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Electron transmission through atomic steps of Bi2Se3 and Bi2Te3 surfaces
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Transmission properties of surface-state electrons through steps of Bi2Se3 and Bi2Te3 surfaces are theoretically
studied with a tight-binding method. Transmission spectra of Bi2Se3 as a function of the incident angle are simply
explained in terms of potential scattering of a massless Dirac Hamiltonian. However, those of Bi2Te3 are not
similarly explained, and perfect reflection appears at an angle. The mechanism of perfect reflection is discussed
in terms of the massless Dirac Hamiltonian with the hexagonal-warping term. It is found that evanescent waves
generated by the hexagonal-warping term are the origin of the perfect reflection, which is similar to bilayer
graphene.

DOI: 10.1103/PhysRevB.84.205424 PACS number(s): 73.20.At, 73.25.+i, 72.10.Fk

I. INTRODUCTION

The topological insulator is a new type of classification
of insulators. A number of studies on this subject have been
made, and many interesting properties have been revealed.1–4

A characteristic feature of topological insulators is the
existence of topological surface states. Electrons in the surface
states are not scattered in the backward direction by scatterers
with time-reversal symmetry. This is due to the property
that the surface-state electrons traveling in the opposite
directions with the same spin orientation are localized on
the opposite surfaces of materials, and they are spatially
separated. Evidence of the absence of backward scattering
has been given by experiments using scanning tunneling
spectroscopy (STS).5–8 We present a theoretical study on
electron transmission through surface steps of Bi2Se3 and
Bi2Te3.

We choose Bi2Se3 and Bi2Te3 in this study because it
is shown by density-functional calculations9–11 and angle-
resolved photoemission spectroscopy (ARPES)10,12 that these
materials are three-dimensional strong topological insulators
with single Dirac cones on the surfaces. We study the
transmission through steps because a step is a one-dimensional
scatterer which is suitable for discussing directly the absence of
backward scattering. Transmission probability through steps
has been measured by STS for Sb surfaces.8 The standing
waves formed by surface steps have been observed on the
Bi2Te3 surface6,7,13 and the Bi2Se3 surface.13

There have been several theoretical studies on the scattering
by steps and point defects using the effective Hamiltonian for
surface states14–17 or a model lattice Hamiltonian with four
bands.18 In contrast to these studies we present numerical
results of the electron transmission through steps calculated
using atomistic models. A step is a change in boundary
condition or bonding configuration. It is not clear whether the
scattering by steps is effectively expressed by a potential in a
two-dimensional Hamiltonian neglecting the spatial variation
of wave functions in the direction normal to surfaces. The Dirac
cones of Bi2Se3 and Bi2Te3 are confined in narrow regions near
the center of the two-dimensional Brillouin zone. Therefore
the wave length of the surface states is much larger than the
atom spacing in the directions parallel to surfaces. However,
the decay lengths of wave functions of the surface states are
atomic scales, and they are comparable with the step heights of

atomic steps. Therefore, for discussing the validity of effective
models and analyzing experimental results, it is necessary to
calculate the transmission through steps with taking account
of the atomistic character of Bi2Se3 and Bi2Te3.

In this paper we use a tight-binding model. The tight-
binding parameters are determined by fitting to the band
structures obtained by density-functional calculations. We
calculate the transmission probability through steps as a
function of the incident angle with respect to the step line.
We find a distinct difference in transmission spectra between
Bi2Se3 and Bi2Te3. Perfect reflection exists in Bi2Te3. The
perfect reflection is explained by the hexagonal-warping term
added to the massless Dirac Hamiltonian,19 where evanescent
waves play an important role. The mechanism is similar to that
of the bilayer graphene.20

II. METHOD OF CALCULATIONS

We use a tight-binding method for expressing electronic
states. The tight-binding parameters are determined by fitting
to band structures obtained by density-functional calculations.
We take account of the transfer between third-nearest-neighbor
atoms. The spin-orbital interaction is taken into account in the
intra-atomic matrix elements.21 Details of the tight-binding
calculation are shown in the Appendix.

In the experiments of standing waves it is confirmed that
steps run along the close-packing [11̄0] direction, but the
atomic structures of steps are not determined.6,7,13 Therefore,
we assume the step structures shown in Figs. 1 and 2. The
atomic structures of Bi2Se3 and Bi2Te3 are ABC stacking of
layers with the hexagonal lattice. A unit of the layered structure
is a quintuple layer (QL) of Se-Bi-Se-Bi-Se, for example. We
consider steps with heights of one QL or two QLs.

The side surfaces of steps run along the sequence of the
ABC stacking as shown in Fig. 1. We consider two side
surfaces labeled by steps I and II. The side surfaces of steps
I and II are (221) and (334) surfaces, and they give steep and
gentle slopes, respectively. Each atom in the bulk structures
has three nearest-neighbor atoms in the neighboring layers.
For the atoms on the side surfaces of the steps, the number
of neighboring atoms in the upper layers is two and one
in steps I and II, respectively. Therefore, it is expected that
step I has larger stability than step II. The side surface of
step I is the close-packing surface if the crystal structure is
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FIG. 1. (Color online) Atomic structure of steps.

face-centered cubic. It is the same surface as that studied by a
density-functional method in Ref. 22.

We do not consider the reconstruction of the atomic
structures of steps. We consider the step structures obtained
by introducing slips into slabs on the side surfaces as shown
in Fig. 2. We calculate transmission probability for four step
structures. One is the step I structure with single QL height.
Second is the same structure with double QL height. Third is
the step II structure with single QL height. And fourth is the
same as the first one with a slip in the reverse direction. We
use the same tight-binding parameters for the step structures as
those for the flat surfaces. Real steps may have reconstruction
and calculated results may change accordingly. However,
transmission calculations show general properties that do not
depend on the individual step structure as shown in Sec. III.

Transmission probability is calculated by the usual method
shown in Ref. 23. We consider slabs with a finite thickness
shown in Fig. 2. The slabs infinitely extend in the directions
parallel to the surfaces. Electrons coming, for example, from
the left side are scattered at the steps. Some are transmitted
to the right side and others are reflected to the left side. We

(a) (b)

(c) (d)

FIG. 2. (Color online) Step structures. (a) Step I with single QL
height, (b) step I with double QL height, (c) step II with single QL
height, and (d) the same as (a) with a slip in the reverse direction.

separate the slabs into incident, scattering, and transmitted
regions, and solve the scattering problem by two steps. In
the first step we solve all Bloch states including propagating
and evanescent waves in the incident and transmitted regions
for fixed energy. In the second step we impose the boundary
condition with a single incoming wave and all out-going
waves on the tight-binding equation in the scattering region.
This changes the tight-binding equation for the slabs with the
infinite extent in the surface parallel directions into a linear
equation closed within the scattering region. The transmission
and reflection probabilities are obtained by solving the linear
equation.

In the present calculation we assume the simple step
structures made by inserting a slip into a flat slab as shown
in Fig. 2. Therefore, in principle, we can take the region with
one atomic-layer thickness in both sides of the slip plane as
the narrowest scattering region. However, we did not obtain
results with good numerical accuracy from calculations using
the narrowest scattering region. The reason is as follows. A
wave function of a scattering state consists of propagating
and evanescent waves. When the scattering region is narrow,
evanescent waves do not much decay in the scattering region.
The amplitude of the rapidly decaying evanescent waves is
not small at the boundary of the scattering region. This means
that accurate boundary conditions for the rapidly decaying
components are required to obtain an accurate wave function
in the scattering region. However, it is generally difficult
to obtain numerically accurate wave functions and decay
constants of the rapidly decaying evanescent waves. Therefore,
inaccuracy in giving boundary conditions for rapidly decaying
components is the origin of errors in calculating transmission
properties.

A simple way to eliminate the numerical errors is to take
wide scattering regions as proposed in Ref. 24. The rapidly
decaying evanescent waves fully decay in wide scattering
regions. The transmission properties do not depend on the
boundary conditions for the rapidly decaying components.
Therefore we obtain accurate transmission properties even
with inaccurate boundary conditions for the rapidly decaying
components. We found that numerical accuracy is improved
when we use scattering regions with from 10 to 15 atomic cells
in width in a direction parallel to the surface of the slab.

III. CALCULATED RESULTS

A. Bi2Se3

Figure 3 shows calculated transmission probability through
a surface step of Bi2Se3. Transmission probability is calculated
for the step I structure with single QL step height shown
in Fig. 2(a). The thickness of the slab is varied from 2 to
5 QLs. The spectra are calculated as a function of energy for
the normal incidence to the step line. Since slabs with finite
thicknesses are used, there are two channels of right-going
surface states. One is localized on the upper surface, and the
other is localized on the lower surface of the slabs. Therefore,
the energy regions where the number of channels is two near
zero energy show the transmission of surface states. The band
structure for each slab without steps is also shown. �̄, K̄, M̄
are the center, a corner, and the middle point of a side of
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FIG. 3. (Color online) Total transmission probability through a
1QL step of Bi2Se3 thin films as a function of energy. Probability
is calculated for normal incidence to the step line. Solid and dotted
lines show transmission probability and the number of transmission
channels, respectively. The band structures of thin films without steps
are also shown on the right side.

the hexagonal Brillouin zone, respectively. The step line runs
parallel to the �̄-K̄ direction.

The band gaps of surface states are clearly seen in the 2
and 3 QL slabs at the �̄ point near zero energy. This is due
to the interaction between the surface states localized on the
two surfaces of the slabs. The corresponding gaps are also
seen in the transmission spectra, and the transmission deviates
from the perfect one in the energy regions near the gaps. The
occurrence of reflection may be interpreted as that an electron
in the right-going surface state localized on the upper surface

of a slab is scattered by steps to the left-going surface state
localized on the lower surface. The reflection decreases with
decreasing the gap. The gap is very small for the 4 and 5 QL
slabs, and the transmission of surface states is almost perfect.
The present calculation suggests that 5 QLs are sufficient for
observing the perfect transmission property for surface states.

Outside of the energy regions of surface states, the trans-
mission is not perfect. This is due to the fact that current is
carried by bulk states. Since bulk states extend over the slabs,
the effect of steps on transmission decreases with increasing
the thickness of slabs. Therefore the transmission probability
increases with increasing the thickness.

Next we show the angular dependence of transmission with
respect to the step line for the 5 QL slab. Figure 4 shows
transmission probability as a function of the wave number
parallel to the step line. Energy is 0.2 eV. Only surface states
exist at this energy. Transmission probability is calculated for
the four step structures shown in Fig. 2.

The transmission is perfect at zero wave number. The
transmission probability monotonically decreases with in-
creasing the wave number, and reaches zero at the maximum
wave number of propagating waves. This characteristic is
common to the various types of step structures of Bi2Se3.
The transmission through the double QL step slightly deviates
from the perfect one at zero wave number. This is due to the
fact that the constricted part of the slab by double QL steps
is narrower than those by single QL steps. The magnitude
of reflection depends on the step structures. It is intuitively
natural that reflection of the double QL step is stronger than
that of the single QL step with the same type of step. It seems
that there is no simple reason for the difference among step I,
step II, and reverse slip structures.

Figure 5 shows amplitude distribution of wave functions
obtained from the transmission calculation. The step structure
is step I with single QL step height. The thickness of the slab
is 5 QLs. Energy and parallel wave number are 0.2 eV and
0 Å−1, respectively. Therefore, they are wave functions at the
perfect transmission. The incident channel is the surface state
localized on the upper or lower surface on the left side of the
slab.

In the present study, step structures are made by inserting
a slip into a flat slab. Since the left and right parts of the step
structures divided by the slip plane are flat slabs, scattering
occurs only on the slip plane. In principle, the scattering by
the step structures can be expressed by recombination of the
channels in the left and right slabs, where the channels include
propagating and evanescent waves. However, it seems difficult
to make a simple model to explain the calculated transmission
property of the surface states from this picture.

Another picture is potential scattering of a massless Dirac
electron. The wave function of Fig. 5 shows that the surface
state on the terrace is localized within about one QL depth from
the surface, and the transition region from the surface state of
the lower terrace to that of the upper one has also the same
order of width. It may be viewed as that current flows from
the lower terrace to the upper one through a transition region.
The scattering by steps is expressed by change in effective
potential for the surface state in the transition region. This is
similar to the model used in the discussion of transmission
through atomic steps of the Si(111)

√
3 × √

3-Ag surface.23
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FIG. 4. (Color online) Total transmission
probability through steps of a Bi2Se3 thin film
as a function of the wave number parallel to
the step line. Energy is 0.2 eV. (a) Step I with
single QL height, (b) step I with double QL
height, (c) step II with single QL height, and
(d) step I with single QL height and reverse
slip. Solid and dotted lines show transmission
probability and the number of transmission
channels, respectively. Broken lines show the
transmission probability calculated by using a
massless Dirac Hamiltonian.

FIG. 5. (Color online) Amplitude distribution of wave functions
near surface steps of Bi2Se3. The wave functions are calculated for
the normal incidence. Open circles show the positions of atoms.

We consider the effective Hamiltonian for the surface states
on terraces given by

H = v(p̂xσy − p̂yσx), (1)

where v is velocity, and σi is the i component of the Pauli
matrix. p̂x and p̂y are the x and y components of the
momentum operator, respectively. We add a potential with
constant height V0 in the transition region with width d.
Transmission probability is analytically obtained as

T = 1

1 + sin2 φ
(

sin θ−sin θ ′
cos θ cos θ ′

)2 , (2)

where θ is the angle of incidence and θ ′ is the angle of
refraction in the transition region. φ is the phase of optical
path given by k′d, where k′ is the wave number in the transition
region.

The broken lines in Fig. 4 show the transmission probability
calculated using this effective model. v is 3.3 eV·Å, which is
the value obtained from the tight-binding calculation shown in
the Appendix. Energy is 0.1074 eV, which is chosen so that the
maximum parallel wave number of propagating waves is the
same as that of the tight-binding calculation. This corresponds
to the energy of the tight-binding calculation in Fig. 4 because
the energy of the Dirac point is about 0.1 eV in the tight-
binding calculation shown in the Appendix.

Potential energy V0 and width d are −0.129 eV and
9.84 Å for step I with single QL height, −0.203 eV and
9.84 × 2 Å for step I with double QL height, −0.279 eV
and 15.24 Å for step II with single QL height, and
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−0.046 eV and 9.84 Å for step I with a reverse slip. We
adopt the minimum distance between the edges of the upper
and lower terraces as the width of the transition region. The
potential energy is determined by fitting to the numerical
curves of tight-binding calculations. Though the curves of the
effective model do not perfectly fit the numerical ones, the
former qualitatively reproduce the latter. It may be concluded
that the transmission through steps of the Bi2Se3 surface is
understood in terms of a simple potential scattering model of
the massless Dirac Hamiltonian.

There is a theoretical study reporting that surface states
with anisotropic Dirac cones exist on the side surfaces of
Bi2Se3,22 where the transmission through a junction of a side
surface sandwiched by two terraces is proposed. In this model,
scattering occurs by the difference in velocity at junctions.
However, this model seems not applicable to the present
system because the side surfaces are too narrow in the atomic
steps. The lower velocity of the side surface is 0.92 eV Å in
Ref. 22. This corresponds to 58 Å in wavelength for 0.1 eV
in energy. This length is much larger than the width of side
surfaces of the atomic steps. Therefore it is not a clear picture
in the present case that current flows through side surfaces.
Actually this model does not explain the difference between the
transmission properties of reverse slips shown in Figs. 4(a) and
4(d). This difference is explained by the difference in current
distribution on atomic scales at steps. The difference in shape
of step structures brings about different current distribution,
which changes the potential effectively experienced by an
electron in the transition region.

B. Bi2Te3

Figure 6 shows calculated transmission probability through
a surface step of Bi2Te3. Transmission probability is calculated
for the step I structure with single QL step height. The
conditions of calculations are the same as the Bi2Se3 case
shown in Fig. 3. The transmission properties are similar to the
Bi2Se3 case. Finite reflection is seen for the surface states of
2 and 3 QL slabs, and almost perfect transmission is obtained
for 4 and 5 QL slabs.

Figure 7 shows transmission probability as a function of
the wave number parallel to the step line. Energy is 0.1 eV.
The perfect transmission is obtained at normal incidence, and
transmission probability decreases with increasing the parallel
wave number. This behavior is common with the Bi2Se3

case. However, there is a distinct difference at large wave
number. The transmission probability reaches the minimum,
and increases with the wave number. The minimum value is
zero except for the reverse slip step. Perfect reflection occurs at
an angle of incidence. The existence of the perfect reflection is
not restricted to special energy. The perfect reflection appears
at an almost specific angle of incidence in the energy range of
the bulk band gap.

The perfect reflection cannot be explained by the simple
potential scattering of massless Dirac Hamiltonian used in
the Bi2Se3 case. The perfect transmission can occur when the
barrier width is a multiple of half wavelength in the barrier.
However, the transmission probability is not zero even in the
tunneling case. In order to clarify the origin of the perfect
reflection, we show detailed calculations below.
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FIG. 6. (Color online) Total transmission probability through a
1 QL step of Bi2Te3 thin films as a function of energy. Probability
is calculated for normal incidence to the step line. Solid and dotted
lines show transmission probability and the number of transmission
channels, respectively. The band structures of thin films without steps
are also shown on the right side.

Figure 8 shows the amplitude of wave functions at the
perfect reflection. The parallel wave number is 0.048 Å−1,
which is the value at perfect reflection in the spectrum of
Fig. 7(a). The incident waves come from the left side. They
are reflected by the steps and completely return to the left
side. The distribution of wave functions is different between
the two cases impinging on the steps from the upper and lower
terraces. In the case impinging from the upper terrace, the wave
is reflected by the side surface of the step, and the penetration
into the lower terrace is weak. In the case impinging from the
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FIG. 7. (Color online) Total transmission
probability through steps of a Bi2Te3 thin film
as a function of the wave number parallel to
the step line. Energy is 0.1 eV. (a) Step I with
single QL height, (b) step I with double QL
height, (c) step II with single QL height, and
(d) step I with single QL height and reverse
slip. Solid and dotted lines show transmission
probability and the number of transmission
channels, respectively.

lower terrace, the wave is reflected by the cliff of the bulk
region underneath the upper terrace. The bulk region breaks
the translational symmetry of the lower terrace and scatters the

FIG. 8. (Color online) Amplitude distribution of wave functions
near surface steps of Bi2Te3. The parallel wave number is 0.048 Å−1.
The transmission probability is zero at this wave number in the
spectrum of Fig. 7(a). Open circles show the positions of atoms.

electrons in surface states. The wave function has appreciable
amplitude in the bulk region underneath the upper terrace.

Since transmission probability is zero at perfect reflection,
propagating waves in the wave functions are only the incident
and reflected waves in the left side. All other waves are
evanescent waves. In general, steps break the translational
symmetry. The break of translational symmetry not only
transforms an incident wave into transmitted and reflected
waves but also causes coupling with evanescent waves. The
perfect reflection means that the incident and reflected waves
are coupled with only evanescent waves and disconnected
from the transmitted wave. The transmitted wave is identical
with the incident wave in the present system. But they are
seamed together with shifts by step heights or slip lengths,
and are decoupled by the reflected and evanescent waves
at the perfect reflection. We have checked that the main
components of evanescent waves in the wave functions at the
perfect reflection are the left-decaying evanescent waves in
the incident side in the case impinging from the upper terrace,
and the right-decaying evanescent waves in the transmitted
side in the case impinging from the lower terrace. In spite
of the asymmetry in spatial distribution and components of
the wave function, the transmission probability is zero at the
same parallel wave number for the two cases with incident
waves from the upper and lower terraces. This is due to the
time-reversal symmetry.

The present perfect reflection has no relation to bound states
localized at step edges. In order to show this, the band structure
of a system where steps are periodically introduced in a slab is
calculated. Figure 9 shows a band structure of a stepped Bi2Te3

slab. The stepped slab is made by periodically introducing
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FIG. 9. (Color online) Band structure of a stepped Bi2Te3 thin
film. Energy bands are shown as a function of the wave number
parallel to the step line. a is the lattice constant.

steps of step I structure with 1 QL height into the surfaces of
a flat slab. The terrace width is 10 times the unit cell of the
flat surface. The thickness of the slab is 6 QLs. The state with
linear dispersion near the zero wave number and around the
energy region from 0 to 2 eV is the surface state on the flat
Bi2Te3 surface.

The two bands with nearly flat dispersion around the energy
of 0.4 eV and in the region of large wave number are states
localized at step edges. We checked that these bands do not
exist in a flat slab without steps. Figure 10 shows the wave
function of the step-edge state. The terrace width is 15 times
the unit cell of the flat surface. The thickness of the slab is
8 QLs. The wave number is 0.7π/a where a is the lattice
constant in the direction along the step line. The state in the
lower band is shown, but the difference in the wave functions
of the lower and higher bands is small. The edge bands are
doubly degenerated like the surface state on the flat surface.
One and the other states are localized at the steps of the upper
and lower surfaces of the slab, respectively. It has been verified
that the edge states are the time-reversal states of the edge states
with the opposite wave number and they are orthogonalized.
However, since bulk bands exist in the energy range of
the edge bands, electrons in the edge states are scattered
to bulk states by nonmagnetic defects on step edges and
perfect transmission does not occur. There is a report that the
states localized at step edges of Bi2Te3 surfaces are observed
experimentally.25

The step-edge states are not the origin of the perfect
reflection in Fig. 7. The reasons are as follows. First, the
edge-state bands are separated in energy from the Dirac cone
of the surface state. They do not mix by elastic scattering.
Second, the wave functions of the perfect reflection shown
in Fig. 8 have asymmetry in the components of evanescent
waves. The evanescent waves have main components in either
upper or lower terrace. They accompany the incident and
reflected propagating waves. In contrast, the wave functions
of the step-edge states decay into both the upper and lower
terraces. They exist without propagating waves. Third, we have

FIG. 10. (Color online) Squared amplitude of the wave function
of the edge state localized at surface steps of Bi2Te3. Open circles
show the position of atoms.

calculated the band structure of a stepped slab for Bi2Se3, and
checked the existence of step edge bands similar to those of
Bi2Te3 shown in Fig. 9. However, the perfect reflection does
not appear in the transmission spectra of Bi2Se3 as shown
in Fig. 4. These results suggest that the origin of the perfect
reflection is not the step-edge states but the difference in the
structure of evanescent waves between Bi2Se3 and Bi2Te3

surfaces.
Finally in this section we show the difference in structures

of evanescent waves between the Bi2Se3 and Bi2Te3 surfaces.
In general wave function ψ(r) of a periodic system satisfies

ψ(r + a) = eiφψ(r), (3)

where a is a lattice vector. When phase φ is a real number, it
is a propagating Bloch state. When φ is a complex number,
it is an evanescent state. Figure 11 shows decay constants of
the generalized Bloch states as a function of the wave number
parallel to the step line. The decay constants are given by the
imaginary part of φ divided by a length. The lengths chosen
for the Bi2Se3 and Bi2Te3 surfaces are 3.56 and 3.78 Å,
respectively. They are the distances of neighboring atomic
rows perpendicular to the step line. The thickness of the slab
is 5 QLs. Energy is 0.2 and 0.1 eV for Bi2Se3 and Bi2Te3,
respectively. The states with zero and nonzero decay constants
are propagating and evanescent waves, respectively.

The structure of evanescent waves is qualitatively different
between the Bi2Se3 and Bi2Te3 surfaces. The structure of
Bi2Se3 is simple and the dependence on the wave number is
weak. The structure of Bi2Te3 is complex and the dependence
on the wave number is strong. This difference is explained by
the difference in the bulk band structures of these materials.
Figures 11(c) and 11(d) show band structures of the Bi2Se3

and Bi2Te3 thin films, respectively. The band structures
show the dispersions parallel to �̄-M̄ for fixed wave vectors
perpendicular to the �̄-M̄ line. Here, �̄-M̄ is perpendicular to
the step line. Therefore, the two band structures displayed for
each material show the contrast of dispersions at different wave
numbers shown in Figs. 11(a) and 11(b). The band structures
of the Bi2Se3 thin film do not show much differences except
for the opening of the band gap of the Dirac cone at 0.1 eV.
In contrast, those of the Bi2Te3 thin film are very different. In
particular, the bulk bands above about 0.2 eV and below 0 eV
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FIG. 11. (Color online) Decay constants of generalized Bloch states of Bi2Se3 (a) and Bi2Te3 (b) thin films as a function of the wave number
parallel to the step line. The thickness of the thin films is 5 QLs. Energy is 0.2 and 0.1 eV for Bi2Se3 and Bi2Te3, respectively. The states shown
by thick and thin lines are doubly and fourfold degenerated, respectively. Energy bands of the Bi2Se3 (c) and Bi2Te3 (d) thin films along lines
parallel to �̄-M̄ for fixed wave vectors perpendicular to �̄-M̄. �̄-M̄ is perpendicular the step line. k⊥ shows the norm of the perpendicular wave
vectors and corresponds to the wave number in (a) and (b). The points at the left and right edges of bands correspond to �̄ and the middle of
�̄-M̄ line when they are projected along the perpendicular direction.

are qualitatively different. For example, the band crossings
appearing in the dispersions parallel to �̄-M̄ are changed.
This means that the energy order of bulk bands with the same
character changes with varying the wave number in Fig. 11(b).

It is known that an evanescent state traces a line as a function
of energy in the complex wave number space.26,27 This so-
called real line connects a local minimum of a conduction
band and a local maximum of a valence band. When there
are many evanescent states, each real line connects different
conduction and valence bands. Therefore, it is natural that the
structure of evanescent waves of the Bi2Te3 surface shows
complex behavior as a function of the wave number shown
in Fig. 11(b) when the bulk band structure largely changes as
a function of the same wave number as shown in Fig. 11(d).
A reason for the strong dependence on wave vectors of the
bulk bands of Bi2Te3 may be seen in the bulk band structures
of Fig. 14. The neighboring bands to the lowest conduction
and highest valence bands of Bi2Te3 have closer proximity in
energy to the latter bands than those of Bi2Se3. However, the
complexity in the structure of evanescent waves is not directly
related with the origin of the perfect reflection as shown below.

Another important difference in the structure of evanescent
waves is seen in the way of linking of the evanescent waves
with the propagating ones of the Dirac cones. The thick

and thin lines show doubly and fourfold degenerated states,
respectively. The propagating waves with zero decay constant
are surface states with the Dirac cones, and they are doubly
degenerated. One is localized at the upper surface of the slab
and the other is at the lower one. In the case of the Bi2Se3

surface they simply change into evanescent waves at 0.032 Å
which is the border wave number of the Dirac cone. There is
no other doubly degenerated state. In the case of the Bi2Te3

surface the propagating states coexist with doubly degenerated
evanescent ones inside the Dirac cone less than 0.068 Å, and
they touch near the border wave number of the Dirac cone. This
result suggests that the coexistence of the propagating states
with the evanescent states that are linked to the propagating
ones is important for the existence of perfect reflection in the
Bi2Te3 case.

With respect to the differences between Bi2Se3 and Bi2Te3,
it is well known that hexagonal warping of the Dirac cone is
strong in the Bi2Te3 surface.19 The hexagonal-warping effect
is usually used for explaining the deformation of the shape of
Dirac cones. However, it gives an effect having another aspect
in transport properties. The circularly symmetrical Dirac cone
given by the Hamiltonian in Eq. (1) reproduces the structure
of doubly degenerate states of Bi2Se3 in Fig. 11. But, it does
not explain the coexistence of the propagating and doubly
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degenerated evanescent waves of Bi2Te3. Since the hexagonal-
warping term is a higher order term of momentum, it produces
a richer structure in energy-momentum space. This has a large
effect on transport properties. In order to show this we present
a calculation of transmission with the hexagonal-warping term
in the next section.

IV. TRANSMISSION OF A MASSLESS DIRAC PARTICLE
WITH HEXAGONAL WARPING

The effective Hamiltonian of surface states with the
hexagonal-warping term is given by

H = v(p̂xσy − p̂yσx) + λ

(
p̂3

+ + p̂3
−

2

)
σz, (4)

where λ is the parameter of hexagonal warping.19 p̂± are given
by p̂x ± ip̂y , respectively. The x axis is parallel to the �̄-K̄
line. This gives the energy-momentum relation for plane-wave
solutions as

E2 = v2p2 + λ2
(
p3

x − 3pxp
2
y

)2
. (5)

When the hexagonal-warping term is absent, this is a quadratic
equation of both px and py . Either propagating or evanescent
waves exist in this case. However, when the hexagonal-
warping term is present, this is an equation of the sixth and
fourth degree for px and py , respectively. The step line of
the steps studied in this paper is parallel to x axis. Therefore,
px is conserved across the steps and is a real number. Since
the equation is a quartic equation of py , there are four
solutions for fixed E and px . Equation (5) expresses the single
Dirac cone of the Bi2Te3 surface. Therefore, the number of
propagating waves is either two or four. When the number of
propagating waves is two, other waves are evanescent waves.
The hexagonal-warping term brings about the coexistence of
propagating and evanescent waves.

We consider transmission through a potential barrier. We
add potential V (y) to the Hamiltonian in Eq. (4), where V (y)
is given by

V (y) =
{

0 (y < 0,y > d),

V0I (0 < y < d).
(6)

d and V0 are width and height of the barrier. I is the 2 × 2
identity matrix.

We consider, for example, the case that the numbers of
propagating and evanescent waves are two in the whole system.
In this case the wave function is set as

	 = eikxx(eikyyup+ + re−ikyyup− + Aeλ−yue−), (7)

in the region of y < 0,

	 = eikxx(Beik′
yyu′

p+ + Ce−ik′
yyu′

p−
+Deλ′

+yu′
e+ + Eeλ′

−yu′
e−), (8)

in the region of 0 < y < d, and

	 = eikxx(teikyyup+ + Feλ+yue+), (9)

in the region of y > d. In the above, t and r are transmission
and reflection coefficients. A, B, C, D, E, and F are coeffi-
cients. h̄ky and −h̄ky are real solutions of Eq. (5), where h̄ky is
the state with positive group velocity. h̄λ+ and h̄λ− are complex

solutions of Eq. (5) multiplied by the imaginary unit. The real
parts of λ+ and λ− are negative and positive, respectively.
up+, up−, ue+, and ue− are corresponding eigenvectors of
the Hamiltonian in Eq. (4), where subscripts p and e mean
propagating and evanescent waves, respectively. The quantities
with primes are similarly defined in the region of 0 < y < d.
When the number of propagating waves is four, there are two
incident channels and the wave function is similarly set for
each incident channel.

Since the Schrödinger equation given by the Hamiltonian
in Eq. (4) is a second-order differential equation of y, we
require two conditions at a boundary. We simply assume the
continuities of wave function 	 and velocity v̂y	 at y = 0
and y = d,28,29 where v̂y is the velocity operator given by

v̂y = ∂H
∂p̂y

. (10)

These two conditions guarantee the conservation of y compo-
nent of current across a boundary.

Figure 12(a) shows transmission probability as a function
of kx . We use 2.55 eV·Å and 250 eV·Å3 for parameters v and λ,
respectively.19 Energy E, barrier width d, and potential height
V0 are 0.2 eV, 17 Å, and 0.4 eV, respectively. The energy is
determined so that the maximum wave number of the Dirac
cone agrees with that in Fig. 7. It roughly corresponds to the
energy of 0.1 eV in Fig. 7 because the Dirac point is −0.14 eV
in the tight-binding calculation shown in the Appendix. The
barrier width and potential height are chosen to approximately
reproduce the spectrum in Fig. 7(a). The value of the barrier
width is reasonable because it is slightly larger than 12 Å
which is the width of the side surface of step I with single QL
height. The spectrum without the hexagonal-warping term is
also shown for comparison. The spectrum with the hexagonal-
warping term in Fig 12(a) reproduces the spectrum of the
tight-binding calculation in Fig. 7(a). Perfect reflection appears
at kx = 0.048 Å−1. The spectrum abruptly drops to zero at
about kx = 0.07 Å−1. This originates from the singular shape
of the hexagonally warped Dirac cone. In order to understand
this, the constant energy line of the Dirac cone at 0.2 eV is
shown in the inset of Fig. 12(a). The transmission probability
without the hexagonal-warping term monotonically decreases
with the wave number.

Figure 12(b) shows the wave function at the perfect
reflection. The region of the potential barrier is 0 < y < 17 Å.
The wave function exponentially decays in the region of
y > 17 Å. A standing wave is formed in the region of y < 0 Å.
The height of the first peak of the standing wave is higher than
others because the evanescent wave does not completely decay
at the first peak. The phase shift is different between the up and
down components of spin. This gives rise to two results. One
is that the two regions where net spin is up and down alternate,
making a periodical spin structure in standing waves like an
anti-ferromagnet. Second is that the total standing wave has
no node. The spin-dependent phase shift is not specific to the
perfect reflection. It appears at any parallel wave number. This
means that careful consideration may be necessary to analyze
data of standing waves measured by spin-independent STS.

Figure 13 shows decay constants as a function of kx . The
decay constants are given by the imaginary part of py/h̄ where
py is a solution of Eq. (5). This structure of evanescent states
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FIG. 12. (Color online) (a) Transmission probability as a function of wave number kx . Solid and dotted lines show the probability with
and without the hexagonal-warping term, respectively. The inset shows constant-energy lines of the Dirac cone at energy of 0.2 eV. Solid and
dotted lines show the Dirac cones with and without the hexagonal-warping term, respectively. (b) Wave function at kx = 0.0483 Å−1. Solid line
shows total squared amplitude of the wave function. Dotted and broken lines show the components with up and down spins, respectively.

qualitatively explains the structure of doubly degenerated
states of the Bi2Te3 surface in Fig. 11(b). The propagating state
exists in the region of kx < 0.07 Å−1. The evanescent state in
this region roughly corresponds to the doubly degenerated
evanescent state with the longest decay length in Fig. 11(b).
The propagating and evanescent states meet at kx = 0.07 Å−1

and change into a degenerated evanescent state in the region of
kx > 0.07 Å−1. They correspond to the fourfold degenerated
states in Fig. 11(b). Since the effective Hamiltonian of Eq. (4)
has only four channels, it does not explain all the evanescent
states in Fig. 11(b). However, the effective Hamiltonian can
explain the existence of perfect reflection and reproduce qual-
itatively the transmission spectrum. It describes the essence of
the transport properties.

The perfect reflection in the present system is essentially
similar to that expected in bilayer graphene.20 The effective
Hamiltonian of a bilayer graphene is a quadratic equation

FIG. 13. (Color online) Decay constants of the massless Dirac
Hamiltonian with the hexagonal-warping term. The decay constants
are shown as a function of wave number kx for energy E = 0.2 eV.

of momentum with a two-component pseudospinor. This
equation also gives rise to the coexistence of propagating
and evanescent waves. The situation is simpler in bilayer
graphene. The pseudospinor is decoupled into propagating and
evanescent components for normal incidence at a junction. It
is clear that propagating waves couple only with evanescent
waves and vise versa at an np junction, and perfect reflection
occurs.

The perfect reflection induced by the hexagonal-warping
term is complicated. It occurs at an oblique angle of incidence.
The spinors of propagating and evanescent waves are not
orthogonalized. Nevertheless, it has a similarity with the
bilayer graphene. It occurs at np and npn junctions. The setting
of energy E and barrier height V0 in Fig. 12 forms an npn

junction. We checked that perfect reflection is not found in the
setting of nnn junctions, and it appears in an np junction in
the present system. Perfect reflection does not appear in the
reverse-slip case shown in Fig. 7(d). This result is explained
by that the effective potential forms an nnn junction in the
reverse-slip case.

Perfect reflection appears also in a system with a δ-function
potential instead of the potential barrier with a finite width. In
this case a discontinuity in the first derivative of the wave
function is introduced at the boundary. The perfect reflection
appears in the δ-function potential with a positive sign for
positive energy E, which corresponds to an npn junction with
a zero width. The δ-function potential with constant strength
does not reproduce the perfect transmission at normal incident.
This is due to the fact that the quadratic term of py in the
hexagonal-warping term vanishes at px = 0, which requires
infinitely large discontinuity of the first derivative. Therefore,
the potential strength should depend on wave number and
approach zero with the approach of px to zero. Then the perfect
transmission recovers at normal incidence.

It is reported that the Dirac cone of the Bi2Se3 surface
is not perfectly circular but hexagonally warped.30 But
the degree of warping is smaller than the Bi2Te3 surface. We
calculate the transmission probability for the Bi2Se3 surface
with taking account of the weak hexagonal-warping effect.
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We use 3.55 eV·Å and 128 eV·Å3 for parameters v and λ of the
Bi2Se3 surface shown in Ref. 30, respectively. We choose the
same values for energy E, barrier width d, and potential V0 as
those in the calculation of the Bi2Te3 surface shown in Fig. 12.
The calculated transmission probability shows monotonic
decrease as a function of kx , and no perfect reflection is found.
These results are common with the tight-binding calculations
in Fig 4, and the hexagonal-warping effect is not essentially
important in the transmission properties of the Bi2Se3 surface.
The absence of perfect reflection is explained as follows. The
parallel wave number, at which perfect reflection appears,
depends on the magnitude of hexagonal-warping parameter
λ. With decreasing λ, the wave number of perfect reflection
shifts to the larger wave number side. The wave number at
which the conditions for perfect reflection are satisfied is
much shifted in the case of the Bi2Se3 surface due to the
weak hexagonal warping, and it overshoots the boundary of
the Dirac cone. Therefore, perfect reflection does not appear
in the transmission spectra. When energy E is raised to 0.3 eV
in order to strengthen the hexagonal-warping effect, perfect
reflection appears even in the case of the Bi2Se3 surface.
However, since bulk bands coexist with the surface-state bands
in this energy region, the perfect reflection would not appear
in a realistic system of Bi2Se3 due to the scattering to bulk
states.

An origin of the difference in the strength of hexagonal
warping between the Bi2Se3 and Bi2Te3 surface may be the
orbital character of the surface states. The main component of
the surface state of the Bi2Se3 surface is pz orbital, where z

axis is perpendicular to the surface. The surface state of the
Bi2Te3 surface has a large amount of px and py components.
The typical percentages of pz and px plus py components
are 67% and 29% for the surface state of Bi2Se3 at energy
about 0.2 eV in the present tight-binding calculation. Those
for Bi2Te3 are 35% and 62% at about 0.1 eV.

V. CONCLUSION

We presented electron transmission across surface steps of
Bi2Se3 and Bi2Te3 calculated by a tight-binding method. We
studied mainly the transmission of the surface states in the
bulk band gaps of these surfaces. In both cases the almost
perfect transmission appears from 4 QL slabs. The feature of
the transmission spectra as a function of the incident angle
with respect to step lines is different between these cases. The
transmission probability of Bi2Se3 monotonically decreases
with increasing the incident angle. The magnitude of decrease
depends on the atomic structure of steps. These spectra are
reproduced by a potential scattering model of the massless
Dirac Hamiltonian.

The transmission spectra of Bi2Te3 do not monotonically
decrease with the incident angle, but perfect reflection exists
at an oblique angle. The perfect reflection is not explained
by only the massless Dirac Hamiltonian. The hexagonal-
warping term is necessary for its existence. The massless Dirac
Hamiltonian with the hexagonal-warping term contains not
only propagating waves but also evanescent waves. This allows
propagating waves to couple with only an evanescent wave at
a junction, and causes perfect reflection. This mechanism of
perfect reflection is similar to that of the bilayer graphene.

We found different phase shifts for up and down spins in
the reflection by steps, which forms stripe structures of spin
density in standing waves.

The standing waves observed on the Bi2Te3 surface are
explained by the hexagonal-warping effect.6,7,19 The shape
of the Dirac cone of the Bi2Te3 surface gradually changes
from circle to concaved hexagram as energy distance increases
from the Dirac point.12 The concaved hexagram has a nesting
structure, which enhances the density of states of the standing
waves with special wave vectors. The observation of standing
waves in experiments is usually explained by the warped shape
of the Dirac cone.

The perfect reflection found in this paper adds a new factor
to the formation of standing waves. The parallel wave vector
at the perfect reflection is close to the nesting positions of the
hexagonally warped Dirac cone. Therefore the standing wave
should be enhanced by the transmission factor also. The perfect
reflection exists even when energy is not far from the Dirac
point, where the shape of the Dirac cone is convex and has
no nesting structure. This may explain two experimental facts.
One is that the standing waves by surface steps are observed
even at energy lower than the energy region, in which the
standing waves around point defects are observed.6 Second is
that standing waves by rough steps are not observed below
the energy region of the concaved hexagram.7 The perfect
reflection exists for atomically straight steps in the present
paper.
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APPENDIX: DETAILS OF TIGHT-BINDING
CALCULATIONS

This appendix describes details of the tight-binding calcu-
lation. We use a tight-binding method with s and p orbitals.
We take account of the transfers between atoms in the
neighboring layers, the same layers, and the second-neighbor
layers. The spin-orbital interaction is included in the intra-
atomic matrix elements.21 The tight-binding parameters are
determined by fitting to bulk band structures obtained by a
density-functional method. We use the WIEN2k package for
the density-functional calculations.31 The wave function is
solved by the full-potential linearized augmented plane wave
method. 8 × 8 × 8 k points in the Brillouin zone are used. The
generalized gradient approximation by Perdew, Burke, and
Ernzerhof32 is used for the exchange-correlation potential. We
use the crystal structures in Ref. 33.

We fit with high weights a few bands near the Fermi
energy in both the valence and conduction bands. In particular
we determine the parameters to reproduce accurately the
dispersions of the highest valence and lowest conduction bands
on the �-Z line and the half part of the Z-F line near Z point in
the bulk Brillouin zone because the top of valence bands and
the bottom of conduction bands are located near these lines.
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TABLE I. Tight-binding parameters of Bi2Se3. Energy is shown
in eV. Lengths show the distances between atoms.

On Site Bi Se(1) Se(2)

εs −10.7629 −10.9210 −13.1410
εp 0.2607 −1.5097 −1.1893

SO 2.0666 0.3197 0.3632

Nearest-Neighbor Bi-Se(1) Bi-Se(2) Se(1)-Se(1)

Layer (2.926 Å) (3.030 Å) (3.354 Å)
ssσ −0.6770 −0.2410 −0.3326
spσ 2.0774 −0.2012 −0.0150
psσ −0.4792 −0.0193 0.0150
ppσ 2.0595 2.0325 0.9449
ppπ −0.4432 −0.5320 −0.1050

Bi-Bi Se(1)-Se(1) Se(2)-Se(2)

Intralayer (4.114 Å) (4.114 Å) (4.114 Å)
ssσ 0.2212 −0.0640 −0.0878
spσ −0.3067 0.2833 −0.2660
ppσ 0.3203 0.3047 −0.1486
ppπ −0.0510 −0.0035 −0.0590

Second-Neighbor Se(1)-Se(2) Bi-Bi Bi-Se(1)

Layer (4.305 Å) (4.449 Å) (4.719 Å)
ssσ 0.0229 −0.0567 0.0333
spσ −0.0318 −0.2147 −0.0047
psσ −0.0778 0.2147 0.2503
ppσ −0.0852 0.1227 −0.1101
ppπ 0.0120 −0.0108 0.1015

Here, the wave vectors are given by �(0,0,0), Z( 1
2 , 1

2 , 1
2 ), and

F( 1
2 , 1

2 ,0) in the units of reciprocal lattice vectors of the trigonal
unit cell. The average of difference between the tight-binding
and density-functional bands is about 0.005 eV on these lines.
We tried fitting without the transfers between second-neighbor
layers or s orbitals, but we did not find parameters which
reproduce the bands near the Fermi energy with satisfactory
precision.

TABLE II. Tight-binding parameters of Bi2Te3. Energy is shown
in eV. Lengths show the distances between atoms.

On Site Bi Te(1) Te(2)

εs −9.9967 −10.4977 −10.8744
εp −0.3774 −1.5684 −1.0189

SO 1.9260 0.7292 0.7820

Nearest-Neighbor Bi-Te(1) Bi-Te(2) Te(1)-Te(1)

Layer (3.108 Å) (3.218 Å) (3.562 Å)
ssσ −0.5815 −0.3734 −0.2926
spσ 1.9027 −0.5901 −0.1142
psσ −0.6636 −0.6020 0.1142
ppσ 1.9956 1.9354 1.1364
ppπ −0.4868 −0.5084 −0.1792

Bi-Bi Te(1)-Te(1) Te(2)-Te(2)

Intralayer (4.369 Å) (4.369 Å) (4.369 Å)
ssσ −0.0132 0.0484 0.0771
spσ −0.3312 0.0961 −0.0256
ppσ 0.1986 0.3243 0.0286
ppπ −0.0299 0.0399 −0.0927

Second-Neighbor Te(1)-Te(2) Bi-Bi Bi-Te(1)

Layer (4.571 Å) (4.725 Å) (5.011 Å)
ssσ 0.0807 −0.0912 0.0496
spσ −0.0659 −0.0592 −0.0369
psσ −0.0572 0.0592 −0.0184
ppσ −0.0390 −0.0614 −0.1993
ppπ 0.0571 0.0584 0.0828

Tables I and II show the determined tight-binding parame-
ters. The origin of energy is the top of the bulk valence bands.

SO is the energy splitting of p orbitals of an atom. One third
of 
SO is the matrix element value of spin-orbital interaction.
Se(1) and Te(1) denote the outer atoms of a QL layer, and
Se(2) and Te(2) are the center atoms.

Figure 14 shows bulk band structures calculated using
these parameters. The L point is given by L(0,0, 1

2 ). The
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FIG. 14. (Color online) Bulk band structures of Bi2Se3 (a) and Bi2Te3 (b). Solid and dotted lines show the band structures obtained by the
tight-binding and density-functional methods, respectively.
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FIG. 15. (Color online) Band structures of Bi2Se3 (a) and Bi2Te3 (b) (111) thin films calculated by the tight-binding method. The thickness
of the thin films is 20 QLs.

tight-binding band structures reproduce those obtained by the
density-functional method near the Fermi energy, and they are
similar to other density-functional calculations.9,11

Figure 15 shows band structures of (111) slabs calculated
by the tight-binding method. These surface band structures
are essentially similar to those of other calculations9–12 and
ARPES experiments.10,12 The group velocity of the Dirac
cones is 3.3 eV·Å (5.0×105 m/s) for Bi2Se3, and 2.9 eV·Å
(4.4×105 m/s) along �̄-K̄ and 2.8 eV·Å (4.3×105 m/s) along
�̄-M̄ for Bi2Te3. They correspond to the experimental values
of 5 × 105 m/s for Bi2Se3,10 and 4.05×105 m/s along �̄-K̄
and 3.87×105 m/s along �̄-M̄ for Bi2Te3.12

The Dirac point in the Bi2Se3 surface is located at 0.08 eV
above the top of bulk valence bands. It is located slightly
below the top of bulk valence bands in other calculations11,34,35

except for one in Ref. 9. An STS experiment shows scattering
of surface states to bulk states at the Dirac point, indicating that
the Dirac point is below the top of the bulk valence bands.36

On the other hand, a quasiparticle calculation shows that the
Dirac point is 0.07 eV above the top of the bulk valence
bands.37

We performed density-functional calculations using other
experimental lattice parameters38 and different exchange-
correlation potentials.39 But the bulk band structures are
essentially similar, and the tight-binding parameters fitted to

TABLE III. Band gaps of Bi2Se3 (111) thin films. Energy is shown
in eV. TB, DF, and EXP represent tight binding, density function, and
experiment, respectively.

Thickness (QL) TB DF (Present) EXP44 EXP43 DF41

1 0.837 0.841 0.710
2 0.179 0.205 0.252 0.28 0.098
3 0.043 0.075 0.138 0.34 0.004
4 0.008 0.028 0.070 0.012
5 0.000 0.008 0.041 0.004

these bands give the position of the Dirac point above the top of
the bulk valence bands. It is possible to move the position of the
Dirac point by shifting the on-site energy of atomic orbitals in
the surface QL because it is natural that the potential of surface
atoms may be different from that of inner atoms. However, we
do not do this tuning because we discuss the transmission of
surface states in the bulk band gap above the Dirac point in
this paper. The position of the Dirac point is not crucial.

Tables III and IV show band gaps of Dirac cones of Bi2Se3

and Bi2Te3 (111) thin films. The results calculated by the
density-functional method using the WIEN2K package are also
shown. It is theoretically predicted that the band gap in Bi2Se3

thin films oscillates as a function of the film thickness.40–42 The
present tight-binding calculation shows monotonic decrease of
the band gap with increase of the film thickness. Our density-
functional calculation also shows monotonic decrease. An
experiment provides data suggesting the oscillating behavior,43

but another experiment shows monotonic decrease of the
band gap.44 The quasiparticle calculation shows monotonic
decrease of the band gap.37 In this paper we discuss the
transmission properties through surface steps, where the
interaction between the surface states localized on the upper
and lower surfaces of thin films can be neglected. Therefore
the band gap in thin films with finite thickness is not essentially
important.

TABLE IV. Band gaps of Bi2Te3 (111) thin films. Energy is
shown in eV. TB and DF represent tight binding and density function,
respectively.

Thickness (QL) TB DF (Present) DF45 DF41

1 0.555 0.439 0.4338 0.391
2 0.168 0.103 0.1319 0.148
3 0.010 0.029 0.0261 0.036
4 0.037 0.033 0.0070 0.005
5 0.007 0.004 0.0090

205424-13



KATSUYOSHI KOBAYASHI PHYSICAL REVIEW B 84, 205424 (2011)

1M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).
2X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).
3M. König, H. Buhmann, L. W. Molenkamp, T. Hughes, C.-X. Liu,
X.-L. Qi, and S.-C. Zhang, J. Phys. Soc. Jpn. 77, 031007 (2008).

4X.-L. Qi and S.-C. Zhang, Phys. Today 63, 33 (2010).
5P. Roushan, J. Seo, C. V. Parker, Y. S. Hor, D. Hsieh, D. Qian,
A. Richardella, M. Z. Hasan, R. J. Cava, and A. Yazdani, Nature
(London) 460, 1106 (2009).

6T. Zhang, P. Cheng, X. Chen, J.-F. Jia, X. Ma, K. He, L. Wang,
H. Zhang, X. Dai, Z. Fang et al., Phys. Rev. Lett. 103, 266803
(2009).

7Z. Alpichshev, J. G. Analytis, J.-H. Chu, I. R. Fisher, Y. L. Chen,
Z. X. Shen, A. Fang, and A. Kapitulnik, Phys. Rev. Lett. 104,
016401 (2010).

8J. Seo, P. Roushan, H. Beidenkopf, Y. S. Hor, R. J. Cava, and
A. Yazdani, Nature (London) 466, 343 (2010).

9H. Zhang, C.-X. Liu, X.-L. Qi, X. Dai, Z. Fang, and S.-C. Zhang,
Nature Phys. 5, 438 (2009).

10Y. Xia, D. Qian, D. Hsieh, L. Wray, A. Pal, H. Lin, A. Bansil,
D. Grauer, Y. S. Hor, R. J. Cava et al., Nature Phys. 5, 398 (2009).

11W. Zhang, R. Yu, H.-J. Zhang, X. Dai, and Z. Fang, New J. Phys.
12, 065013 (2010).

12Y. L. Chen, J. G. Analytis, J.-H. Chu, Z. K. Liu, S.-K. Mo, X. L.
Qi, H. J. Zhang, D. H. Lu, X. Dai, Z. Fang et al., Science 325, 178
(2009).

13J. Wang, W. Li, P. Cheng, C. Song, T. Zhang, P. Deng, X. Chen,
X. Ma, K. He, J.-F. Jia et al., e-print arXiv:1105.1957.

14X. Zhou, C. Fang, W.-F. Tsai, and J. Hu, Phys. Rev. B 80, 245317
(2009).

15W.-C. Lee, C. Wu, D. P. Arovas, and S.-C. Zhang, Phys. Rev. B 80,
245439 (2009).

16H.-M. Guo and M. Franz, Phys. Rev. B 81, 041102(R) (2010).
17R. R. Biswas and A. V. Balatsky, Phys. Rev. B 83, 075439

(2011).
18Q.-H. Wang, D. Wang, and F.-C. Zhang, Phys. Rev. B 81, 035104

(2010).
19L. Fu, Phys. Rev. Lett. 103, 266801 (2009).
20M. I. Katsnelson, K. S. Novoselov, and A. K. Geim, Nature Phys.

2, 620 (2006).
21W. A. Harrison, Elementary Electronic Structure (World Scientific

Publishing, Singapore, 1999), Chap. 5-3 G.
22C.-Y. Moon, J. Han, H. Lee, and H.-J. Choi, Phys. Rev. B 84, 195425

(2011).
23K. Kobayashi, Surf. Sci. 583, 16 (2005).
24H. H. B. Sørensen, P. C. Hansen, D. E. Petersen, S. Skelboe, and

K. Stokbro, Phys. Rev. B 79, 205322 (2009).

25Z. Alpichshev, J. G. Analytis, J.-H. Chu, I. R. Fisher, and
A. Kapitulnik, Phys. Rev. B 84, 041104(R) (2011).

26V. Heine, Proc. Phys. Soc. London 81, 300 (1963).
27V. Heine, Surf. Sci. 2, 1 (1964).
28T. Yokoyama, Y. Tanaka, and N. Nagaosa, Phys. Rev. Lett. 102,

166801 (2009).
29E. Zhao, C. Zhang, and M. Lababidi, Phys. Rev. B 82, 205331

(2010).
30K. Kuroda, M. Arita, K. Miyamoto, M. Ye, J. Jiang, A. Kimura,

E. E. Krasovskii, E. Chulkov, H. Iwasawa, T. Okuda et al., Phys.
Rev. Lett. 105, 076802 (2010).

31P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, and
J. Luitz, WIEN2K, An Augmented Plane Wave + Local Orbitals
Program for Calculating Crystal Properties (Karlheinz Schwarz,
Tech. Universität Wien, Austria, 2001).

32J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865
(1996).

33S. K. Mishra, S. Satpathy, and O. Jepsen, J. Phys. Condens. Matter
9, 461 (1997).

34O. V. Yazyev, J. E. Moore, and S. G. Louie, Phys. Rev. Lett. 105,
266806 (2010).

35H. Jin, J.-H. Song, and A. J. Freeman, Phys. Rev. B 83, 125319
(2011).

36S. Kim, M. Ye, K. Kuroda, Y. Yamada, E. E. Krasovskii, E. Chulkov,
K. Miyamoto, M. Nakatake, T. Okuda, Y. Ueda et al., Phys. Rev.
Lett. 107, 056803 (2011).

37V. Yazyev, E. Kioupakis, J. E. Moore, and S. G. Louie, e-print
arXiv:1108.2088.

38R. W. G. Wyckoff, Crystal Structures, Vol. 2 (John Wiley & Sons,
New York, 1964).

39J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E.
Scuseria, L. A. Constantin, X. Zhou, and K. Burke, Phys. Rev. Lett.
100, 136406 (2008).

40J. Linder, T. Yokoyama, and A. Sudbø, Phys. Rev. B 80, 205401
(2009).

41C.-X. Liu, H. Zhang, B. Yan, X.-L. Qi, T. Frauenheim, X. Dai,
Z. Fang, and S.-C. Zhang, Phys. Rev. B 81, 041307(R) (2010).

42H.-Z. Lu, W.-Y. Shan, W. Yao, Q. Niu, and S.-Q. Shen, Phys. Rev.
B 81, 115407 (2010).

43Y. Sakamoto, T. Hirahara, H. Miyazaki, S. Kimura, and
S. Hasegawa, Phys. Rev. B 81, 165432 (2010).

44Y. Zhang, K. He, C.-Z. Chang, C.-L. Song, L.-L. Wang, X. Chen,
J.-F. Jia, Z. Fang, X. Dai, W.-Y. Shan et al., Nature Phys. 6, 584
(2010).

45K. Park, J. J. Heremans, V. Scarola, and D. Minic, Phys. Rev. Lett.
105, 186801 (2010).

205424-14

http://dx.doi.org/10.1103/RevModPhys.82.3045
http://dx.doi.org/10.1103/RevModPhys.83.1057
http://dx.doi.org/10.1143/JPSJ.77.031007
http://dx.doi.org/10.1063/1.3293411
http://dx.doi.org/10.1038/nature08308
http://dx.doi.org/10.1038/nature08308
http://dx.doi.org/10.1103/PhysRevLett.103.266803
http://dx.doi.org/10.1103/PhysRevLett.103.266803
http://dx.doi.org/10.1103/PhysRevLett.104.016401
http://dx.doi.org/10.1103/PhysRevLett.104.016401
http://dx.doi.org/10.1038/nature09189
http://dx.doi.org/10.1038/nphys1270
http://dx.doi.org/10.1038/nphys1274
http://dx.doi.org/10.1088/1367-2630/12/6/065013
http://dx.doi.org/10.1088/1367-2630/12/6/065013
http://dx.doi.org/10.1126/science.1173034
http://dx.doi.org/10.1126/science.1173034
http://arXiv.org/abs/arXiv:1105.1957
http://dx.doi.org/10.1103/PhysRevB.80.245317
http://dx.doi.org/10.1103/PhysRevB.80.245317
http://dx.doi.org/10.1103/PhysRevB.80.245439
http://dx.doi.org/10.1103/PhysRevB.80.245439
http://dx.doi.org/10.1103/PhysRevB.81.041102
http://dx.doi.org/10.1103/PhysRevB.83.075439
http://dx.doi.org/10.1103/PhysRevB.83.075439
http://dx.doi.org/10.1103/PhysRevB.81.035104
http://dx.doi.org/10.1103/PhysRevB.81.035104
http://dx.doi.org/10.1103/PhysRevLett.103.266801
http://dx.doi.org/10.1038/nphys384
http://dx.doi.org/10.1038/nphys384
http://dx.doi.org/10.1103/PhysRevB.84.195425
http://dx.doi.org/10.1103/PhysRevB.84.195425
http://dx.doi.org/10.1016/j.susc.2005.03.022
http://dx.doi.org/10.1103/PhysRevB.79.205322
http://dx.doi.org/10.1103/PhysRevB.84.041104
http://dx.doi.org/10.1088/0370-1328/81/2/311
http://dx.doi.org/10.1016/0039-6028(64)90036-6
http://dx.doi.org/10.1103/PhysRevLett.102.166801
http://dx.doi.org/10.1103/PhysRevLett.102.166801
http://dx.doi.org/10.1103/PhysRevB.82.205331
http://dx.doi.org/10.1103/PhysRevB.82.205331
http://dx.doi.org/10.1103/PhysRevLett.105.076802
http://dx.doi.org/10.1103/PhysRevLett.105.076802
http://dx.doi.org/10.1103/PhysRevLett.77.3865
http://dx.doi.org/10.1103/PhysRevLett.77.3865
http://dx.doi.org/10.1088/0953-8984/9/2/014
http://dx.doi.org/10.1088/0953-8984/9/2/014
http://dx.doi.org/10.1103/PhysRevLett.105.266806
http://dx.doi.org/10.1103/PhysRevLett.105.266806
http://dx.doi.org/10.1103/PhysRevB.83.125319
http://dx.doi.org/10.1103/PhysRevB.83.125319
http://dx.doi.org/10.1103/PhysRevLett.107.056803
http://dx.doi.org/10.1103/PhysRevLett.107.056803
http://arXiv.org/abs/arXiv:1108.2088
http://dx.doi.org/10.1103/PhysRevLett.100.136406
http://dx.doi.org/10.1103/PhysRevLett.100.136406
http://dx.doi.org/10.1103/PhysRevB.80.205401
http://dx.doi.org/10.1103/PhysRevB.80.205401
http://dx.doi.org/10.1103/PhysRevB.81.041307
http://dx.doi.org/10.1103/PhysRevB.81.115407
http://dx.doi.org/10.1103/PhysRevB.81.115407
http://dx.doi.org/10.1103/PhysRevB.81.165432
http://dx.doi.org/10.1038/nphys1689
http://dx.doi.org/10.1038/nphys1689
http://dx.doi.org/10.1103/PhysRevLett.105.186801
http://dx.doi.org/10.1103/PhysRevLett.105.186801

