕ− eV

2 . (15)

The evaluation of this equation requires knowledge of the
absolute initial tip position, tip DOS ρt , the effective tip area
A, as well as the apparent barrier height φ. In principle,
apparent barrier height could be measured by measuring
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the exponential decay constant of tunneling current as a
function of relative tip-sample distance. In addition, absolute
tip-sample distance can be estimated by controlled crashes
of the STM tip with careful monitoring of the total distance
the tip moves. In practice, the addition of such delicate
measurements to tunneling spectroscopy experiments may
not be possible, and these two parameters can be calculated,
guessed, or taken as fit parameters. The later approach was
used by Ziegler et al. in their analysis of constant-current
spectra.

The effective tip area and DOS are both very difficult
to access experimentally (though proposals for dealing with
this problem have been suggested31,36,37) and sensitive to
uncontrolled tip changes during experiments. This fact, along
with the difficulty of reliably measuring both barrier height
and absolute tip-sample distance, means that the absolute
value of the sample LDOS extracted from z(V) experiments
using Eq. (15) is likely to be subject to large uncertainty.
However, the shape of the LDOS, including most importantly
peak positions, can be extracted reliably.

Figure 10 shows the result of using Eq. (15). Spectra in
this figure represent coaverages of 65 constant-current spectra

(a)

(b)

(c)

FIG. 10. (Color online) (a) Experimental z(V) spectra (I = 5 pA)
measured for the c(8 × 2) phase of benzoate on Cu(110) along with
dz/dV obtained by numerical differentiation. Each curve is the result
of coaveraging 65 individual spectra followed by smoothing using
2 near neighbor points. (b) Corresponding current and dI/dV data
measured simultaneously with the data in part (a). (c) Sample LDOS
calculated via Eq. (15) from the data shown in (a) and (b) using A =
1 nm, ϕ = 4.25 eV, and z0 = 0.34 nm (dotted line with circle markers);
also shown is the (V/z)dz/dV(V) curve (solid line) from the same
data.

(Isetpoint = 5 pA) measured over the c(8 × 2) phase of benzoate
on a Cu(110) surface from a previous study.18 The raw z(V)
data show weak structure around 3V that is assigned as the π

orbital-derived electronic state as described in the ground state
DFT calculations of Lennartz et al.38 The bias at which this
peak occurs is ideal for the use of z(V) spectroscopy. Numerical
extraction of the DOS using Eq. (15) amounts to the removal
of a weak background from the dz/dV data.

For the benzoate/Cu(110) data shown here, we estimated
an effective tip area of 1 nm, an apparent barrier height of
4.25 eV, and an initial tip-sample distance of 0.34 nm. The
initial tip-sample distance was derived from a self-consistent
integration of Eq. (2) using the estimated barrier height and
the square barrier transmission function. The apparent barrier
height was estimated as the mean value between the estimated
work function of benzoate/Cu(110) (3.5 eV)18 and a value
typical of tungsten (5.0 eV).39 All of the z(V) and I(V) curves
were smoothed by averaging each point with its two nearest
neighbors, differentiated using the central difference method,
and after transforming to DOS were all coaveraged together
in an effort to reduce noise. The average z(V) and I(V) curves
are presented in Figs. 10(a) and 10(b), respectively, along with
their first derivatives.

The sample DOS extracted by this method [Fig. 10(c),
dash-connected dots] has an improved peak shape as compared
to the measured dz/dV curve despite increased noise due
to numerical differentiation of the current [Fig. 10(b)]. The
close correspondence between dz/dV and DOS is qualitatively
expected for a peak with width less than ∼0.5 eV centered
relatively far from the Fermi level. In this case, systematic
offsets are likely to be small (Fig. 4). Conditions where
such small offsets will be observable have been demonstrated
by Ziegler et al. for the case of the relatively low energy
LUMO+1 peak of C60 on Ag(111) measured at cryogenic
temperatures.29

Figure 10(c) also shows the logarithmic derivative of
the z(V) data (solid line) from Fig. 10(a). This also agrees
with the LDOS extracted from Eq. (15) in peak position
and has better signal-to-noise but does not match the peak
shape improvements. In order to minimize noise due to
numerical differentiation, it would be preferable to carry out
measurements, such as those shown in Fig. 9, using two
separate lock-in amplifiers to measure dz/dV and dI/dV.
Combining these low-noise analog derivatives with measured
z(V) and I(V) in Eq. (14) will result in the highest-quality
extraction of DOS from experimental data. However, it is
worth pointing out that the positions of peaks in the DOS
can be read directly from d(ln z)/d(ln V) with an accuracy that
will usually be better than 0.1 eV.

VI. SUMMARY AND CONCLUSIONS

In summary, we have illustrated a quantitative relationship
between sample local density of states and constant-current
distance-voltage spectra measured with an STM tip. Direct
integration of the tunneling equations shows that peaks in the
LDOS translate into peaks in the first derivative of relative
tip displacement as a function of tip-sample voltage for
both square and trapezoidal tunneling barrier transmission
functions. This is also true for solutions of a conceptually
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simpler differential equation derived from integral expression
for tunneling current. Our numerical results show that normal-
izing z(V) spectra by taking a logarithmic derivative does a
very good job of removing most distortions due to the trans-
mission function background. Furthermore, the differential
equation [Eq. (10)] provides a straightforward and accurate
means of extracting sample LDOS from constant-current
tunneling spectra without need for empirical normalization
strategies.

These results establish a strong basis for the interpretation
of peaks in tunneling spectra measured in constant-current
mode. This technique has great advantages in that it allows
tunneling spectroscopy to be carried out on physical systems
that may be sensitive to high-current densities injected from an
STM. The use of small constant currents in tunneling spectra
is expected to allow increasingly routine spectroscopic studies
of nanoscale systems, including single molecules, molecular
assemblies, and nanostructured surfaces.
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