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RKKY coupling between impurity spins in graphene nanoflakes
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We calculate the indirect charge carrier mediated Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction
between magnetic impurities for two selected graphene nanoflakes containing four hexagonal rings in
their structure, differing by their geometry. We describe the electronic structure of either charge-neutral or
doped nanoflakes using the tight-binding approximation with the Hubbard term, which is treated within the
molecular-field approximation. We find pronounced differences in the RKKY coupling energies, dependent on
the placement of the pair of magnetic moments in the nanostructure and on the edge form. For an odd total
number of electrons in the structure, we predict in some circumstances the existence of ferromagnetic coupling
with leading first-order perturbational contribution, while for an even number of charge carriers the usual,
second-order mechanism dominates. Therefore, doping of the nanoflake with a single charge carrier is found to
be able to change the coupling from an antiferromagnetic to a ferromagnetic one for some geometries.
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I. INTRODUCTION

Two-dimensional graphene, being one of the most promis-
ing contemporary materials,? offers unique physical prop-
erties due to its electronic structure.’™ Since its discovery it
has attracted concerted theoretical and experimental efforts
aimed at understanding its rich physics and making it the basis
for future electronics. One of the directions is focused on
integrating the charge and spin degrees of freedom, to create
novel spintronic devices.>® This encourages studies of the
magnetic properties of graphene.

Recently, increasing interest has been focused on the
graphene nanostructures.””'! Such nanostructures can be
engineered to merge the properties of graphene with ultrasmall
sizes and can serve as possible building blocks of novel devices
(see for example Refs. 12-15), especially in the context of
transport properties, showing giant magnetoresistance.'® Sig-
nificant efforts are made to understand magnetism emerging
in finite-size graphene structures without magnetic impurities
introduced (an extensive review of that particular topic is pre-
sented in the Ref. 17). However, the possibility of introducing
magnetic impurity atoms to the graphene lattice is taken into
account.!$-20

Among the topics attracting the interest of researchers,
the problem of indirect magnetic coupling between mag-
netic impurity spins in graphene, mediated by charge car-
riers, is worth mentioning. This kind of interaction, known
as Ruderman-Kittel-Kasuya-Yosida (RKKY) coupling,?!->?
can be expected to show unique properties in graphene,
different from the behavior in two-dimensional metals,**
owing to the peculiar, linear dispersion relation for the
charge carriers in the vicinity of Dirac points. Various
calculations of RKKY interaction in graphene sheets are
present in the literature, exploiting the bipartite nature of the
graphene crystalline lattice in various (mainly perturbational)
approaches.”>=3? Moreover, tight-binding calculations in real
space were performed for such a system.**% Recently,
also the problem of two Kondo impurities attracted some
attention.’%3’

However, the main efforts have so far focused on the
calculations of RKKY coupling properties in infinite graphene

1098-0121/2011/84(20)/205409(10)

205409-1

PACS number(s): 75.30.Hx, 75.75.—c, 73.22.Pr

planes. On the other hand, the coupling in ultrasmall
nanoflakes (or nanodisks,'? containing just a few hexagonal
rings) can be expected to deviate from the predictions
for infinite system, as the dominance of the edge in a
nanoflake substantially modifies the electronic structure and
severely breaks the translational symmetry. Especially, the
peculiar features of the electronic state at the zigzag edge of
graphene (or even graphite) are known both from theoretical
predictions®®* and experimental observations for various
systems (e.g., Ref. 40), especially quantum-dot systems.*' The
significance of the edge structure has been already found for
example in the transport properties of nanoflakes.'® Moreover,
in ultrasmall molecule-like structures, the existence of discrete
electronic states significantly separated in energy allows us
to expect a range of novel phenomena. Therefore, a sound
motivation appears for studies of RKKY coupling between
magnetic moments in nanosized graphene structures, which is
the aim of the present work.

To achieve this goal, we use the real-space tight-binding
approximation (TBA) supplemented with the Hubbard term for
finite, ultrasmall graphene nanoflakes. We perform the exact
diagonalization of the single-particle Hamiltonian resulting
from the mean-field approximation (MFA). Not limiting the
calculations to charge-neutral structures, we take into account
the possibility of varying the charge concentration electron by
electron (charge doping). One of our goals is to search for the
configuration for which the coupling changes its character
from ferro- to antiferromagnetic as a result of adding or
removing a single electron from the system, in close vicinity
to the equilibrium electron concentration. In principle, such
a possibility might be opened by placing the nanostructure
between two tunneling electrodes, providing a single-electron
control of mutual orientation of impurity spins (let us mention
that the idea of doping-controlled coupling between magnetic
moments in bilayer graphene has been very recently raised in
Ref. 42). The phenomenon of a Coulomb blockade in some
graphene nanostructures with two electrodes was studied in
the Ref. 43, while another route to modifying the charge
concentration is the absorption of gas molecules (as shown in
Ref. 44).
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II. THEORY

The analysis of RKKY interaction in graphene-based
structures consisting of N carbon atoms bases on the reliable
description of the electronic properties. The most commonly
used approach to that problem is the TBA.**4 The main
advantage of the TBA method is the ability to include the full,
realistic band structure of graphene with finite bandwidth, not
being restricted to the linear part of the dispersion relation close
to Dirac points. Therefore, the use of certain cutoff schemes is
not necessary to obtain convergent results and the issue of the
possible unphysical modifications of the RKKY range function
is absent. Moreover, the TBA facilitates the non-perturbational
treatment of the problem of magnetic impurities. In our study
we will adopt this approach, taking into account the electronic
hopping for nearest-neighbors only.

The total Hamiltonian for the ultrasmall graphene structure
with two magnetic impurities can be written as

H ="Ho+Hc +Himp (D

and contains the contribution from the TBA hopping term H,,
Hubbard term H ¢, and impurity potential Hjpyp.
The TBA term has the following form:

Hy = —t Z (c}ia Cjo + c;a Ciio)- 2)

(i.j).o

Here, cf » and ¢; , denote creation and annihilation operators

for p® electrons at sites i and j in the nanoflake, with spin
o =1,]. The summation over nearest-neighbor sites is
denoted by (7, j). The parameter ¢ (usually taken as 2.8 eV) is
the hopping integral between nearest neighbors. In the further
numerical results, all the energies are normalized to 7.

In order to incorporate the electron-electron correlations
induced by the Coulombic interactions, we include the
Hubbard term in the Hamiltonian:

He = UZ”[,T ni, 3

with the electron number operators n; , = cja Cig-

The Hubbard term, capturing the on-site Coulombic repul-
sion only, neglects the long-range part of the interaction. The
usefulness of this model is a subject of debate (see the recent
review in Ref. 47). However, it is of noticeably wide use in the
theory of carbon (nano)structures; see Refs. 11,17,38,48-50
and the recent work on carbon nanotubes in Ref. 51. Along
the lines of the discussion in Ref. 51, U should be treated as
an effective parameter describing the influence of Coulombic
interactions. Its value might result from a competition between
on-site repulsion and the interaction between electrons located
on different sites (especially nearest neighbor). Also, some
recent results evidence suppression of the influence of the
long-range interactions.”

Contrary to the choice of hopping integrals in the TBA
term, the situation with the value of on-site Coulomb repulsion
parameter U appears less clear. The values accepted vary
between U = 2 eV* and even U ~ 10 eV.>? In our study,
if we include the Hubbard term, we accept a moderate value
of U/t = 1, close to the choice of Yazyev!” and Potasz et al. ¥
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The interaction of the z component of the on-site impurity
spin S§ (located at the lattice site k) with an electron spin 57 =
(niy — n;,)/2 at the same site is described by the Anderson-
Kondo Hamiltonian. For two impurities, located at the sites a
and b, we have

Himp = 57 (Si5% + Sis5). )

where J is a spin-dependent impurity potential (contact
potential).

Let us note that we select the Ising form of the interaction
Hamiltonian [Eq. (4)] just for simplicity of the calculations.
It leads to the final interaction between magnetic impurities
described by HRKKY = JREKKY g2 6% The usage of the Heisen-
berg exchange Hamiltonian, of the form H;p, = %J Sy - s, +
Sy - sp), would just yield HREKY — JRKKYQ .S, without any
modification to the indirect exchange integral itself, which is
the only subject of our interest in the present work.

In order to evaluate the RKKY coupling between the
impurities at 7 = 0, the ground-state energy must be found
first in the presence of n = N + An electrons in the structure,
for both parallel and antiparallel orientation of the impurity
spins. In undoped graphene each carbon atom donates one p*
electron, so that An = 0 (i.e., half filling) characterizes the
state of charge neutrality. In general, however, the number
of electrons present in the system can vary hypothetically
between 0 (empty energetic spectrum) and 2N (completely
filled spectrum). We limit our further considerations to |An| <
6, in order not to lose the accuracy of electronic spectrum
reproduction by means of the TBA method. The RKKY
coupling energy between the impurity spins can be related
to the difference of total energies by

E(Si=1, Sp=1)—E(Si=1, S;=1) =28 T (5)
where the positive value of JRKKY corresponds to ferromag-
netic coupling (F) and the negative value to antiferromagnetic
coupling (AF). In our case (when electronic structure descrip-
tion involves NN hopping only) the coupling values calculated
for +An are identical (i.e., electron and hole doping lead to the
same results) due to electron-hole transformation symmetry of
the Hamiltonian on the finite bipartite lattice.

Let us note that the indirect charge carrier mediated inter-
action resulting from our calculations can be not necessarily
the usual form of RKKY coupling, which is proportional to
the square of the contact potential J, as resulting from the
second-order perturbation calculus.?® However, we will use in
general the term “RKKY interaction” to name the indirect
charge carrier mediated coupling between impurity spins,
even with different characteristic features, resulting from the
simultaneous presence of other mechanisms.

In order to deal with the Hubbard term in the Hamil-
tonian for quite a large system, we adopt the mean-
field approximation (MFA), which consists in replacement
of the form nisng ~ ni 4 (ni,i) + n; | (nm) — <ni,T> (ni,L)~
This approach has been shown recently to compare success-
fully with some exact diagonalization methods for graphene
nanostructures,> especially for U/t < 2, and has been ap-
plied to studies of edge magnetic polarization in graphene
sheets?4833:36 or RKKY in infinite graphene.’> The ap-
proximation leads to the effective Hamiltonian defined in
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single-particle space. The pair of coupled effective single-
particle Hamiltonians, HI%/IFA and Hll’[FA, for spin-up and spin-
down electrons, is obtained (the Hamiltonians depend on the
electronic densities (n; ,) and can be treated self-consistently).

The Hamiltonian matrix for MFA Hamiltonians can be
found in the orthonormal basis of single-electron atomic
orbitals c »10). Then, N single-particle eigenstates indexed
by u can be found for each electron spin orientation o in
the form of linear comblnatlon of atomic orbitals [, ,) =

(1 /v/N) Z; 1 yl +Cio10). Here, the coefficients y!  for
=1, ...,n set up an eigenvector of the Hamiltonian matrix
corresponding to the eigenvalue €.

Let us sort the eigenvalues in an ascending order, so that
e; is the lowest one, etc. Then, the total electronic density
at site 7 in the presence of n, electrons with spin orientation
o in the system in the ground state at the temperature 7 = 0
can be calculated as (n; ,) = ZZU:] ¥ 1>. The corresponding
ground-state energy is

=Y ) e (6)

o=1{ pn=1

The values of n" and n' (which add up to the given value of
n) should be selected so to minimize the total energy.

After the calculation, the obtained values of electron
densities are substituted back into the MFA Hamiltonians
and the numerical procedure is repeated iteratively until the
satisfactory convergence of the eigenvalues and eigenvectors
is achieved. Then the obtained self-consistent numeric value
of total energy can be used to calculate RKKY coupling
according to the formula given in Eq. (5).

III. THE NUMERICAL RESULTS AND DISCUSSION

For our calculations, we selected two graphene nanoflakes,
consisting of four hexagonal rings with an even number of
carbon atoms. The first one is similar to a pyrene molecule
and contains N = 16 carbon atoms, and its edge has a zigzag-
like character. The second one, triphenylene-like, composed
of N = 18 carbon atoms, possesses the armchair-type edge.
Both structures are schematically depicted in Figs. 1(c) and
T(c).
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To study the influence of broken translational symmetry
on the RKKY coupling in nanostructures, we calculated
JRKKY petween two impurities being either nearest or second
neighbors, focusing in each case on two different locations
of impurity pairs in a given nanostructure. We denote these
cases as la, 1b and 2a, 2b, respectively. The considered pairs
of magnetic impurities are presented schematically for both
graphene nanoflakes in Figs. 1(c) and 7(c). Let us mention
that nearest neighbors correspond to two ions in two different
sublattices while second neighbors constitute a pair of ions in
the same sublattice (referring to the subdivision of the bipartite
graphene lattice into A and B sublattices for the finite system).
In our calculations, we set S = 1/2. In the presentation of
further results we focus mainly on the influence of charge
doping on the characteristics of indirect coupling.

A. Pyrene-like nanoflake

In order to gain some insight into the electronic structure
of the pyrene-like nanoflake, we plot the predicted energy
levels resulting from diagonalization of the Hamiltonian in the
absence of magnetic impurities and for U/t = 0 in Fig. 1(a).
The energy states are numbered by w and sorted according
to ascending energy, and each of the states is doubly (spin)
degenerate. No additional degeneracy is observed. In the case
of charge neutrality the HOMO-LUMO (highest occupied
molecular orbital-lowest unoccupied molecular orbital) gap
amounts to 0.89 eV (which s in concert with the value resulting
from the calculations in Ref. 54, Fig. 2). In order to visualize
the electronic densities assigned to the distinct states, we
present Fig. 1(b). There, the values of |y/; |* (probabilities
of finding the electron at the given lattice site i for a given
state w) are plotted on the nanoflake scheme, for selected
orbitals which are HOMO orbitals for | An| < 6.Letus observe
that the subsequent states are characterized by significant
variability of the corresponding partial charges distribution. If
the selected state is occupied only by a single electron, the dis-
tribution of partial charge for this orbital reflects also the spin
density.

In Fig. 2 we present the values of RKKY exchange integrals
calculated for two positions of magnetic impurities, la and
1b, as marked in Fig. 1(c). In order to show qualitatively the

=5

FIG. 1. (Color online) Single-electron (spin-degenerate) energy levels for the pyrene-like graphene nanoflake consisting of 16 carbon atoms,
calculated for U/t = 0 in the absence of magnetic impurities (a). Visualization of electronic densities (probabilities of finding the electron at
the given site) corresponding to selected energy levels (b). Schematic view of the nanoflake with two positions of nearest-neighbor impurity
ions and two positions of second-neighbor ions, for which the RKKY coupling is discussed (c).
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FIG. 2. (Color online) RKKY exchange coupling between selected nearest-neighbor impurity atoms in pyrene-like nanoflake, for impurity
positions 1a (a) and 1b (b); see Fig. 1(c). The values are plotted as a function of the number of electrons in the nanoflake (related to the charge
neutrality state). The results are calculated for two values of contact potential, in the presence and in the absence of the Hubbard term.

influence of increasing contact potential J, we prepared the
plot for two selected values of J/t = 0.2 and 0.4. Moreover, to
enable the observation of the Hubbard term effect, we took into
consideration the case of U/t = O as well as U/t = 1. The in-
direct exchange values are calculated for various deviations in
electron number An from charge neutrality, for |An| < 6. As
can be observed for both impurity pair positions, the coupling
is antiferromagnetic for charge-neutral structure (expected for
a bipartite lattice half filled with the electrons, especially for
undoped infinite graphene; e.g., Ref. 34). The interaction is
relatively weak and its nonlinear rise with increasing J values
is also observable. The situation is quite similar for |[An| = 2,
the only difference being the stronger coupling. However, it
is quite striking that changing the electronic concentration
by one charge carrier from An = 0 results in switching of
the coupling sign from antiferromagnetic to ferromagnetic,
which takes place for |[An| = 3 as well. In these cases, it can
be observed that the change of JRKKY with increasing J is
noticeably slower than for even An values.

In order to study more systematically the dependence of
exchange coupling on contact potential J, we performed the
appropriate calculations for nearest-neighbor ions, the results
of which are presented in the Fig. 3 in double logarithmic scale,
which allows us to linearize power-law dependencies. The case
of la impurity pair for U/t = 0 is illustrated in the Fig. 3(a).

It can be verified that two kinds of dependencies of JRKKY

on J can be distinguished. For selected even total numbers of
electrons in the nanoflake (|An| = 0,2) the usual dependence
JREKY o J2 is obeyed, which (according to Fig. 2) coincides
with antiferromagnetic sign of interaction. On the contrary,
for odd numbers of electrons (|An| = 1,3) we deal with fer-
romagnetic interaction with JRKKY o | |, The latter behavior
tends to convert into to the quadratic dependence on J (and
antiferromagnetic exchange) provided that the potential J is
strong enough. For clarity, the data for |An| = 4,5,6 were
omitted, as very close to the results for An = 0. Let us also
observe that qualitatively the same situation is met in presence
of the Hubbard term, for U /¢ = 1 [Fig. 3(b)]. Itis worth special
emphasis that the usual derivation of RKKY exchange integral,
within the framework of second-order perturbation calculus,
yields always the coupling proportional to the square of the
contact potential, which has been recently recapitulated for
bipartite graphene lattice.’® Therefore, it is of special interest
to identify the source of the unusual linear behavior. Quite
similarly, such a behavior can be observed for the pair of
magnetic impurities in location 1b for example when |An| = 3
[Fig. 3(c)] (there, the data for |An| = 0,1,2 are identical, the
same being true for the case of |An| = 4,6). Thus, it can be
deduced that for selected odd total electron numbers we deal
with JREKY oc | ]].

100 | . L . . 100 | . L . 100 I . | . . I
-+ |An|=0 -o- |An|=1 -+ |An|=0 -o- |An|=1 -+ |An|=0 |An|=3 /
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10-2 _ L 10-2, RKKY L 10-27 ‘J RKKY « |J| .
- JRERY o ] > J o |J| y
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z Ut=o | & ut=t | &
10+ 1a pair - ~ 10 1apair [ — 10%- r
5 | JRKKY o g2 i 5 | JRKKY o g2 | 5| |
10 () 10 (b) 10 JRKKY o J2 (©)
1064 T T 1064 T T T 1064 T T
0.01 0.10 1.00 0.01 0.10 1.00 0.01 0.10 1.00
J/t J/t J/t

FIG. 3. (Color online) Magnitude of RKKY exchange coupling between nearest-neighbor impurities in pyrene-like nanoflake as a function
of contact potential, in doubly logarithmic scale. The impurity positions are 1a [(a), for U/t = 0; (b), for U/t = 1] and 1b [(c), for U/t = 0].
The results are presented for selected odd and even electron numbers. Full symbols denote antiferromagnetic coupling, empty symbols the

ferromagnetic one.
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FIG. 4. (Color online) Energy differences between between antiferro- and ferromagnetically polarized state of magnetic impurities on a
pyrene-like nanoflake as a function of the contact potential: 1a pair for An = —1 and U/t = 0 (a); 2b pair for An = —4 and U/t = 0 (b) or
U/t =1 (c). Total energy difference as well as most important contributions are plotted (as described in the plots).

To investigate more deeply the selected case of two
impurities in position la and An = —1 and identify the
origin of the mentioned unusual behavior, we plot the energy
difference between the AF and F orientations of impurity spins
(note that JREKY o AEAFF) a5 a function of the contact
potential J in Fig. 4(a). For An = —1, the ground state is
characterized by unequal number of spin-up and spin-down
electrons. In the plot we resolve the contributions coming
from the highest energy orbital occupied by a single electron as
well as the total contribution originating from the lower energy
orbitals occupied by pairs of electrons of opposite spins. It is
noticeable that the latter contribution favors the AF state and
is proportional to J? for not too strong contact potentials (as
expected on the basis of second-order perturbation calculus).
On the contrary, the orbital occupied by a single electron gives
rise to the energy difference which is proportional to J and
tends to prefer the F state of the impurities. In the limit of
low J, the situation is ruled by the singly coupled state so
that the total indirect exchange is ferromagnetic and linear
in contact potential, while the increase of J leads first to
compensation of both contributions and then to domination
of the ordinary perturbational J2-proportional behavior. The
linearity of energy difference in J can be explained basing on
the fact that for a single electron occupying a given orbital,
the leading correction to energy of the orbital [coming from
the term Eq. (4) in the Hamiltonian] is of the first-order
perturbational kind. If the orbital is occupied by a pair of
electrons with opposite spins, first-order corrections for them
are of opposite values and cancel each other, while the
second-order corrections give rise to the ordinary RKKY
interaction. However, when there is no second electron, the
uncompensated first-order contribution dominates. Under such
circumstances, for F polarization of impurity spins, the first-
order correction to the electronic orbital energy due to the
presence of two impurities at sites a and b amounts to AET =
—21JIS(ya 1> + 1y, 1) (corresponding to the direction of
electron spin which minimizes the total energy). Let us
assume without loss of generality that |ya‘|> < |y/|%. If the
polarization of impurity spins is AF, then the corresponding
correction is AEAF = —11J[S(1y}*|* — |yd'|*). The resulting
energy difference AEAFF = |J|S|y¥|?> > 0 clearly makes a
ferromagnetic contribution to the indirect coupling. Its mag-
nitude is proportional to the smaller of the electronic densities

on the impurity pair sites; thus it is maximized for equal
electronic densities on both sites. Such a contribution to
indirect coupling yields some resemblance to the double
exchange mechanism.’’ However, let us still use the term
RKKY interaction to characterize the indirect charge carrier
mediated coupling which results from our calculations.

Let us observe that in some cases we deal with the situation
when the electronic density for a given orbital u vanishes
at least at one of the sites at which the impurity spins
are localized. Such an orbital does not indicate any energy
difference between AF and F orientation of impurity spins and
thus does not give any contribution to the RKKY exchange
integral. This is, for example, the case for An = —5 and
impurities in the la position; see the corresponding electronic
densities for the orbital u = 6 in Fig. 1(b), which is the
highest energy orbital occupied by a single electron. Such
a situation prevents the indirect interaction from switching to
the F sign (like for |An| = 1,3), even though the total number
of electrons in the system is odd. Quite a similar situation
can be observed for impurities in the 1b position, since the
electronic density for the orbital u = 8 also vanishes at one of
the impurity sites. Therefore, the coupling for An = 0 and
An = —1 is exactly the same. We note that the value of
JREKY s also unchanged for An = —2, which corresponds
to the case when the highest energy orbital u = 7 is occupied
by two electrons with opposite spins. However, in that case
we can observe that the unperturbed electronic densities are
almost equal at both 1b impurity sites. Therefore, the AF
state of impurities changes the orbital energy particularly
weakly [as can be seen in Fig. 5(b) for 4 = 7] and the energy
changes for spin-up and spin-down electrons for F impurity
polarization cancel each other. Therefore, a doubly occupied
state u =7 also gives a particularly weak contribution to
exchange integral. This explains the robustness of weak AF
RKKY coupling for 1b pair location with respect to deviations
from charge neutrality. On the other hand, the same feature
of the u =7 orbital when it is singly occupied gives rise
to a particularly strong ferromagnetic contribution to the
coupling (seen clearly for An = —3, when JRKKY o | J]). As
mentioned before, this strong ferromagnetic contribution can
be explained as a first-order perturbational effect.

To generalize, the possibility of ferromagnetic coupling for
nearest-neighbor impurities is open provided that the number
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FIG. 5. (Color online) Energy changes for the particular electronic orbitals for spin-up and spin-down electrons in a pyrene-like nanoflake
caused by a pair of magnetic impurities, with contact potential J/¢ = 0.2. The cases of impurity spins aligned ferro- and antiferromagnetically
are presented in each plot (see the insets). The impurity pairs of 1a type (a) and 1b type (b) are discussed.

of electrons in the system is odd. Under such a condition, the
nanoflake gains nonzero magnetic moment, which originates
from the HOMO orbital. An additional condition is that the
electronic density for the highest energy occupied orbital
cannot vanish at both impurity locations. The coupling is
particularly enhanced when the electronic densities at the
impurity sites are high and close to each other. Then it appears
straightforward to explain that it is energetically favorable to
have both impurity spins parallel, as the energy of such a
configuration is significantly lowered by the first-order term.
Let us notice that in general, for a given weak contact potential
J, the ferromagnetic couplings, if present, are much stronger
than the corresponding antiferromagnetic interactions, which
can be seen in Fig. 3.

Let us observe that the presence of a Hubbard term with
U/t = 1 influences remarkably the interaction, especially for
the case of charge neutrality, where it leads to strong enhance-
ment of the AF coupling, and eventually it is able to suppress
totally any ferromagnetic behavior for odd electron number,
provided that the contact potential is strong enough. This
tendency is observable for both nearest-neighbor impurities
in the 1a and 1b positions.

For second-neighbor impurities (results plotted in Fig. 6),
it is observed that the interaction for both 2a and 2b impurity

0.06 T———"~— : : : —
1 2a pair (a) [
] nR I
0.04i l/l Y SN r
vl
— R o /’ \ ! v +
>_\ 4 N 4 U0 L
g 0'027, B
- 4 L
0.00 - — r
) N ot L
1 U/t=0: -e- J/t=0.2 = J/t=0.4 r
0.02 Q/t—“]. %F‘ J{t—q.Z ‘ 4‘} ‘ J/t‘—O.‘4
6 -4 -2 0 2 4 6
An

locations [see Fig. 1(c)] is almost always ferromagnetic,
regardless of the number of electrons, with an exception of
|An| = 4. Let us mention that the ferromagnetic coupling
is expected for an infinite charge-neutral graphene when
considering the impurities belonging to the same sublattice,
which is the case for second neighbors (e.g., Ref. 34). However,
for the nanoflakes, pronounced differences emerge depending
on the location of the impurity pair. In the case of the 2a
location, the coupling is much enhanced for an odd number of
electrons (which can be attributed to the same mechanism as
that described for F coupling between nearest neighbors; see
the linear dependence of JRXKY on J in Fig. 6 for |An| = 1,3).
For even values of An the interaction energy is much weaker.
The presence of the Hubbard term with U/t =1 tends to
build up the coupling. The interaction between impurities in
the 2b position exhibits traces of vanishing electronic density
of the orbital u = 8 [see Fig. 1(b)], in analogy to the situation
met for the 1b pair. Here, the interaction is strongly damped
for |An| < 2, while for |An| =3 we observe enhanced F
coupling owing to the mechanism mentioned earlier. What
is quite interesting, |An| =4 converts the coupling into an
antiferromagnetic one.

In order to comment on the influence of the Hubbard term,
we can conclude that its dominant result is to enhance the
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FIG. 6. (Color online) RKKY exchange coupling between selected second-neighbor impurity atoms in pyrene-like nanoflake, for impurity
position 2a (a) and 2b (b); see Fig. 1(c). The values are plotted as a function of the number of electrons in the nanoflake (related to the charge

neutrality).
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FIG. 7. (Color online) Single-electron (spin-degenerate) energy levels for the triphenylene-like graphene nanoflake consisting of 18 carbon
atoms, calculated for U/f = 0 in the absence of magnetic impurities (a). Visualization of electronic densities (probabilities of finding the
electron at the given site) corresponding to selected energy levels (b). Schematic view of the nanoflake with two positions of nearest-neighbor
impurity ions and two positions of second-neighbor ions, for which the RKKY coupling is discussed (c).

magnitude of the coupling. The Hubbard term associated en-
ergy is lowered when the electronic densities for opposite-spin
electrons tend to become unequal, hence acting in hand with
the impurity potential in creating an imbalance in spin-up and
spin-down electronic densities. This could qualitatively justify
why the presence of the Hubbard term increases the magnitude
of RKKY coupling, as observed for infinite graphene by
Black-Schaffer.® Let us exemplify this for the particular case
of the 2b impurity pair. The energy differences between the AF
and F states of on-site impurities are presented in Figs. 4(b)
and 4(c), in the absence and in the presence of Hubbard term,
respectively. The total energy difference is plotted together
with the separated contribution of the orbitals u = 1,2,6, each
occupied by a pair of opposite-spin electrons. The orbitals y =
1,2 are characterized by especially high electronic densities on
the impurity sites. Here, all the terms are proportional to J2,
i.e., present an ordinary perturbational behavior for low J. As
is visible, the energy differences are much more pronounced
for all orbitals in the presence of U/t = 1.

B. Triphenylene-like nanoflake

The electronic structure of the triphenylene-like nanoflake
(obtained from diagonalization of the Hamiltonian in the
absence of magnetic impurities and for U/t = 0) is plotted

P I B [ s
0.15 Uit=0: —e- Jit=0.2 = J/=0.4

uit=1: o Jit=02 o Jit=0.4
0 o

s\ 7N\

o

o

o
|
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in Fig. 7(a). What can be observed is that some states
acquire additional twofold degeneracy, in addition to ordinary
spin-degeneracy. For charge-neutral nanoflakes we have the
HOMO-LUMO gap of 1.37 eV. The electronic densities
assigned to the distinct states are presented in Fig. 1(b)
for selected orbitals which constitute HOMO orbitals when
|An| < 6. There, the values of |yl-’f - | (partial charges present
at the lattice sites for a given state) are plotted on the nanoflake
scheme. If the selected state is occupied only by a single
electron, the distribution of partial charge for this orbital
reflects also the spin density.

Figures 8(a) and 8(b) show the values of the RKKY
coupling between the impurities in two nearest-neighbor
positions la and 1b [see Fig. 7(c)]. For an undoped case,
an antiferromagnetic interaction is always predicted, again
in agreement with expectations for the bipartite lattice. The
interesting situation arises for the impurity pair 1b, where
the doping with |An| = 1 switches the interaction sign to the
ferromagnetic one. This sign remains robust against further
doping, up to |An| < 3, and also the magnitude of coupling
varies only weakly. Moreover, the linear dependence of F
interaction on J is visible. This phenomenon, present for odd
An values, sparks off from the mechanism described earlier,
involving orbitals occupied with a single electron. Here, it
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FIG. 8. (Color online) RKKY exchange coupling between selected nearest-neighbor impurity atoms in triphenylene-like nanoflake, for
impurity positions la (a) and 1b (b); see Fig. 7(c). The values are plotted as a function of the number of electrons in the nanoflake (related to

the charge neutrality).
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FIG. 9. (Color online) RKKY exchange coupling between selected second-neighbor impurity atoms in triphenylene-like nanoflake, for
impurity positions 2a (a) and 2b (b); see Fig. 7(c). The values are plotted as a function of number of the electrons in the nanoflake (related to

the charge neutrality).

is visible in Fig. 7(b) that the degenerate orbital u = 8,9 is
characterized by a large electronic density on both 1a impurity
sites. Actually, breaking the symmetry of the nanoflake by
introducing the magnetic impurities causes that it is most
energetically favorable to have large electronic density at both
sites of the la pair. What is interesting is that the linear
dependence of JR¥KY on J survives also for |An| = 2. Here,
it can be attributed to the fact that for the F polarization of
impurity spins, the ground state of the system involves both
u = 8 and u = 9 orbitals, each occupied by a single electron,
instead of just one doubly occupied orbital. Let us note that
the electronic densities for degenerate orbitals u = 8,9 fulfill
the condition |y} |* + |y |* = 1/9, while the orbitals are
orthogonal. Therefore, if for one of the orbitals the maximum
electronic density at 1a pair sites is achieved, then the second
orbital is characterized by vanishing electron density at the
same sites. As a consequence, in the F state of the impurities,
only one of the orbitals gives contribution to the indirect
coupling. The situation is thus analogous to the one expected
for the total odd number of electrons. The described occasion
of having F coupling for An even is intimately connected with
an additional degeneracy of some electronic orbitals.

For the 1b pair, the coupling switches its sign from AF to F
each time when An changes from odd to even. The coupling
magnitudes are relatively weak. Ferromagnetic couplings are
still linearly dependent on J. This time, the degeneracy of
the orbital u = 8,9 does not play a role at An =2 and the
coupling is AF.

Let us observe that for the magnetic impurities in the la
position, the presence of the Hubbard term with U /¢ = 1 tends
to enhance the coupling magnitude, conserving its sign. On the
other hand, for the 1b pair, the Hubbard term strongly pushes
the interaction toward antiferromagnetic for low An.

The RKKY exchange integrals calculated for second-
neighbor magnetic impurities [in position 2a, 2b; see Fig. 7(c)]
are presented in Fig. 9. For 2a placement of the impurities, the
interaction is almost always ferromagnetic, but its magnitude
is significantly enhanced for odd values of An. For the 2b
pair of impurities, the coupling is particularly strong (and
ferromagnetic) for |An| = 1,2,3, which can be attributed to
the same mechanism as described previously in the case of the
1b pair.

IV. CONCLUDING REMARKS

We have performed a tight-binding based study of RKKY
interaction in two graphene nanoflakes, different in their
geometries but both containing four hexagonal rings. We
focused on the influence of possible charge doping on the
magnitude and sign of an indirect interaction. We also
incorporated a Hubbard term in the Hamiltonian to estimate the
effect of prototypic Coulomb interaction. In general, we found
a pronounced dependence of the RKKY coupling integrals on
the location of the pair of on-site magnetic moments in the
nanostructure.

In relation to the odd number of charge carriers in the
nanoflakes, we observed a specific contribution to indirect
interaction, originating from the highest energy electronic
orbital occupied by a single electron and giving rise to
nonzero spin distributed over the structure. This contribution
is proportional to the magnitude of the contact potential J
and results from an uncompensated first-order correction to
the orbital energy due to the presence of a pair of ferromag-
netically polarized impurities. This mechanism, which may
be regarded as somewhat similar to double exchange, always
produces ferromagnetic contribution to indirect exchange
and for sufficiently low J it can dominate over the typical
contribution proportional to J? originating from second-
order perturbational correction to the energy (being the clue
of the ordinary RKKY interaction). Such a ferromagnetic
contribution can either change the coupling sign from AF to F
for nearest-neighbor impurities or enhance the ferromagnetic
coupling between second neighbors, as shown for two types
of nanoflakes. The details of the mechanism depend also on
the presence or absence of degeneracies in energy spectrum of
the nanoflake.

The mechanism leading to the indirect ferromagnetic cou-
pling linearly proportional to |J| might be potentially useful,
since it allows switching from AF coupling characteristic of
nearest-neighbor impurities for charge neutrality to F coupling
by adding or removing a single electron from the nanoflake.
Especially advantageous conditions for such a situation occur
for a triphenylene-like nanoflake for impurities in the la
position. What is more, adding one or two further charge
carriers does not alter the coupling sign in these particular
situations.
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The influence of the Hubbard term is mainly to enhance
the magnitude of the coupling, as noted in Ref. 35 for
infinite graphene. Unequal electronic densities for opposite-
spin electrons lower the energy coming from the Hubbard term,
and the presence of the local spin-dependent impurity potential
acts in the same direction. Therefore, the Hubbard term tends
to increase the interaction energy in general. On the other
hand, the presence of additional long-range repulsion between
the electrons residing on different sites should qualitatively
tend to compensate the effect of on-site repulsion. This
effect could be captured in treating the U parameter not
necessarily as a true on-site energy, but rather in the spirit
of the effective parameter (as mentioned before, in connection
with Ref. 51). Sometimes other changes are detected, which
can be attributed to the fact that the presence of the Hubbard
term itself causes some redistribution of the charge densities
over lattice sites with respect to the case when the Coulombic
correlations are neglected. These changes also modify the
indirect coupling. The application of the MFA approximation
to the Hubbard model appears justified for the ground state.”’
However, development of the more accurate approaches (albeit
consuming less resources than exact diagonalization) would be
valuable with a view to the studies of temperature properties
of the nanoflakes.

The present calculations are performed for 7' =0, ex-
ploiting ground-state properties of the system. However, in
the ultrasmall, molecule-like structures, the separation of the
discrete electronic energy levels is usually of the order of tenths
of t, where t = 2.8 eV [see Figs. 1(c) and 7(c)]. Therefore, it
appears that no significant redistribution of the charge carriers

PHYSICAL REVIEW B 84, 205409 (2011)

between the states can happen due to thermal excitations up
to the temperatures of interest (i.e., room temperature). As
a consequence, the results for coupling energies appear valid
also for nonzero temperatures. Perhaps some finite temperature
modifications can be expected in the presence of degenerate
spectrum, as the impurity-induced energy splitting between
the otherwise degenerate states is considerably small (note
the interesting thermodynamics of the undoped metallic-like
nanoflakes with degenerate zero-energy states, discussed by
Ezawa’®).

In general, we find an immense influence of the electronic
structure of the nanostructures on the properties of RKKY
interaction, being dependent on the wave functions of single
orbitals, which are very strongly shaped by the nanoflake
geometry. This distinguishes our case from the case of an
infinite system, where propagating states are involved, and
might open the door for designing the appropriate structures
to guarantee the expected indirect coupling features.
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