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Theory of nonequilibrium single-electron dynamics in STM imaging of dangling bonds on a
hydrogenated silicon surface
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During fabrication and scanning tunneling microscope (STM) imaging of dangling bonds (DBs) on a
hydrogenated silicon surface, we consistently observed halolike features around isolated DBs for specific imaging
conditions. These surround individual or small groups of DBs, have abnormally sharp edges, and cannot be
explained by conventional STM theory. Here, we investigate the nature of these features by a comprehensive
three-dimensional model of elastic and inelastic charge transfers in the vicinity of a DB. Our essential finding
is that nonequilibrium current through the localized electronic state of a DB determines the charging state of
the DB. This localized charge distorts the electronic bands of the silicon sample, which in turn affects the STM
current in that vicinity causing the halo effect. The influence of various imaging conditions and characteristics
of the sample on STM images of DBs is also investigated.
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I. INTRODUCTION

Dangling bonds (DBs) on silicon crystal surfaces are
becoming increasingly important candidates for building ex-
tremely miniaturized nanoelectronics devices. DBs are band-
gap electronic states (or point defects) that can act as donors
or acceptors, depending on their energy level with respect to
the Fermi level. A surface silicon atom can host a dangling
bond when only three of its valence electrons are involved in
covalent bonds, the remaining valence electron being left in
an unsatisfied (dangling) bond state. It turns out that a DB can
be in three, energetically different states: a negative state DB−
(holding two localized electrons), a neutral state DB0 (holding
a single localized electron), and a positive state DB+ (holding
a localized hole). Traditionally, the energy eigenvalues of
band-gap states are referred as transition levels, that is, the
electrical levels accessible by scanning tunneling microscopy
and spectroscopy. In this terminology, the transition levels
are denoted as EDB(0/+) and EDB(−/0), where the slash in
the middle represents the electrical level and the symbols on
left/right of it represent the charge state if the Fermi level lies
above/below that level.

The exact energy eigenvalues for an isolated DB on
an otherwise perfectly terminated H:Si (001) 2 × 1 surface
are not exactly known, but reasonable estimates can be
obtained by various computational methods: an extended
Huckel theory,1 Poisson-Schrödinger equations,2 and density
functional theoretical (DFT) methods.3 The three-dimensional
form of the DB wave function must, as a surface state,
decay exponentially into vacuum and the crystal as well as
laterally away from the center of the host Si atom. Theoretical
estimates1–3 and experimental measurements (by contactless
capacitance-voltage method4) of the DB-state energy in the
band gap are found to agree relatively well. In this study, we
assume the energy eigenvalues for the different DB states are,
with respect to the silicon valence band maximum (VBM):
EDB− = 0.82 eV,4 EDB0 = 0.35 eV,5 and EDB+ = 0.0 eV.2

Because the latter state is degenerate with the silicon valence
band, in this study, it is assumed not to play a significant role.

Studying constant-current empty-state scanning tunneling
microscope (STM) images for different sample bias voltage,
Vbias, and current setpoints reveals in some cases, the existence
of a dark halo surrounding a bright spot of atomic size at the
location of the DB. The appearance of such a halo has been
also observed when imaging single dopant atoms located near
the surface for other types of semiconductors.6,7 The simple
and intuitive explanation is that this dark halo is caused by
upward bending of the energy bands at the surface, leading to
a reduction of the STM current (in constant-height imaging
mode) or equivalently a decrease in the STM tip height (in
constant-current imaging mode). In order to distinguish such a
spatially limited band bending from one of a large scale, e.g.,
for a great density of DBs, it is important to understand to what
extent band bending due to the charging of a collective of such
surface states occurs uniformly along the surface and where the
delimiting behavior occurs. Arguably, a rule of thumb is that
band bending becomes uniform (and the Fermi level becomes
pinned at the surface) when the average distance between
two dangling bonds becomes equal to the screening length in
the semiconductor. However, for the cases approached in this
study, due to the great extent of H termination of our silicon
surfaces, this condition is not fulfilled. Therefore the Fermi
level is not pinned at such surfaces. This fact implies that each
isolated DB (unless very close to others), has its own individual
screening field due to mobile charge carriers in the crystal. On
the other hand, isolated groups of closely spaced DBs (<2 nm)
are electronically coupled,1,3,8 and have more or less a common
screening field around the whole DB group. The coupling of
such groups in the presence of an STM tip was recently studied
experimentally and theoretically within an extended Hubbard
model8 to yield time-average occupations of individual DBs
without explicitly accounting for the dynamics of electrons
in/out the DB group.

The properties of various types of single defect levels in
semiconductors have been previously studied in the context of
their STM imaging appearance.9 For DBs, the carrier capture
properties10,11 and the on-site Coulomb interaction between
two localized electrons can be extracted from spectroscopic
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FIG. 1. STM images of a 4.0 × 3.6 nm region of the 2 × 1 H-Si
(001) surface with an isolated DB in the unoccupied imaging mode
(sample biased positively) at imaging setpoints (sample bias and
current) indicated below each image.

measurements12 on isolated DBs on a B-doped Si(111)-(
√

3 ×√
3)R30o. However, in these latter studies, electron dynamics

is treated in a simplified manner, particularly with respect to
the effects of tip-induced band bending at the surface. Here, we
study single electron dynamics at a DB during STM imaging,
accounting for all the important charge transfer mechanisms
arising when band bending is present at the surface. Ultimately,
we gain important insights into the charging state of a DB and
its consequences in the appearance of STM images.

II. DBS IN THE POTENTIAL LANDSCAPE OF THE
IMAGING PROBE

In Fig. 1, we show unoccupied-state STM images of a single
isolated dangling bond on H-terminated Si (001) with a 2 × 1
surface reconstruction. In Fig. 1(a), the DB can be identified
close to the center of the image as a bright spot surrounded by
a darker ringlike or “halo” feature. As the setpoint current is
decreased to 0.2 nA in (b), the halo diminishes and a further
current decrease to 0.1 nA in (c) causes the halo to disappear
and be replaced by a larger and brighter protrusion. This
appearance is consistent with many experimental observations
taken at such imaging conditions, and similar findings have
been previously reported in the literature.13 Also, such imaging
features have been observed in the case of other localized
charge centers, such as subsurface dopants.9

We define an isolated DB on the silicon surface as one with
no equivalent nearby DBs to be significantly coupled with
(nor other resonant electronic levels). This implies that at an
isolated DB, an electron is strictly localized in an orbital at a
single Si atom. Regardless of its charging state, we assume a
simple functional form for the DB wave function, namely, a
Slater-type orbital (STO) having p-type symmetry (two lobes):

ψDB(r) = ψDB(r,θ ) = Nr cos(θ ) exp[−ζ (θ )r], (1)

where r and θ are the three-dimensional spherical coordinates
and N is a normalization constant. The difference from a “reg-
ular” STO is that in our case the decay rate ζ in the exponent
must vary with the z coordinate in order to ensure consistency
with the asymptotic decay in the specific environment of
the DB as follows. Note that the function ζ (and therefore
ψDB) is dependent on the charge state of the DB as described
below. The decay rate is related to the ionization potential
Wi of the DB electron via ζ = √

2mWi/h̄. This ensures the
correct asymptotic behavior (from first principles) of the wave
function above. As the DB orbital is located partially in
vacuum and partially in silicon, the ionization potential is not
a constant, but it rather depends on the “ionization path” of
the DB electron, e.g., it is energetically easier to extract an
electron toward the bulk (into the conduction band of silicon)
than toward the vacuum. To reflect this fact, here we assume a
simple form for this dependence, namely,

Wi(z) = Wbulk + 1
2 (Wvac − Wbulk)[tanh(z/w) + 1], (2)

where Wbulk and Wvac are the ionization potentials with respect
to bulk and vacuum, respectively (their exact values are
different for the DB0 and DB− species), z is measured from the
surface and negative toward vacuum, and w is a characteristic
width of the transition as can be seen in Fig. 2(a). The
normalization of this wave function is calculated numerically
and the resulting charge density for DB− is plotted in Fig. 2(b)
as a color map for a two-dimensional axial section. A value
of w = 5 Å was chosen for the plots shown. Note that, as
a consequence of our choice for the ζ function, the two
lobes of the DB orbital are quite disproportionate, with the
vacuum lobe being much smaller in the spatial extent and

FIG. 2. (Color) Characteristics of the DB orbital. (a) The ionization potential as a function of distance from the surface (positive z in the
sample) for DB0 (dashed curve) and DB− (solid curve) species. (b) Color map of the distribution of charge density of a DB− in an axial plane
as predicted by the modified STO function in Eq. (1). The color bar indicates the values of the charge density.
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portion of charge. This choice of simplified orbital is also
qualitatively consistent with DB orbital characteristics derived
from ab initio calculations for an isolated DB at the surface of
model hydrogenated silicon clusters,3 mimicking the 2 × 1
H-Si (001) surface. More rigorously speaking, due to the
symmetry of the silicon lattice, the wave function of DB0

exhibits sp3 symmetry. Adding an extra electron will result in
different hybridization coefficients for the DB− wave function
as compared to DB0.14 As the p-type component in both cases
will be somewhere between 70–90%, we choose to keep only
this dominant component in our model. Another simplification
is that the rotational symmetry axis of the p orbital is taken to
be perpendicular to the surface, while in reality, it is skewed.
However, this does not affect our analysis in any essential
way. Anticipating, the essential features of the DB orbital in
our model are the characteristic decay tails toward the vacuum
and the semiconductor, and these are appropriately captured in
our model. Therefore, in the following analysis, we will make
use of the simplified wave function in Eq. (1) for both DB0 and
DB−, denoted ψ0

DB and ψ−
DB, with corresponding ionization

potentials W 0
i and W−

i , respectively, plotted in Fig. 2(a).
When the DB is negatively charged, the localized extra

electron is expected to locally distort the electronic levels
at the surface of the host silicon crystal, i.e., cause band
bending. Band bending in a semiconductor is the phenomenon
of distortion of electronic levels of the crystal in the presence
of an external perturbing electric field. During STM imaging,
another source of band bending is the biased STM probe
itself and this is known as the tip-induced band bending.
Depending on the value of the STM bias voltage, the amount
of band bending can be considerable, sometimes enough to
induce an inversion layer near the surface (whenever the
Fermi level becomes lower than the intrinsic level of the
semiconductor). The amount of the tip-induced band bending
can be theoretically estimated by solving the Poisson and
Schrödinger equations simultaneously, for example, by finite
element methods (FEM) for an assumed probe geometry.

During STM imaging of isolated DBs, as the imaging tip is
brought closer to the DB location, the band bending is turned
gradually up and so is the DB level relative to the sample
Fermi level. In Fig. 3, we show a typical band bending diagram
calculated by FEM for the silicon surface in the presence of
a scanning probe tip. The sample is n type with a resistivity
of 3.5 m� cm, the sample bias voltage was assumed +2 V,
and the tip height was assumed to be 7 Å. For these typical
imaging conditions, the bands are bent upward to the extent
that the sample Fermi level at the surface is 0.3 eV below
the transition level (−/0). This value is much greater than
kT , which—assuming thermodynamic equilibrium between
the DB state and the bulk semiconductor—means that at room
temperature, the DB should be half filled (neutral). However,
the process of STM imaging also injects electrons into the DB
state and an interplay of in/out transfer rates starts to form. In
this study, we show how this fact has important consequences
on the way surface states are imaged by STM.

An important consequence is evident from the diagram
in Fig. 3; in the presence of the tip-induced field, the DB
level becomes resonant with conduction band (CB) levels
of the host crystal, implying that tunneling from DB into
the crystal becomes possible. This situation is then similar

FIG. 3. Calculated band bending diagram as a function of the
z coordinate. The shown curve is the conduction band minimum
(CBM), the dashed horizontal line is the sample Fermi level, and the
upper horizontal line shows the DB− level with indication to tunneling
into resonant levels in the silicon conduction band. The sample is n
type with a resistivity of 3.5 m� cm, sample bias +2 V, STM tip
height 7 Å.

to double barrier tunneling junctions, which were recently
used to study energetic levels of single atoms,15 defects,16 and
molecules17–19 at thin insulating films on metallic surfaces
as well as metallic nanoislands on Si.20 Manipulation of
charge states17 and bond structure21 of molecules has also
been demonstrated. However, the similarity of our system to
these other cases is limited because in our case, there are a
number of other factors at play that contribute to the charging
of an individual DB, as we show below.

Careful examination of our available experimental data in
conjunction with a quantitative theoretical analysis indicates
that STM imaging features of dangling bonds are due to
dangling bond charge caused by nonequilibrium effects during
imaging, i.e., rate-limited charging/discharging of a DB during
extraction/injection of electrons by the STM tip.

For routine unoccupied-state imaging conditions (sample
bias +2 V, current setpoint 100 pA–1 nA), the tip-induced
band bending renders the Fermi level of the sample to fall
between the two transition levels (0/+) and (−/0) of the DB.
Consequently, the transfer of an additional electron into the
half-filled DB from the STM tip occurs in a non equilibrium
steady state whenever the rate into the DB is higher than the
rate out of the DB.

Explaining the DB imaging as purely quantum-mechanical
behavior, namely, as Friedel oscillations in the local density
of states, has been proposed—without consideration of band
bending and nonequilibrium effects—but this explanation
is inconsistent with the variation of the DB features with
temperature and STM bias voltage.22

III. NONEQUILIBRIUM CURRENT THROUGH
A DB STATE

In the above discussion, we assert that a net negative
charge on the DB during imaging can only be explained by a
nonequilibrium phenomenon, and is in fact impossible if the
DB is in electrochemical equilibrium with the silicon crystal
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(due to the DB level being greatly elevated from the bulk Fermi
level). In our system, we have a situation where the current
flows from one reservoir (metal) at the chemical potential
μtip = μ1 to another (Si crystal) at a chemical potential
μSi = μ2 via a discrete level (DB) whose energy is somewhere
between μtip and μSi. An electron can be transferred into or out
of the localized DB level at two different rates, say rtip = r1

and rSi = r2, which in general include all elastic and inelastic
charge transfer mechanisms. Overall, a steady state of current
flow is achieved when rtip = rSi in which the occupation of the
DB level depends on the DB energy and the escape rates.

For a DB state in equilibrium with reservoir 1 only
(or 2 only), its occupation equals the Fermi-Dirac distri-
bution, f

(1)
DB = fFD(EDB,μ1) = {1 + exp[(EDB − μ1)/kT ]}−1

(or f
(2)
DB = fFD(EDB,μ2) = {1 + exp[(EDB − μ2)/kT ]}−1, re-

spectively). However, since the DB level is in contact with
both reservoirs, the DB will achieve a steady state of filling,
with an occupation f ∗

DB somewhere in between (the superscript
* stands here for nonequilibrium occupation function). Then,
the current through one contact equals the current through
the other, I1 = I2, which is the condition for a steady-state
occupation of a DB. In order to calculate the steady-state
current and DB occupation, we must first determine the flow
rates between the tip and DB on one hand and between sample
and DB on the other. The possible mechanisms of charging
and discharging a DB in the empty-state STM imaging mode
are shown in Fig. 4.

Note that in our system, the first transition level (0/+)
is always below the Fermi level and so the tip can not
transfer electrons into that level. Therefore the single relevant
occupation probability in our system is that of the DB− level,
f ∗

DB, varying between 0 (for DB with zero time-average charge)
and 1 (for DB with −1 time-average charge). In the sections
below, we discuss each charge transfer mechanism shown in
Fig. 4 in detail.

A. Rate of electron transfer between STM tip and an
isolated DB

During an STM experiment, a possible mechanism for
electron transfer from the STM tip to a DB (and vice versa) is
by elastic tunneling across the vacuum gap. Another possible
mechanism is a two-step capture process in which an electron
from the tip first tunnels into the Si crystal in the vicinity
of the DB and then immediately gets captured by the DB
before it has the chance to become an extended-state electron.
Henceforth, we call this mechanism “STM vicinity capture of
tunneling electrons by a DB.” (1) The rate of elastic transfer
between the STM tip and an isolated DB can be estimated (see
Appendix A for more details):

Itip-DB(d) = 4πe

h̄

1

�DB
ρtip(EDB)

× [ftip(EDB) − f ∗
DB]|M̃tip-DB(EDB,d)|2, (3)

where we denote the Fermi-Dirac distribution simply by f

with a subscript indicating the respective electrode (“tip” for
tip, or “Si” for silicon crystal), �DB is the volume of the DB
(defined as the region in space where the DB charge density
is greater than 1% of its maximum), and |M̃(EDB,d)|2 is a
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FIG. 4. (Color) Three-dimensional rendering of an isolated DB
on the H-Si(001) surface in the presence of an STM tip in the
unoccupied imaging mode. (a) Various channels for elastic and
inelastic charge transfers between the STM tip and the silicon sample
in the vicinity of the DB are indicated by colored arrows and labeled
for further discussion. Si atoms are green, H atoms are white, and
the DB is shown schematically as purple sphere. (b) Diagram of the
silicon band gap, which further explains the various channels shown
in (a): (2) inelastic capture by the DB0 level (black horizontal line)
of an STM electron after which DB becomes negative, (5) thermal
electron emission from the DB− level (red horizontal line) into the
CB, and (6) inelastic capture of a hole by the negative DB, followed
by recombination and the DB becoming neutral. (c) Tip-induced
band bending diagram in the direction normal to the surface. The
elastic charge transfers shown in (a) are detailed here: (1) direct
tip-silicon tunneling, (3) tip-DB tunneling across the vacuum gap,
and (4) tunneling from the DB− state into the CB across the potential
barrier created by band bending. The Fermi level in silicon is indicated
by a dashed red line.

properly normalized transfer matrix element for separation d

(between DB and tip centers) defined as

|M̃tip-DB(EDB,d)|2

=
(

h̄2

2m

)2 ∣∣∣∣
∫

S0

dS · [
ϕtip∇

(
ϕ0

DB

)∗ − (
ϕ0

DB

)∗∇ϕtip
]∣∣∣∣

2

.

(4)

Note that in Eq. (3) above, we also replaced the Fermi-Dirac
distribution function for the DB with the nonequilibrium occu-
pation function. As explained in Appendix A, the functions ϕ

above represent dimensionless wave functions of the respective
states under consideration defined as

ϕ(r) =
√

�ψ(r), (5)

where ψ is the normalized wave function and � is the volume
of the electrode or the localized state, respectively. Also note
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that the wave function of the neutral DB state enters the transfer
matrix element above. For the purpose of estimating the
tunneling currents, the wave function of the STM tip is taken
in the conventional form of the Tersoff-Hamann approach:

ψ
tip
E (r) = ctip(R0)

exp[−ζtip(E)|r − rtip|]
ζtip(E)|r − rtip| (6)

for |r − rtip| > R0, where rtip is the position of the
tip center, R0 is a characteristic tip radius, ctip(R0) =
c0tζtipR0 exp(ζtipR0)/

√
�tip, c0t is a dimensionless constant of

the order of unity, ζtip(E) = √
2m(Evac − E)/h̄, and Evac the

vacuum level.
Generally speaking, one would expect sequential tunneling

events from the STM tip, into both (0/+) and (−/0) transition
levels. However, the DB can never be in charge state DB+
(holding a localized hole) because (i) the Fermi level of Si
is always above the first transition level and (ii) the (0/+)
is resonant with the silicon valence band (VB). Therefore
tunneling into the first transition level can be neglected.

(2) The STM vicinity capture of tunneling electrons by a
DB involves tunneling from the STM tip into the Si crystal for
a range of electron energies and momentum orientations and
subsequent capture of those hot electrons by a neutral DB. The
corresponding current into the DB is denoted by CSTM

n and the
details of its calculation are described in Appendix C.

During an STM experiment, in addition to the tunneling
current from the tip to the DB, other transfer mechanisms
contribute to the overall balance of charge on a DB orbital.
They are discussed in detail below.

B. Rate of electron transfer between an isolated DB and the
silicon crystal

Once an incoming electron becomes localized at a DB state,
there are three main mechanisms of transfer into the silicon
crystal.

(1) The localized DB electron escapes by emission into the
conduction band via thermal excitation. This thermal escape
rate only depends on the barrier height and temperature; the
escape rate is given by

en = σnvnNc exp[−(ECBM − EDB)/kBT ], (7)

where the prefactor is an attempt frequency and Nc is the
effective density of states at the bottom of the conduction
band:

Nc = 1√
2

(
mn,effkBT

πh̄2

)3/2

(8)

with mn,eff being the effective mass of electrons in Si.
(2) The localized DB electron tunnels elastically into the

bulk CB level (at the classical turning point level where the
CBM intersects the DB− level). Tunneling from DB occurs
across the space charge layer and the tunneling distance
depends, via band bending, on the doping level of the sample,
STM tip height, and bias voltage. The tunneling current can
be estimated by using the formula (see Appendix A)

IDB-Si = 4πe

h̄

1

�DB
gSi(EDB)[f ∗

DB − fSi(EDB)]|M̃DB-Si(EDB)|2,
(9)

where M̃DB-Si in this case also depends on the tunneling barrier
for an electron with energy EDB, which is given by the band-
bending dependence on z in the presence of a negative DB.
Also note that M̃DB-Si is dependent on the wave function of the
negative DB. Upon tunneling discharge into the bulk, the DB
resumes a neutral state.

To complete the picture, for the purpose of calculating
transfer coefficient between the tip and the silicon sample,
we assume sample wave functions derived from the “jellium
model”23 with modifications to account for the corrugation of
the surface:

ψSi
E,K(r) = −cSi

kz exp
{ −

√
ζ 2

Si + K2[z − H (R)]
}

√
ζ 2

Si + K2 − ikz

× exp(iK · R), (10)

where E is the eigenenergy of the state, K = (kx,ky) is the
surface parallel wave vector, kz is the surface normal wave
vector [the last three being related via E = h̄2(K2 + k2

z )/2m],
r = (x,y,z), R = (x,y), �Si is the sample volume, ζ 2

Si =
2m(Evac − E)/h̄2, and cSi = ic0s/

√
�Si with c0s a dimension-

less constant of the order of unity. The corrugation function
of the sample H (R) is, in general, two-dimensional, but in
our model we treat the x and y directions as independent.
We assume the corrugation component along dimer rows
(for which we calculate STM current traces) has the form
H (x) = A cos2(πx/Lx), with A the corrugation amplitude and
Lx its period.

(3) A hole striking the surface is captured by the occupied
DB level (defect mediated recombination). The associated
recombination current is calculated in a customary approxi-
mation by assuming that the rate of recombination at a DB site
is proportional to concentration of holes, p, at the vicinity of
the DB, the thermal velocity of those holes, vp, and a capture
cross section of a hole by a negatively charged DB, σp:

rrec = σppvp. (11)

Their numerical values are vp = 1.87 × 107 cm/s, σp =
1.1 Å2, while p depends on the band bending at the surface
and can be anywhere from 70 cm−3 in the bulk of highly doped
n-type Si (resistivity 0.01 � cm) to 1017 cm−3 in an inversion
layer. The recombination current at the DB is given by

Irec = Cp = eσppvpf ∗
DB. (12)

An additional note of the capture cross section; defects in
semiconductors, both in bulk and at surface/interface, have
been known to act as very effective recombination centers.
In fact, carrier recombination in a semiconductor is actually
dominated by trapping processes at defects, such as DB states.
An important fact is that defects with energies close to band
edges (as opposed to the middle of the band gap) are more
efficient at trapping carriers and causing recombination.24

Also, the above rough values of recombination rates rely on
the semiclassical estimates for the hole concentration at the
surface and include no charge quantization effects due to band
bending. This quantum effect can significantly alter the carrier
concentration at the surface and therefore can be important for
the recombination rates.
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Generally speaking, the capture cross section has a ther-
mally activated behavior:

σp = σ0p exp(Ea/kBT ), (13)

where σ0p is a constant and Ea is an activation energy. For our
purpose, we note that the capture cross section of a DB is more
or less independent of temperature between 100–400 K,25 for
both electron and hole capture. It follows, that in the absence
of tunneling, the flow of electrons in/out of a DB is given by

Rn = Cn − En = eσnvnn(1 − f ∗
DB) − eenf

∗
DB (14)

with capture competing with emission and the unknown
occupation, f ∗

DB, dictated by the nonequilibrium conditions.

IV. SOLVING FOR THE NONEQUILIBRIUM OCCUPATION
OF A DB

Combining all the above mechanisms, we obtain the total
current flow between DB and bulk:

I in
DB = I out

DB, (15)

yields

Itip-DB + CSTM
n + Cn = IDB-Si + En + Cp, (16)

where the additional current components, in ampere, are given
by

Cn = eσnvnn(1 − f ∗
DB), (17)

En = eenf
∗
DB, (18)

CSTM
n = eσnI

DB0

tip-Si(1 − f ∗
DB)

∫
�DB

dr
∣∣ψ0

DB(r)
∣∣2 D[θ (r)]

2πr2
,

(19)

Cp = eσpvppf ∗
DB, (20)

where vp is the thermal velocity of holes and Nv is the effective
density of states at the top of the valence band.

Nv = 1√
2

(
mlp,effkBT

πh̄2

)3/2

+ 1√
2

(
mhp,effkBT

πh̄2

)3/2

(21)

with mlp,eff and mhp,eff being the effective masses of light and
heavy holes in Si, respectively.

The solution is

f ∗
DB = itipftip(EDB) + iSifSi(EDB) + cn + cSTM

n

itip + iSi + cp + en + cn + cSTM
n

, (22)

where the charge transfer rates in s−1 are given by

cn = σnvnn, (23)

cSTM
n = σn

IDB0

tip-Si

e

∫
�DB

dr
∣∣ψ0

DB(r)
∣∣2 D[θ (r)]

2πr2
, (24)

cp = σpvpp, (25)

itip = 4π

h̄

1

�DB
gtip(EDB)|M̃tip-DB(EDB)|2, (26)

iSi = 4π

h̄

1

�DB
gSi(EDB)|M̃DB-Si(EDB)|2, (27)

and where D[θ (r)] in cSTM
n is the normalized tunneling current

density in the direction θ from the STM tip to the sample,
which is derived in Appendix C.

The total time-average STM current is then given by

ISTM = IDB0
bulk (1 − f ∗

DB) + IDB−
bulk f ∗

DB + I out
DB, (28)

where IDB0
bulk and IDB−

bulk are the tip-to-sample currents in the
presence of a neutral and a negative DB, respectively.

From ab initio calculations on isolated DBs at the surface
of model silicon clusters,3 we know that a negatively charged
DB renders its host Si atom to be slightly elevated from the
plane of the surface, about 0.3 Å, which can also have an effect
on the tunneling coefficient during STM imaging. This effect
is also captured in our model by accordingly modifying the
sample wave function, and plays a role in the appearance of
the DB.

Another possible effect during DB imaging is a Stark shift
of the DB level due to the tip-induced field in which the DB is
found. This shift would be most pronounced when the field is
stronger, i.e., when the tip apex is immediately above the DB,
for a given sample bias. In principle, calculating the magnitude
of this shift is possible within the frame of our current theory
by solving the Schrödinger equation in the presence of the
external field, e.g., by a perturbative approach or finite element
method. This would produce another parameter in our model,
namely, the magnitude of the Stark shift as a function of the tip-
DB distance and tip height. However, for the sake of simplicity,
we decide not to include this additional parameter in our model,
but rather to comment on its possible consequences on the
model results.

Note that if the “equilibrium would-be” populations are
equal, the net current through the DB is zero (this only happens
if the chemical potentials on the two sides are equal). Also
note from above formulas that, if one of the flow rates is
much smaller than the other, then the net current will be
reduced to just that rate. As another general remark, an implicit
assumption above is that the total STM current (through DB
and bulk states) is small enough that it does not significantly
change the Fermi level of the reservoirs in the vicinity of the
two contacts.

V. RESULTS OF THE IMAGING MODEL

In this section, we present the numerical results of the theory
presented above for the imaging of DBs. We illustrate our
model with experimental and theoretical results on a highly
doped n-type silicon sample, with a H-terminated 2 × 1 (001)
surface reconstruction. We only focus on the unoccupied-state
imaging mode of STM, where most of our experimental data
were obtained. In this case, upward band bending occurs at
the surface and an excess concentration of holes is present
there. The STM tip injects electrons into the sample and into
isolated DBs as well. Localized electrons at DBs discharge
into the sample by the different channels described above,
including recombination with the excess holes at the surface.
Other sample doping type and levels are also amenable to this
model, keeping in mind that the system parameters will be
different and require making appropriate adjustments: Fermi
level, band bending, local electron, and hole concentrations at
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FIG. 5. (Color) (a) Two-dimensional section of the electrostatic potential landscape caused by a biased STM probe in the vicinity of a
silicon surface for unoccupied state imaging and for axial symmetry (tip central axis is at x = 0). The potential penetrates the surface and
vanishes deep in the crystal. The Si crystal is n type with a resistivity of 3.5 m� cm, voltage bias on the STM tip is −2 V, and the tip height
was assumed to be 0.7 nm (tip apex is at z = 0). The tip contour is drawn as a black line and the surface as a white line. (b) The electrostatic
potential for the same biasing conditions as in (a) and in the presence of a negative DB directly under the tip apex. The color bar indicates
the values of the electrostatic potential in V, and is identical for both plots for easy comparison. (c)–(e) Subsurface band bending and carrier
concentration along the central axis of the tip plotted as a function of sample depth, z, for biased tip in the presence of a DB0 (black curves),
and in the presence of a DB− (red curves) placed directly under tip apex.

the surface, etc. For example, in the occupied-state imaging,
electrons are extracted from the sample into the STM tip, and
downward band bending occurs at the surface, which brings
about an excess of electrons, as opposed to an excess of holes.
This has consequences on the filling of isolated DBs prior to
their discharge to the STM tip.

Finite element analysis was used for calculating tip-induced
band-bending as the self-consistent solution of Poisson and
Schrödinger equations.26 This solution is reliable for the
regime in which quantum confinement effects (quantization of
electronic levels at surface) are negligible, but also for the case
of strong inversion or accumulation, when quantum effects are
important.27 In this latter case, many surface quantized levels
are occupied, which makes the semiclassical approximation
for the charge distribution valid. The semiclassical calculation
fails to be reliable when the inversion or accumulation is
moderate, that is, when surface quantized states exist but only
a few quantum states are occupied. Some details of the FEM
calculation are given in Appendix B, and the complete details
of the whole calculation procedure are described elsewhere.26

In Fig. 5, we show an example of a calculated potential
landscape (by FEM) for chosen sample bias and tip height as
[in panels (a) and (b)] a two-dimensional section of the axially
symmetric system, and (c) a function of the depth inside the
silicon surface. The effect of a negative DB under the tip on the
band bending was also calculated and shown here. The greater
differences between the two cases can be seen in the silicon
region immediately under the tip apex, where the DB is located.
Simultaneously, we calculate the carrier concentrations in the
sample induced by the tip alone and also by the tip in the
presence of a DB−, and plot the results in panels (d) and (e).

Unlike the case of a highly doped p-type Si sample, where
the main discharging rate of a DB− is that of recombination
with holes,10 in our case, both types of carrier concentration
are small at the surface, where the sample is rendered almost
intrinsic by the tip-induced potential. As a consequence,
recombination is no longer the dominant discharging rate and
it competes with the other rates described above.

The calculated band bending and carrier densities are input
to the mathematical formalism described above in order to
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FIG. 6. Dependence of relevant physical quantities on the
surface-parallel distance between the STM tip apex and the center
of an isolated DB. Voltage bias on the sample is +2 V and the tip
height is 7 Å from the surface. (a) The dependence of various elastic
and inelastic rates of charge transfer through a DB in the presence
of an STM imaging tip. (b) Nonequilibrium occupation function of
the DB− state versus distance. (c) Total STM current dependence
on the same distance. This situation corresponds to the experimental
Fig. 1(a), where a halo is formed.

compare our theory to our experimental observations. As
suggested above, the key point is to determine the charging
state of the DB. The main results needed to understand the
nonequilibrium charging effect are shown in Figs. 6 and
7. Figure 6(a) illustrates the competitions between electron
transfer rates in and out of an isolated DB in the unoccupied-
state imaging mode. As the STM tip moves in from far away
toward the DB, the electron injection rate from tip to DB
(solid black curve) increases approximately as an exponential
function, up to a critical distance rc of about 5 Å. At that point,
this injection rate becomes greater than the dominant rate of
transfer out of DB, which in this case, is provided by the
thermal emission of electrons into the conduction band. The
second greatest discharge rate is by tunneling into resonant
CB levels, process labeled iSi in Fig. 6(a), and the third is by
capture and recombination with an itinerant hole, cp, which
is considerably smaller. Note that STM vicinity capture of
electrons, cSTM

n is of small magnitude, 101–102 s−1, which is
intuitively expected on the basis that it describes a Bloch state
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FIG. 7. The same quantities are plotted as in Fig. 6 but for a
different tip height, 8.5 Å, which corresponds to the case in the
experimental Fig. 1(c), where halo is not formed.

electron repelled away from the surface by the tip-induced
field.

For smaller distances than rc, the discharge rate becomes
the limiting rate for current through the DB, and therefore
it dictates the charging state of the DB, f ∗

DB, plotted in
Fig. 6(b). In turn, this charging state determines the total
band bending (tip-induced plus DB-induced) and also the
tip-sample tunneling coefficient in the vicinity of the DB and
it therefore affects the total current measured in the STM scan,
see Fig. 6(c). Over a relatively short distance, in the vicinity of
rc, the time-average DB occupation switches from zero to one,
because the electrons localized there cannot escape at the same
rate at which they are injected. With the addition of a localized
negative charge at the DB center, the electrostatic landscape
changes in its vicinity, i.e., upward band bending increases,
and the STM current is affected, giving rise to a dark halo
with the outer edge around rc. this corresponds to the situation
depicted in the experimental image in Fig. 1(a). The bright
spot at the DB center is caused by the slight elevation of the
host silicon atom at that location28 as mentioned above, which
although small around 0.3 Å, has a significant effect on the
tunneling coefficient due to the exponential sensitivity of the
latter with tip-sample separation.

A halo does not always appear around an isolated DB,
and in our case, this happens at lower injection current, as in
the situation shown in Fig. 1(c), which is consistent with a
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FIG. 8. Dependence of the shape of a DB halo on the particular
shape of the STM tip used for imaging. The same DB was imaged in
(a) and (b) at the same imaging setpoint (sample voltage 2 V, imaging
current 0.2 nA), but with a tip change between (a) and (b).

greater tip height. To simulate the situation in our model, we
performed the same calculations for a tip height of 8.5 Å and
the results are shown in Fig. 7. We can see a decrease in this
case of the STM injection rate into the DB, which becomes
lower than the thermal emission rate as seen in (a). Therefore
the DB is mostly neutral in this situation, as seen in (b). No
halo is formed here because additional band bending by the
DB does not occur.

Regardless of tip height, the DB is negative when the tip
is laterally very far from the DB. There are indeed two “far
regimes:” (i) asymptotically far, when the tip does not affect
the potential landscape around the isolated DB and (ii) too far
for tunneling into the DB (a few nm to tens of nm), but where
band bending is still significant. However, the regime in (i)
is not captured in our Figs. 6 and 7 because the lateral range
would need to be extended to distances much greater than
radius of the STM tip. Also in the asymptotic regime (i) the
corresponding rates in these two figures become independent
on tip height.

Over the course of many experiments, we also observed
other related imaging trends of DBs: (i) there is a tip
dependence in the exact shape of a DB halo, see Fig. 8, and (ii)
halolike features around groups of two or more tunnel-coupled
DBs. The dependence in (i) can be qualitatively described by
the fact that different STM tips have atomic size protrusions at
different locations in the vicinity of the apex. During scanning,
as the tip approaches a DB, there are different onset points for
complete charging (f ∗

DB = 1) as the smallest distance between
tip and DB (and the corresponding tunneling rate) depends on
the location of the protrusions for each tip.

For (ii), the same imaging mechanism is at work for
groups of coupled DBs, except the localized charge is shared
among more than one DBs, and the charge per atom is less.3

Consequently, the DB-induced band bending tends to be lower.
Also, due to the shape of the STM tip, the tip-induced band
bending amounts to different values at different DBs, and
therefore their levels are pulled upward with respect to the
bulk VBM by different amounts. The localized charge tends
to reside at the state whose energy level is lower (farthest from
the tip).

Other possible effects were also taken into account in
our analysis. The calculation of the charge carrier densities
at the surface, accounting for charge quantization in the

surface-perpendicular direction, was also performed in a
one-dimensional model (z dependence only) by solving the
Schrödinger equation for the quantum well formed by the
band bending in the z direction. However, for the situation
depicted in Fig. 5, band bending is not strong enough to
induce significant quantization of the space charge layer, and
the semiclassical treatment is reliable.

As we mentioned above, during an STM scan when the tip
apex is directly above the DB, the electric field under the apex
can be very strong (around 2 V/nm in the vacuum gap), and
this can induce a Stark shift of the DB level and a deformation
of the DB orbital. This shift is of the order of a few tens
of meV (from our preliminary estimates) and is not included
as a parameter in our model. However, this shift has possible
consequences on the appearance of DB, especially in the region
close to the DB center. An upward shift in EDB would decrease
the band bending barrier and thus increase the iSi rate, and also
the thermal excitation rate en (these rates are very sensitive to
the exact DB level). This means that more current would pass
through the DB state itself, contributing to a brighter peak
at the DB center. We expect this effect to become significant
only for images taken at lower tip heights (higher setpoint
currents).

Band bending in a semiconductor is usually explained
by appealing to semiclassical arguments. However, for the
semiclassical theory to be accurate, one must involve the
approximation that the perturbation in the crystal varies slowly
on the spatial scale of the crystal lattice constant. In order to test
this approximation for our case, here we also undertake a more
general approach that can be used beyond the semiclassical
approximation, which can also cast insight into the long-range
behavior of screening of a negative DB. For this purpose,
the calculation of the electrostatic potential landscape was
done by separating the whole problem into two components,
considered to be approximately independent, according to
the source of electrostatic perturbation: (i) the tip-induced
band bending and (ii) band bending by an isolated charged
DB alone. Solving these two problems requires significantly
different approaches caused by the different spatial scales
of the problems. A perturbation approach29–31 was used for
the problem of DB-induced band bending. This approach
includes the semiclassical approximation and the random
phase approximation (RPA) as particular limits, and allows us
to analyze other quantum mechanical effects, such as Friedel
oscillations.

In order to make the computational task feasible for long
spatial range (100 nm), the angular dependence of the DB
orbital was integrated out in this case (with only radial
dependence remaining). The DB is considered to be placed
in a background charge density determined by the tip-induced
band bending evaluated by FEM calculations. In Fig. 9, we
show the solution of the (separate) electrostatic problem of
screening of a DB by the mobile carriers in the semiconductor.
The maximum band bending due to the DB− is around 0.17 eV,
which is slightly larger than the all-semiclassical results
presented above. Thermally damped Friedel oscillations are
indeed present in our results [see inset in Fig. 9(a)], but they
cannot be associated with the appearance of dangling bonds
because: (i) they are extremely small in magnitude compared
to the other effects discussed in our model (by more than
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FIG. 9. (a) The screened electrostatic potential solution for a
negatively charged single DB as a function of distance from the
DB center calculated using the perturbation approach.29–31 Inset: the
long-range behavior of the potential displaying thermally damped
Friedel oscillations, albeit with much lower amplitudes than the
potential at close range (the horizontal axis is the distance in nm for
all plots). (b) Charge density of the mobile carriers (holes) brought
about to screen the DB charge.

four orders of magnitude) and (ii) they are manifest at greater
distances (>20 nm) than the length scales associated with
imaging halos.

Over the course of many experiments, we noticed a
significant effect of the sample preparation methods on the
way DBs image. In particular, there is a strong correlation
between the value of the temperature used for flash heating
the sample and the formation of (or lack of) dark halos around
DBs. This effect is caused by the fact that at high flash heating
temperatures (>1250 ◦ C), there is a substantial migration
of dopant atoms away from the surface region. This dopant
depletion happens up to a depth ranging from hundreds of
nm to a few micrometers and alters the local Fermi level
at the surface. In turn, this has consequences on the charge
transfer rates discussed above and ultimately on the charging
state of the DB under imaging conditions. These facts also
suggest possible control mechanisms of the charging state
of a DB, by adjusting the local Fermi level at the surface,
e.g., by applying an external potential via a local electrode.
This was also illustrated and discussed in a recent study on
groups of closely coupled DBs on hydrogen-terminated silicon
surfaces.8

VI. SUMMARY AND OUTLOOK

In this paper, we propose a mechanism for understanding
the STM imaging of isolated DBs on silicon surface with
quantitative focus on the n-type surfaces and unoccupied-state
imaging mode. A quantitative analysis of the electrostatics of
our system shows that the tip-induced band bending plays an
important role in determining the charging state of the isolated
DB by effectively pulling the DB state out of equilibrium
with its host crystal. Under these conditions, the equilibrium
Fermi-Dirac occupation of a DB is replaced by an occupation
function dictated by the steady-state flow of current through
the DB, which is very sensitive to the lateral DB-tip distance.
Therefore the charging state of the DB can vary quickly upon
lateral approach of the scanning tip, thus causing halolike
features with sharp edges around the DB. The sharpness of
the edge is related to the slope of the variation of the DB
occupation function f ∗

DB with the lateral distance, see Fig. 6.
We also found that the all-semiclassical approach to band

bending by an isolated DB− compares reasonably well, in
terms of excess band bending by a DB−, to more general
approaches, specifically the RPA, and that Friedel oscillations
do not account for imaging features present in this system.

As the dominant DB discharging mechanism in our specific
case study is the thermal emission of electrons into the silicon
CB, lowering the system temperature should have a drastic
effect on the DB image, and the halo should be increased. The
similarity of our system to double barrier tunneling junction
can also be exploited in certain regimes, e.g., by lowering
the temperature and decreasing the thermal emission, thus
rendering the DB-Si tunneling as the dominant discharging
rate. These will be the subject of a further experimental
investigation.

Our model calculates the total STM current in a time-
average view of the system. If the time resolution of the
STM was high enough, it should be possible to discern a
“telegraph signal” of the current inside the halo region of
an isolated silicon DB, as the band bending fluctuates with
the charging/discharging of the DB. Our model does not
reproduce the STM tunneling currents in a strictly quantitative
fashion. However, it does capture all the relevant mecha-
nisms at play in image formation, and the main qualitative
trends that were observed experimentally, with the variation
of system parameters such as doping level, sample bias,
and current setpoint. Because the charging and discharging
rates have exponential sensitivities to band bending values
and distances between electrodes and localized states, their
particular balance can be greatly affected by small changes in
these parameters. Therefore imaging of DBs will be different
for different semiconductor materials (Ge, GaAs), different
surface reconstructions [e.g., Si(111)], for samples doped at
lower or higher levels, or p type, and for different tips. The
latter is the cause of daily variations in the appearance of DBs
in the laboratory. However, the general formalism presented
here can be adapted to suit those similar systems.
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APPENDIX A: FORMULAS FOR CALCULATING
TUNNELING CURRENTS

Throughout this study we use a generalized formula32 for
tunneling currents between two electrodes (1 and 2) of volumes
�1 and �2 in the presence of a externally applied voltage,
Vbias. They are equal to the difference between the chemical
potentials on the two sides μ1 − μ2:

I1→2 = 4πe

h̄

∫
dE[f (E,μ1) − f (E,μ2)]g1(E)g2(E)|M̃(E)|2.

(A1)

Here, g1(E) and g2(E) are appropriately generalized local
density of states (LDOS) per unit energy and unit volume (in
units of J−1m−3) of the two electrodes, and |M̃(E)|2 is an
appropriately defined (see below) transition matrix element
between states in each electrode having energy E. We assume
that our system fulfills the conditions in which the above
formula is equivalent to the golden-rule expression for the
tunneling current33

I1→2 = 2πe

h̄

∑
m,n

[f (Em,μ1) − f (En,μ2)]δ(Em − En)|Mmn|2,

(A2)

where Em and En are the energy levels of eigenstates m and
n on each side with the (spin excluding) wave functions ψm

and ψn, respectively. In a first-order perturbation theory, the
transition matrix element was shown to be34

|Mmn|2 =
(

h̄2

2m

)2 ∣∣∣∣
∫

S0

dS · [ψm∇ψ∗
n − ψ∗

n ∇ψm]

∣∣∣∣
2

,

(A3)

where the surface integral is carried out over a median
surface S0.

If we define dimensionless wave functions ϕ, instead of
normalized ones ψ , by

ϕm(r) =
√

�1ψm(r), (A4)

then we can further write

|Mmn|2 = 1

�1�2

(
h̄2

2m

)2 ∣∣∣∣
∫

S0

dS · [ϕm∇ϕ∗
n − ϕ∗

n∇ϕm]

∣∣∣∣
2

,

(A5)

and define a volume-independent transfer matrix element as

|M̃mn|2 = �1�2|Mmn|2

=
(

h̄2

2m

)2 ∣∣∣∣
∫

S0

dS · [ϕm∇ϕ∗
n − ϕ∗

n∇ϕm]

∣∣∣∣
2

, (A6)

which appears in Eq. (A1) and fulfills the correct dimension-
ality of the integral.

We apply the above formalism for calculating the tunneling
current for the three tunneling cases in our system: (i) between
the STM tip and the silicon sample, (ii) between the STM tip
and an isolated DB, and (iii) between an isolated DB and the

silicon sample. Below we adapt the general formula above to
each of these cases in order to derive the simpler forms given
in the text.

For the first case, we assume that the tip wave functions are
given as in the Tersoff-Hamann approach by Eq. (6) and its
LDOS is constant in energy. Also, we assume that the sample
LDOS is constant in space and has the customary square root
dependence on energy for the bands in semiconductors:

gSi(E) = 8π
√

2

h̄3 m
3/2
n,eff

√
E − ECBM (A7)

for the conduction band levels (above CBM) and

gSi(E) = 8π
√

2

h̄3 m
3/2
p,eff

√
EVBM − E (A8)

for the valence band levels (below VBM), with gSi(E) being
zero in the band gap (mn,eff and mp,eff are the effective masses
for electron and hole in silicon, respectively).

For the tunneling between a DB and an electrode (tip or
sample), we take advantage of the fact that the LDOS of the DB
is a δ function in energy, namely, gDB(E) = δ(E − EDB)/�DB,
and therefore the integral over energy in Eq. (A1) is reduced to
a single-energy term for EDB. This yields a simplified formula

Itip-DB = 4πe

h̄

1

�DB
ρtip(EDB)

× [ftip(EDB) − f ∗
DB]|M̃mn(EDB)|2, (A9)

where �DB is the volume of the DB, defined in our case as the
region in space where the DB charge density is greater than
1% of its maximum. A completely similar equation can be
written for the tunneling between DB and Si just by replacing
the subscript “tip” above with “Si”. In this latter case, M̃mn

depends on the tunneling barrier between the DB and CB
states lying at the same energy, which is given by the form of
the band bending in the Si region surrounding the DB. Using
the semiclassical approximation, we assume the tails of the
wave functions for states in the conduction band in the barrier
region scale as ϕCB(z) = exp(−ζCBz), with ζCB =

√
2mŪbb/h̄

and Ūbb the average tunneling barrier height between DB and
CBM.

For all cases described above, the tunneling matrix elements
were calculated numerically by assuming the corresponding
wave functions given in the text.

APPENDIX B: CALCULATING BAND BENDING IN THE
VICINITY OF A DB DURING STM IMAGING

Tip-induced band bending was calculated within the semi-
classical approximation using finite element methods (FEM).
We assume that the STM tip has an axially symmetric shape
ending in a hemispherical surface of radius Rtip = 20 nm. On
top of this surface, we assume the existence of an atomic-sized
protrusion of radius R0, which coincides with the spherical tip
radius assumed in the Tersoff-Hamann model for the tip wave
function.

For an STM system, the total potential drop between the tip
and the sample is

(Vtip − Vsam) = Vbias + �tip − χ − (ECBM − EF), (B1)
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where �tip and χ are the tip work function and electron affinity
of Si, respectively. Another component of UBB can arise in the
vicinity of a charged DB from the field created by the localized
electron.

The calculation involves solving a system of nonlinear
equations consisting of the Poisson and Schrödinger (PS)
equations for the electrostatic potential U and the charge
densities (n,p) of electrons and holes, respectively, in the
semiconductor. Poisson equation reads

∇2U (r) = − e

εSi
[N+

D + p(r) − N−
A − n(r)], (B2)

where e is the elementary charge, εSi is the electric permitivity
of the semiconductor, N+

D the ionized donor concentration,
and N−

A the ionized acceptor concentration. The same U that
satisfies the above equation, must also satisfy the Schrödinger
equation

− h̄2

2m
∇2ψ(r) + U (r)ψ(r) = Eψ(r), (B3)

where, in our case, ψ are extended states of the crystal
belonging to the CB or VB bands, and their corresponding
charge distribution determines n and p.

In the semiclassical approximation, the extended states ψ

entering the above equation are affected by a local potential
just by a rigid shift in their energies, which equals to −eU (r).
As a consequence, the local charge densities are shown to be
proportional to the (1/2)-Fermi-Dirac integrals, F1/2:

n(r) = NcF1/2
{[

EF − Ebulk
CBM + eU (r)

]
/kBT

}
,

(B4)
p(r) = NvF1/2

{[
Ebulk

VBM − eU (r) − EF
]
/kBT

}
,

where EF is the Fermi level (chemical potential) of the crystal.
The above PS equations were solved self-consistently for the
tip-induced band bending (no charge present on a DB) using
an iterative FEM scheme in which the solution to Eq. (B4)
was input as a source term in the RHS of Poisson Eq. (B2).
To ensure convergence of the iterations, the Anderson mixing
scheme was used.

In order to calculate the distortions in the bands caused by
the field of a DB−, we performed a second FEM calculation
in the presence of the charged DB. For practical reasons, we
did not employ FEM on a three-dimensional geometry (for the
case when the DB is laterally displaced from the central axis
of the tip). Such a calculation is not practically feasible for the
following reasons: (i) the size of the finite element domain must
extend very deep into the semiconductor bulk in order to ensure
that boundary condition there (zero electrostatic potential)
does not introduce nonphysical artifacts in the results, (ii) a
very fine mesh is needed for the tip vicinity where the field is
very strong in contrast to the bulk semiconductor where the
field is relatively weak, and (iii) many PS iterations are required
to reach convergence, depending on the biasing conditions and
doping level in the semiconductor.

We found a way to approximate the full solution of the PS
system in the presence of a charged DB by taking advantage
of the fact that the STM tip has a radius much greater than the
size of the DB, and therefore it can be seen as locally flat in
the vicinity of the DB. This implies that the potential due to
the DB− alone, UDB−(r), will be approximately the same (as

measured from the center of the DB) whether the DB is directly
under the tip apex or slightly displaced laterally by a few nm.
This allows us to extract UDB−(r) as the difference between two
different FEM solutions for two axially symmetric systems: (i)
STM tip alone and (ii) STM tip with a DB− directly under the
apex. Then, for the case when the DB is not on the central axis
of the tip but close to it, the solution is well approximated
by adding the potential UDB−(r − rDB) to the tip-induced
potential. More details of the finite element calculation will
be published in an upcoming paper.26

The calculation of the charge carrier densities at the surface
including charge quantization in the surface-perpendicular
direction was also performed. We numerically solved the
PS equations self-consistently for a planar metal-vacuum-
semiconductor system in a one-dimensional case, assuming
translational symmetry in xy plane in which case the PS
equations need only to be solved in the z direction. This
approximation is justified by the fact that the surface-parallel
length-scale of the sample in which tip-induced band bending
is manifest is on the order of hundreds of nanometers, and
much greater than the surface-normal length scale over which
the hole density is significant (tens of nanometers). In other
words, the confinement of the holes in the potential well
created by the biases STM probe in the surface-parallel
direction is much weaker than the confinement in the surface-
normal direction. Charge quantization was also estimated
using a 1D Poisson solution35 corresponding to the limit of a
very large tip radius (or flat tip); those results were consistent
with ours.

APPENDIX C: STM VICINITY CAPTURE OF TUNNELING
ELECTRONS BY A DB

The rate of capture for a deep-level state is proportional
to the velocity of the electron being captured,36 cn = σnvnn.
In equilibrium, at finite temperature, electrons sit at the
bottom of the conduction band, and their energy distribution
is well described by Maxwell-Boltzmann statistics, as long
as ECBM − μsam � kBT . This allows the capture rate to be
described by the familiar equation cn = σnvthn, expressed
in terms of the thermal velocity. The thermal velocity is
the average group velocity for all electrons in the conduc-
tion band. Assuming equilibrium statistics and a parabolic
conduction band minimum, the thermal velocity is given by
vth = √

8kBT/πm∗ ≈ 107 cm/s.
However, in calculating the excess capture rate, cSTM

n ,
due to electrons injected from the tip into the conduction
band, we no longer have recourse to Maxwell-Boltzmann
statistics. We therefore use the group velocities directly. For
simplicity, we retain the assumption of a parabolic band, so
that Ek = h̄2k2/2m. In addition to simplifying calculations,
this ensures that group velocities are parallel to their associated
wave vectors.

The injected electrons can tunnel into eigenstates in the
conduction band with energies below μtip, however, we expect
that tunneling will occur most readily into states with high kz

(surface normal) and low K (surface-parallel) values. Thus
their velocities are not evenly distributed across the range
of polar angles, θ . We solve for the angular distribution
of tip-injected electrons by considering the matrix element,
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|Mmn(k)|2, for tunneling from tip states to sample states with
wave vector, k, described by Eq. (A6). The angular distribution
of wave vectors, and hence also of velocities, of the injected
electrons is then given by

D(θ ) = N
∫ √

2m(μtip−ECBM)/h̄

0
k2|Mmn(k)|2dk, (C1)

where

N = 2π

∫ 2π

0

∫ π/2
0

∫ √
2m(μtip−ECBM)/h̄

0 k2|Mmn|2 sin θdkdθdφ

.

(C2)

Ultrafast pump-probe reflectivity measurements of the
Si(001) surface place the momentum relaxation time of free
carriers at 32 fs.37 Electrons traveling with speed vth (much
slower than the average velocity for injected electrons) will
travel a distance of roughly 6 nm in this time. We therefore
make the approximation that injected electrons retain their
initial group velocities over the distance scales relevant to the

present problem. The local excess electron density at each
point in the silicon sample, due to the injected current from
the STM tip when the DB is neutral, IDB0

tip-Si, is then given by

nSTM(r) = D(θ )
IDB0

tip-Si

2πr2v
, (C3)

where r = (r,θ,φ) being the distance vector from the STM tip
apex with the polar angle θ being measured from the tip axis
pointing toward the silicon crystal.

Finally, we account for the occupation of the DB with one
electron, 1 − f ∗

DB, and write the capture current by the DB
level as

CSTM
n = (1 − f ∗

DB)
∫

�DB

dr
∣∣ψ0

DB(r)
∣∣2

D(θ )IDB0

tip-Si
σn

2πr2
,

(C4)

where we assume that the capture cross section for an
infinitesimal volume is |ψ0

DB|2σndr. The capture rate cSTM
n

in s−1 is obtained by dividing CSTM
n by the elementary charge

and assuming a neutral DB, i.e., f ∗
DB = 0.
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