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Microscopic theory of absorption and ultrafast many-particle kinetics in graphene
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We investigate the relaxation kinetics of optically excited charge carriers in graphene focusing on the time-,
momentum-, and angle-resolved interplay between carrier-carrier and carrier-phonon scattering channels. To
benchmark the theoretical approach, we first discuss the linear absorption spectrum of graphene. In agreement
with recent experimental results, our calculations reveal: (i) a pronounced excitonic effect at the saddle point,
(ii) a constant absorbance in the visible region, and (iii) a drop-off for energies close to the Dirac point.
After a nonlinear optical excitation, we observe that �-LO phonons efficiently and quickly redistribute the
initially highly anisotropic nonequilibrium carrier distribution. In contrast, Coulomb-induced carrier relaxation
is preferably carried out directly toward the Dirac point leading to an ultrafast thermalization of the carrier system.
We evaluate the temporal dynamics of optical and acoustic phonons and discuss the energy dissipation arising
from phonon-induced intra- and interband scattering. Furthermore, we investigate the influence of diagonal and
off-diagonal many-particle dephasing on the ultrafast carrier relaxation dynamics. The gained insights contribute
to a better microscopic understanding of optical and electronic properties of graphene.
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I. INTRODUCTION

Graphene as a monolayer of carbon atoms is an ideal
structure to study the physics of two-dimensional systems.
The reduced dimensionality, the linear band structure, and the
zero band gap lead to unique optical and electronic properties
making graphene a promising novel material for various
optoelectronic applications.1–5 However, a better microscopic
understanding of its optical and electronic properties is the
key for exploiting the tremendous application potential of
graphene.

The significant role of so-called saddle-point excitons
in absorption spectra of graphene has been predicted in a
first calculation based on the GW-Bethe-Salpeter technique6

and confirmed in recent experiments.7,8 Further microscopic
insights are necessary, in particular, for energies close to the
Dirac point where intraband contributions become dominant.
Recent experimental investigations9–16 on ultrafast carrier
relaxation dynamics in graphene reveal two distinct time scales
characterizing the way of excited carriers toward equilibrium:
a fast initial decay within the first hundred femtoseconds
accounting for the thermalization of nonequilibrium carriers is
followed by a slower component in the subpicosecond range
describing the carrier cooling. The experimental data have
not been fully complemented by theoretical studies treating all
relaxation channels on a consistent microscopic footing.17,18 In
particular, a detailed study on the efficiency of angle-resolved
carrier and phonon scattering channels as well as the influence
of many-particle dephasing is necessary to obtain thorough
insights into the relaxation dynamics in graphene.

In this work, we present a microscopic approach based
on a many-particle density-matrix framework—an established
technique for quantum-mechanical treatment of many-particle
systems.19,20 It provides microscopic tools to investigate the
excitonic features in absorption spectra of low-dimensional
nanostructures. Furthermore, the knowledge of the coupled
population, coherence, and phonon dynamics allows to track
the way of excited carriers toward equilibrium. The ap-
proach offers a microscopic access to time-, momentum-,

and angle-resolved ultrafast relaxation dynamics of nonequi-
librium charge carriers. It includes carrier-carrier as well as
carrier-phonon scatterings and takes into account all relevant
relaxation paths including intra- and interband as well as
intra- and intervalley processes, see Fig. 1. In extension
to previously published results,17,18,21 we present a detailed
microscopic study on the excitonic absorption as well as on the
angle-resolved carrier and phonon dynamics based on the same
description focusing in particular on the interplay between
Coulomb- and phonon-induced relaxation channels. We ad-
dress (i) the pronounced features in different energy regions of
the absorption spectrum, (ii) the ultrafast redistribution of the
initially highly anisotropic nonequilibrium carrier population,
(iii) the generation of hot phonons in different modes and with
different momenta accounting for efficient intra- and interband
scattering channels, and (iv) diagonal and off-diagonal many-
particle dephasing of the microscopic polarization and its
influence on the carrier relaxation dynamics.

The paper is organized as follows: in Sec. II, the theoretical
framework is described including mean-field and scattering
contributions. In Sec. III, we show the absorption spectrum of
graphene and discuss its characteristic features. The main part

FIG. 1. (Color online) (a) Coulomb- and (b) phonon-induced
scattering channels along the linear band structure of graphene. Intra-
and interband as well as intra- and intervalley processes are taken into
account.
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of the work is presented in Sec. IV, where we investigate in
detail the relaxation dynamics of optically excited carriers.

II. MICROSCOPIC APPROACH

The first step in our approach is the description of the
many-particle Hamilton operator H , which determines the
quantum properties of a carrier-phonon system interacting with
an electromagnetic field.22 We apply a semiclassical approach
treating the carriers and phonons quantum mechanically and
the electrical field classically. The formalism is expressed in
second quantization based on the introduction of Heisenberg
field operators �(r) = ∑

l al�l(r) and �+(r) = ∑
l a

+
l �∗

l (r)
with �l(r) as single-particle wave functions and a+

l and al
creating and annihilating an electron in the state l, respectively.
In analogy, we introduce the bosonic operators b+

u and bu ,
which create and annihilate a phonon in the state u. The sym-
metry conditions are expressed in fundamental commutation
relations between these operators. The introduced compound
index l = (λ,k) contains the electronic momentum k and the
conduction/valence band λ = v,c, while u = (j,q) describes
the phonon momentum q and the phonon mode j .

A. Hamilton operator

In our work, the many-particle Hamilton operator consists
of the free-carrier part H0, the carrier-field Hc,f , the carrier-
carrier Hc,c, and the carrier-phonon interaction Hc,p:

H = H0 + Hc,f + Hc,c + Hc,p . (1)

(i) The free-carrier and phonon part H0 is determined by the
electron (εl) and the phonon dispersion (h̄ωu):

H0 =
∑

l

εla
+
l al +

∑
u

h̄ωu

(
b+

u bu + 1

2

)
. (2)

The single-particle energy εl is calculated analytically
within the tight-binding (TB) approach23 by introducing
electronic wave functions �λ(k,r) approximated as a linear
combination of the atomic orbital functions φ(r):

�λ(k,r) =
∑

s=A,B

Cs
λ(k)

1√
N

∑
Rs

eik·Rs φ(r − Rs) , (3)

where N is the number of unit cells in the lattice and Rs are
the lattice vectors. Since graphene has two atoms A and B
in the unit cell, the wave function is a sum of two sublattice
Bloch functions weighted with the coefficients Cs

λ(k). The
band structure of graphene is determined by the two π bands,
because the bonding and antibonding σ bands show a large
energy gap of more than 10 eV and are therefore negligible
for the majority of low-energy physical effects.2 The solution
of the eigenvalue problem H�λ(k,r) = Eλ(k)�λ(k,r) within
the nearest-neighbor approximation leads to the compact
dispersion relation

ελ
k = ± γ0|e(k)|

1 ± s0|e(k)| . (4)

Here, γ0 = 〈φ(r − RA)|H |φ(r − RB)〉 corresponds to the
carbon-carbon interaction energy, s0 = 〈φ(r − RA)|φ(r −
RB)〉 denotes the overlap matrix element, and e(k) =∑3

i=1 exp(ik · bi) describes the contributions stemming from

FIG. 2. (Color online) The band structure of graphene over the
hexagonal Brillouin zone. The valence and conduction bands cross
at the K and K ′ points. In their vicinity, the band structure is
linear. Applying a pulse [described by the vector potential A(t)] lifts
electrons from the valence into the conduction band and changes the
occupation probabilities ρc

k and ρv
k as well as the transition probability

determined by the microscopic polarization pk. The subsequent
scattering via phonons varies the phonon occupation nj

q.

the nearest-neighbor atoms with bi as the connecting vectors.
The evaluation of the latter yields2

|e(k)| =
[

3 + 2 cos(a0ky) + 4 cos

(√
3a0

2
kx

)
cos

(
a0

2
ky

)] 1
2

with a0 = 0.246 nm as the graphene lattice constant. The two
eigenvalues ελ

k in Eq. (4) correspond to the π∗ conduction band
(−) and the π valence band (+). In Fig. 2, the well-known
band structure of graphene is plotted over the hexagonal
Brillouin zone (BZ). The conduction and the valence bands
cross at six Dirac points corresponding to the K and K ′
points at the edges of the BZ. As a result, graphene is a
zero-band-gap semiconductor or a semimetal, where the Fermi
surface consists of only six points. In the region around
these Dirac points, the electronic dispersion relation is linear,
Eλ(k) = ±h̄νF |k|, with the Fermi velocity17 νF ≈ 106 ms−1.
The corresponding eigenfunctions of the eigenvalue problem
are determined by the coefficients

CA
λ (k) = ± e(k)

|e(k)|C
B
λ (k) and CB

λ (k) = 1√
2(1 ± s0 |e(k)|) ,

which can be obtained by exploiting the normalization of the
wave function.

Note that the simple electronic dispersion relation in Eq. (4)
is only valid in a certain region of the BZ. The TB parameters
γ0 and s0 are fixed by fitting to experimental or ab initio results.
Usually, they are adjusted to give a correct description around
the Dirac point yielding2 s0 ≈ 0.1 and γ0 ≈ −2.8 eV. An
improved tight-binding electronic dispersion can be achieved
by including third-nearest-neighbor interactions and their
overlaps23 or by including the influence of energetically higher
σ bands.24 However, for our aim to microscopically describe
the carrier relaxation dynamics close to the Dirac point, the
nearest-neighbor TB approximation is sufficient.

The Hamilton operator H0 from Eq. (2) also contains the
contribution from free phonons. The dispersion of optical
phonons is characterized by two sharp kinks (Kohn anomalies)
at the � and the K points.25 The corresponding �-E2g and K-
A′

1 phonon modes exhibit strong electron-phonon coupling and
will be taken into account for the calculation of the relaxation
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dynamics. The doubly degenerate E2g mode splits into the
longitudinal (LO) and the transverse (TO) mode. As a first
approximation, we assume a constant phonon energy around
these high-symmetry points:26 E�−LO = 198 meV, E�−TO =
192 meV, and EK = 162 meV. The momentum transfer dur-
ing a phonon-induced scattering process will be either very
small (q ≈ 0) corresponding to the intravalley scattering via
� phonons or very large [q ≈ 4π/(

√
3a0)] corresponding

to the intervalley scattering between K and K ′ points. For
acoustic phonons, we assume a linear phonon dispersion
h̄ωj,q = h̄νj |q| taking into account only the strongest �-LA
phonon mode27 with νLA = 2 × 104 ms−1.

(ii) The second term Hc,f of the Hamilton operator in Eq. (1)
represents the carrier-field interaction. Within the radiation
gauge and the dipole approximation, it reads28

Hc,f = ih̄
e0

m0

∑
l1,l2

M l1,l2 · A(t) a+
l1 al2 (5)

with the elementary charge e0 and the electron mass m0. The
strength of the coupling is given by the product of the vector
potential A(t) and the optical matrix element29–31 Ml1,l2 =∫

dr�∗
l1 (r)∇�l2 (r), which can be analytically evaluated within

the TB approach [see Eq. (3)] yielding30

Mλλ′
(k) = m

3∑
i=1

bi

|bi |
[
CA∗

λ (k)CB
λ′ (k)eik·bi

−CB∗
λ (k)CA

λ′ (k)e−ik·bi
]
. (6)

The matrix element describes direct optical transitions, since
the momentum of light is negligibly small. The constant
expectation value29 m = 〈φ(r + b1ex)|∂x |φ(r)〉 ≈ 3 nm−1 can
be obtained by inserting effective 2pz orbitals including an
effective atomic number Zeff ≈ 4 for carbon atoms. The latter
is obtained by fixing the overlap matrix element s0 to 0.1, a
value obtained in ab initio calculations.2,23

Figure 3 illustrates the square of the x and y component of
the off-diagonal optical matrix element Mvc(k) as a function
of kx and ky . It is important to look at these components
separately, since the carrier-field interaction is given by the
projection of Mλλ′

(k) along the vector potential A(t), see
Eq. (5). We observe that both components are maximal at the
M point of the BZ. Here, the density of states is also very high,
and we therefore expect a pronounced peak in the absorption
spectrum of graphene. Furthermore, note that the carrier-field
coupling is highly anisotropic, which will have a significant
influence on the optically prepared initial carrier distribution
and therefore on the carrier relaxation dynamics, see Sec. IV.

(iii) The third contribution Hc,c in Eq. (1) describes the
carrier-carrier interaction,

Hc,c = 1

2

∑
l1,l2,l3,l4

V
l1 ,l2
l3,l4 a+

l1 a
+
l2 al4 al3 , (7)

including the Coulomb matrix element V
l1 ,l2
l3,l4 =∫

dr
∫

dr′
�∗

l1 (r)�∗
l2 (r′)VCoul(r − r′)�l4 (r′)�l3 (r), which can be evalu-

ated by inserting TB wave functions with effective 2pz

orbitals:32

V
l1 ,l2
l3,l4 = Vq

[(
q aB

Zeff

)2

+ 1

]−6

g
l1l2
l3,l4δq,k4−k2 . (8)

FIG. 3. (Color online) Contour plots of the two components of the
off-diagonal optical matrix element Mvc

k along kx and ky directions
illustrating that the carrier-field coupling is highly anisotropic with
maxima at M points of the graphene Brillouin zone.

Here, li = (λi,ki) is a compound index, aB ≈ 0.529 Å denotes
the Bohr radius, the Kronecker accounts for momentum
conservation, and Vq = e2

0
2ε0L2

1
q

is the Fourier transform of
the two-dimensional Coulomb potential with the momentum
transfer q = |k1 − k3|. The area L2 of the structure cancels
out after performing the sum over k and has no influence on
physical observables. Furthermore, g

l1,l2
l3,l4 is determined by the

TB coefficients Cs
λ(k):

g
l1,l2
l3,l4 = 1

4

[
1 + cλ1λ3

e∗(k1)e(k3)

|e(k1)e(k3)|
][

1 + cλ2λ4

e∗(k2)e(k4)

|e(k2)e(k4)|
]
,

where cλλ′ equals +1 for intraband (λ = λ′) and −1 for
interband processes (λ 	= λ′).

Due to the presence of many electrons and the surrounding
material, the Coulomb interaction is screened. The effects
arising from the electrons in the core states and the sur-
rounding medium are taken into account by introducing a
dielectric background constant εbg . Assuming a graphene
sample on a SiO2 substrate, we approximate this constant33 as
εbg ≈ 1

2 (εSiO2 + εair) ≈ 2.45. The screening stemming from
other valence electrons are calculated within an effective
single-particle Hamiltonian approach leading to the Lindhard
approximation of the dielectric function ε̃q, which reads within
a static limit:24

ε̃q = 1 − 2Vq

∑
k,λ,λ′

ρλ′
k−q − ρλ

k

ελ′
k−q − ελ

k

∣∣∣∣
∫

d3r�∗
k,λ(r)e−iq·r�k−q,λ′

∣∣∣∣
2

with the occupation probabilities ρλ
k . The screened Coulomb

potential is given by Vq = V bare
q /(εbgε̃q), which has been used

throughout the work. If the total screening of the Coulomb
potential is sufficiently weak, a strongly correlated ground state
of the electronic system in graphene has been predicted.34 In
addition to the dielectric background screening stemming from
the SiO2 substrate, we have determined an average internal
screening of about four for small momentum transfer q. As a
result, in the presented work, the assumption of an uncorrelated
TB ground state is well justified.

(iv) Finally, the last contribution Hc,p of the Hamilton
operator in Eq. (1) describes the interaction between carriers
and phonons:

Hc,p =
∑
l1,l2

∑
u

(
gl1,l2

u a+
l1 al2 bu + gl1,l2

u a+
l2 al1 b

+
−u

)
(9)
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with the carrier-phonon matrix elements gl1,l2
u = ∫

dr
�∗

l1 (r)δVu�l2 (r), where δVu represents the phonon-induced
deformation potential. Piscanec et al.25 have shown that Kohn
anomalies can be exploited to determine the electron-phonon
coupling elements at the high-symmetry points of the BZ. The
slope of the kinks in the dispersion relation is proportional to
the square of the coupling element allowing their experimental
estimation. The electron-phonon coupling elements for the
�-LO, �-TO, and the K modes are shown to be particularly
large:25,35

∣∣gkλλ′
q� j

∣∣2 = 1

N
g2

�

[
1 + c

j

λλ′ cos(θq,k + θq,k+q)
]
, (10)

∣∣gkλλ′
qK

∣∣2 = 1

N
g2

K [1 − cλλ′ cos(θk,k+q)] (11)

with g2
K = 0.0994 eV2 for K phonons, g2

� = 0.0405 eV2 for
�-LO and �-TO phonons, and θk1,k2 describing the angle
between k1 and k2. Note that the angle dependence of the �

phonons is reverse: c
j

λλ′ = −1 for interband TO and intraband
LO scattering and c

j

λλ′ = +1 for interband LO and intraband
TO phonons.

For acoustic phonons, we follow the approach of Tse
et al.27 yielding |gkλλ

q�LA
|2 = 1

2N
g2

LA(q)[1 + cos(θk,k−q)] with

g2
LA = D2q2h̄

ML2ωq
, where D = 16 eV is the deformation poten-

tial, M = 7.6 × 10−8 gcm−2 the graphene mass density, and
ωq = νLA q the �-LA phonon frequency. Due to the angle
dependence of the coupling elements, the phonon-induced
carrier relaxation will be strongly influenced by the angle
between the scattering electrons and phonons, see Sec. IV.

B. Graphene Bloch equations

Having determined the electron and phonon dispersion as
well as carrier-field, carrier-carrier, and carrier-phonon matrix
elements, we have all ingredients at hand to investigate the
dynamics in the system. Within the Heisenberg equation
of motion19 ih̄∂tO(t) = [O(t),H ]− describing the temporal
evolution of an arbitrary quantum-mechanical operator O, we
can now derive equations of motion for quantities of interest:
(i) the microscopic polarization pk(t) = 〈a+

vkack〉(t), (ii) the
population probabilities ρλ

k (t) = 〈a+
λkaλk〉(t) in the conduction

and the valence bands, and (iii) the phonon occupation
n

j
q(t) = 〈b+

jqbjq〉(t) in the mode j = {�-LO, �-TO, K , and
�-LA}. Figure 2 illustrates the importance of these observables
to understand the relaxation dynamics of optically excited
carriers. First, we apply an optical pulse described by the
vector potential A(t), which excites carriers from the valence
to the conduction band. The microscopic polarization pk is
a measure for the corresponding transition probability. The
optical excitation changes the occupation probabilities ρλ

k in
both bands and the subsequent relaxation of excited carriers
increases the phonon occupation n

j
q. To obtain thorough

microscopic insights into the nonequilibrium carrier dynamics,
we need to determine the temporal evolution of ρλ

k , pk,
and n

j
q.

Applying the Heisenberg equation and exploiting the
fundamental commutator relations, we obtain the graphene
Bloch equations:36,37

ṗk = (
i�ωk + �λλ

k

)
pk − i�vc

k

(
ρc

k − ρv
k

) + ṗk
∣∣
hf+s, (12)

ρ̇v
k = −2
m(�∗

kpk) + ρ̇v
k

∣∣
hf+s, (13)

ṅj
q = −γj

(
nj

q − nB

) + ṅj
q

∣∣
s, (14)

with the energy gap h̄�ωk = (εv
k − εc

k), the Rabi frequency
�vc

k (t) = i e0
m0

M(k)vc · A(t), the phenomenological phonon

lifetime38 γ −1
j = 1.2 ps, and the Bose-Einstein distribution

nB at room temperature as the equilibrium distribution of
phonons. The intraband carrier-field contribution �λλ

k (t) =
i e0

m0
[Mcc(k) − Mvv(k)] · A(t) is proportional to the micro-

scopic polarization pk and leads to a renormalization of
the band structure. Neglecting the overlap matrix element
s0, the electronic bands are symmetric and the temporal
evolution of the carrier occupation in the conduction band
ρc

k corresponds to the hole occupation ρh
k in the valence band,

i.e., ρ̇c
k = −ρ̇v

k = ρ̇h
k .

In the graphene Bloch equations, the many-body in-
teractions are split into the Hartree-Fock (pk|hf) and the
scattering (ṗk

∣∣
s) parts. They couple the dynamics of single-

particle elements pk,ρ
λ
k ,n

j
q to higher-order terms describing

the correlation between carriers d
dt

〈a+
1 a2〉 ∝ 〈a+

Aa+
B aC aD〉.

The equation of motion for these four-operator quantities
depends on six-operator terms, six-operator terms couple to
eight-operator terms and so on. The obtained set of equations
is not closed and the appearing infinite hierarchy19 has to be
truncated at some level. In this work, we apply the correlation
expansion,39,40 assuming that higher-order terms involving an
increasing number of carriers become less and less important.
To give an example, the four-operator terms are factorized into
products of two operators with

〈a+
1 a+

2 a3 a4 〉 = 〈a+
1 a4 〉〈a+

2 a3 〉 − 〈a+
1 a3 〉〈a+

2 a4 〉 + C12
34 ,

where C12
34 = 〈a+

1 a+
2 a3 a4 〉c denotes the correlation term. This

factorization technique leads to a closed set of equations for the
single-particle elements. If the correlation term is neglected
in the first order, the truncation is called Hartree-Fock
factorization or mean-field approximation. Considering the
second-order terms in the carrier-carrier and carrier-phonon
interactions (second Born approximation), i.e., calculating the
dynamics of the correlation term C12

34 , allows the investigation
of scattering processes.41

As initial condition, we assume a Fermi distribution (room
temperature, vanishing chemical potential) for the electron
population ρλ

k and a corresponding Bose-Einstein distribution
for the phonon occupations n

j
q. The microscopic polarization

pk is set to zero before the optical excitation.

1. Mean-field contribution (Hartree-Fock)

The Hartree-Fock approximation of the Coulomb interac-
tion is already sufficient to gain insights into the formation of
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excitons in optical absorption spectra.32,37 Neglecting carrier-
phonon coupling at this stage, we obtain the Bloch equations

ṗk|hf = i

h̄

∑
k′

[
V kk′

ren pk
(
ρv

k′ − ρc
k′
)

− (
V

k c, k′v
k′c, k v

pk′ + V
k c, k′c
k′v, k v

p∗
k′
)(

ρc
k − ρv

k

)]
, (15)

ρ̇v
k

∣∣
hf = −ρ̇c

k

∣∣
hf = 2

h̄

∑
k′

V
k v, k′c
k′v, k c

pk′p∗
k . (16)

Assuming the driving field to be weak leads to negligibly small
changes in the carrier occupation justifying the assumption
of a full valence band and an empty conduction band (at
zero temperature). In this limiting case of linear optics, the
dynamics is determined only by the microscopic polarization:

ṗk|hf = i

h̄

∑
k′

[
V kk′

ren pk+(
V

k c, k′v
k′c, k v

pk′+V
k c, k′c
k′v, k v

p∗
k′
)]

. (17)

The Coulomb contribution proportional to pk(t) describes
the repulsive electron-electron interaction and leads to a
renormalization of the single-particle energy. Its strength is
given by V kk′

ren = V
k c, k′v
k′v, k c

− V
k′v, k v

k v, k′v . The terms proportional to
pk′(t) redistribute the momentum and lead to a renormalization
of the Rabi frequency �k(t), which accounts for formation of
bound electron-hole pairs at the saddle-point of the graphene
BZ. The excitons will turn out to be of crucial importance for
understanding the features in the linear absorption spectrum
of graphene, see Sec. III.

2. Scattering contribution

The description of ultrafast carrier relaxation processes
requires an extension of the theory beyond linear optics and
the Hartree-Fock level. Optically excited carriers relax toward
equilibrium via scattering processes involving other particles
or defects. The carrier-phonon and carrier-carrier interactions
account for the major contribution to the relaxation dynamics.
The corresponding part for the coherence ṗl(t)|s and the
occupation dynamics ρ̇l(t)|s in Eqs. (12)–(13) is obtained by
taking the Coulomb and electron-phonon interactions up to the
second-order Born-Markov approximation into account.19,36

The many-particle interactions lead to a dephasing of the
coherence:

ṗk(t)|s = −γ2,k(t)pk(t) + Uk(t), (18)

where the diagonal part is given by

γ2,k(t) = 1

2

∑
λ

[
�in

λ,k(t) + �out
λ,k(t)

]
. (19)

It is determined by the time- and momentum-dependent
scattering rates �

in/out
l (t) describing both carrier-carrier and

carrier-phonon relaxation channels, which will be discussed
below in detail. The off-diagonal dephasing

Uk(t) =
∑

k′

[
T a

k,k′ (t)pk′(t) + T b
k,k′(t)p∗

k′(t)
]

(20)

is more complicated and numerically demanding, since it
couples to all coherences in the entire BZ. In this work,

we focus on the contribution stemming from the Coulomb
interaction resulting in

T i
k,k′ = π

h̄

∑
l1,l2,λ

[
V̂

k c, l2
k′λi ,l1 V̂

k′λ′
i ,l1

k v, l2T
kλ

l1,l2δ
(
ελ

k ∓ ελ
k′ − εl1 + εl2

)

+V
kc,k′λ′

i

l2,l3 V̂
l2,l3

kv,k′λi
T̃ kλ

l1,l2δ
(
ελ

k ∓ ελ
k′ − εl1 − εl2

)]

with λi = c, λ′
i = v (λi = v, λ′

i = c) and − (+) in the delta
function in the case of T a

k,k′ (T b
k,k′). Furthermore, T kλ

l1,l2 = (1 −
ρl1 )ρl2ρ

λ
k + ρl1 (1 − ρl2 )(1 − ρλ

k ) and T̃ kλ
l1,l2 = (1 − ρλ

k )ρl1ρl2 +
ρλ

k (1 − ρl1 )(1 − ρl2 ). For reasons of clarity, we introduced
the abbreviation V̂

l1,l2
l3,l4 ≡ V

l1,l2
l3,l4 − V

l2,l1
l3,l4 . The contribution of

carrier-phonon scattering to off-diagonal dephasing can be
derived in analogous way.

In the case of the occupation probability ρ̇l(t)|s , the
Coulomb and electron-phonon interactions considered up to
the second-order Born-Markov approximation lead to the
microscopic Boltzmann equation

ρ̇l(t)|s = �in
l (t)[1 − ρl(t)] − �out

l (t)ρl(t). (21)

The time- and momentum-dependent scattering rates �
in/out
l (t)

include both carrier-carrier (cc) as well as carrier-phonon (cp)
relaxation channels, i.e., �

in/out
l (t) = �

in/out
l,cc (t) + �

in/out
l,cp (t). In

the case of Coulomb scattering, the rates are given by

�
in/out
l,cc (t) = 2π

h̄

∑
l1,l2,l3

V
l,l1

l2,l3

(
2V

l,l1 ∗
l2,l3 − V

l,l1 ∗
l3,l2

)

×Rin/out,cc(t)δ
(
εl + εl1 − εl2 − εl3

)
(22)

with Rin,cc(t) = [1 − ρl1 (t)]ρl2 (t)ρl3 (t) and Rout,cc(t) =
ρl1 (t)[1 − ρl2 (t)][1 − ρl3 (t)], which explicitly include Pauli
blocking terms. The efficiency of the scattering channels is
determined by the Coulomb matrix elements V

l ,l1
l2,l3 and the

occupation probabilities of the involved states. The delta
function results from the Markov approximation. It is eval-
uated numerically allowing only scattering processes, which
fulfill the energy conservation. In future work, the micro-
scopic non-Markovian dynamics will be investigated taking
into account energy-time uncertainty during the scattering
processes.41

The out-scattering rate in Eq. (22) expresses the proba-
bility of scattering an electron from the state l = (λ,k) to
l2 = (λ2,k2). This process is accompanied by the scattering
of another electron from l1 = (λ1,k1) to l3 = (λ3,k3). The
entire process conserves momentum (k + k1 = k2 + k3) and
energy (εl + εl1 = εl2 + εl3 ). Due to the zero band gap,
Coulomb-induced interband processes are expected to be
important. In particular, Auger-type scattering, which is
inefficient in conventional semiconductors, has a crucial
influence on the relaxation dynamics in graphene.21 The
corresponding matrix elements for impact ionization V

kλ k′+qc

k+qλ k′v

and Auger recombination V
k+qλ k′v

kλ k′+qc are explicitly included in
Eq. (22).

The scattering rates of carrier-phonon coupling are deter-
mined in a similar way. The phonon-induced in-scattering is
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FIG. 4. (Color online) (a) Inter- and (b) intraband scattering
via optical phonons. Interband processes are possible for q � qp

(see the arrows), while the energy and momentum conservation
requires q � qp for intraband relaxation. The limiting momentum
qp = ωj/νF describes parallel scattering along the electronic band
structure, i.e., qp||k.

given by42

�
in,cp
λ,k (t) = 2π

h̄

∑
λ′,γ,q

∣∣gk λ,λ′
q,j

∣∣2
ρλ′

k+q(t)
[(

nj
q(t) + 1

)
δ(�ε−

k,q,j )

+ n
j
−q(t)δ

(
�ε

λ′λ,+
k,q,j

)]
(23)

with the condition for energy conservation �ε
λ′λ,±
k,q,j = ελ′

k+q −
ελ

k ± h̄ωj describing phonon emission (nj
q + 1) and absorption

(nj
−q). The interpretation of the components corresponds

to the carrier-carrier interaction. The index j denotes the
investigated �-LO, �-TO, �-LA, and K phonon modes. An
excited electron scatters from the state |λk〉 to |λ′k + q〉. The
momentum and energy conservation is fulfilled by emitting or
absorbing a phonon with the momentum q. The out-scattering
rate �

out,cp
λ,k (t) is obtained by substituting ρl ↔ (1 − ρl) and

nu ↔ (nu + 1).
Assuming constant optical phonon energies h̄ωj , it is

possible to distinguish phonon-induced intra- and interband
processes, see Fig. 4. Due to the momentum and energy
conservation, interband scattering can only take place for
phonons with q � qp, see the arrows in Fig. 4(a). In contrast,
intraband processes can only occur involving larger momenta
q � qp. The limiting momentum qp = ωj/νF corresponds to
parallel scattering, i.e., qp||k.

Phonon-induced scattering can be very efficient leading
to generation of hot phonons.42 For this reason, it is very
important to go beyond the bath approximation and to calculate
the dynamics of the phonon occupation n

j
q. In analogy to the

carrier population in Eq. (21), we obtain the phonon-induced
Boltzmann equation:

ṅu(t)|s = �em
u (t)[nu(t) + 1] − �ab

u (t)nu(t), (24)

with the phonon emission and absorption parts:

�em
q,j (t) = 2π

h̄

∑
λ,λ′,k

∣∣gk,λ,λ′
q,j

∣∣2
ρλ

k+q(t)
[
1 − ρλ′

k (t)
]
δ
(
�ε

λ′λ,−
k,q,j

)
,

�ab
q,j (t) = 2π

h̄

∑
λ,λ′,k

∣∣gk,λ,λ′
q,j

∣∣2[
1 − ρλ

k+q(t)
]
ρλ′

k (t)δ
(
�ε

λ′λ,−
k,q,j

)
,

which only differ in the Pauli blocking terms.

III. EXCITONIC ABSORPTION

Graphene as a perfect two-dimensional system with a
gapless band structure displays interesting optical properties.
Recent experiments have revealed a strong saddle-point
absorption (often called saddle-point exciton) at 4.6 meV
corresponding to the M point of the graphene BZ7,8 and a
constant absorption in the visible range.7,43,44 To obtain a better
understanding of these features, detailed theoretical studies are
necessary to complement the experimental data. In the follow-
ing, we present results from microscopic calculations based
on the many-particle Bloch equations described in Sec. II.

The information on linear optical properties is provided
by the frequency-dependent optical susceptibility χ (ω). The
absorption coefficient for conventional bulklike structures is
given by19 α(ω) = ω

c
Imχ (ω) with the velocity of light c. For

two-dimensional nanostructures, a modified equation has been
derived taking into account the two-dimensional character of
graphene:45,46

α(ω) = ωImχ (ω)

c
∣∣1 + idωχ (ω)

2c

∣∣2 . (25)

In most frequency regions, the contribution from the denom-
inator is small and the absorption coefficient is determined
by the imaginary part of the optical susceptibility. In this
work, we will calculate the optical absorbance corresponding
to the absorption per graphene layer, i.e. dα(ω) with d as
the graphene thickness.6 The latter has no influence on the
absorbance, since the optical susceptibility χ (ω) depends on
1/d. Within the limit of linear optics, χ (ω) can be expressed
as a function of the Fourier transform of the current density
j (ω) and the vector potential A(ω):30,37

χ (ω) = j (ω)

ε0ω2A(ω)
. (26)

The current density is defined as19

j(t) = e0

2 V m0

∑
λ,λ′k,k′

[〈λk|p−e0A(t)|λ′k′〉〈a+
λ,kaλ′,k′ 〉+c.c.]

with the volume V = Ad, where A is the graphene area.
Applying the dipole approximation and introducing the optical
matrix element Mλλ′

(k), the current density reads

j(t) = 2h̄e0

V m0

{
2
∑

k

Mvc(k)Im[pk(t)]

− i
∑

k

[
Mvv(k)ρv

k(t)+Mcc(k)ρc
k(t)

]}− e2
0

d m0
A(t) N

(27)

with the overall carrier density N = 1
A

∑
s,λ,k ρλ

k including
the sum over spin s, the band index λ, and the momentum
k. In the limiting case of linear optics, where the driving
field is considered to be small resulting in negligible change
in the occupations, the current and the absorption coefficient
are determined only by the microscopic polarization pk and
the optical matrix element Mλλ′

(k). Note that in equilibrium,
the current vanishes, since

∑
k Mvv(k) = 0. The current j(t)

consists of interband [first line in Eq. (27)] and intraband
(second line) contributions. The latter also contains the Drude
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FIG. 5. (Color online) The real part of the free-particle (blue) and
the excitonic (red) microscopic polarizations pk(t) at the M point,
which has been obtained by numerically evaluating Eq. (17). The
frequency and the damping of the oscillation give information about
the position and the width of the appearing peak in the absorption
spectrum.

response χD(ω) = e2
0 N/(Lε0m0ω

2), see Eqs. (26) and (27).
Since it is purely real, it does not contribute to the absorption
via Imχ (ω).

To determine the absorption coefficient, we evaluate the
Bloch equation for the microscopic polarization pk(t) within
the mean-field approximation,see Eq. (17). We approximate
the influence of scattering terms beyond the Hartree-Fock
factorization by a phenomenological dephasing constant γ =
(0.125/h̄) eV, which is introduced for numerical reasons and
does not influence the absorption features discussed below. In
future work, the latter will be determined microscopically by
calculating the phonon-induced dephasing of the microscopic
polarization. Figure 5 compares the temporal evolution of the
free-particle with the excitonic microscopic polarization pk(t)
at the M point. Here, the band structure has a saddle point and
the optical matrix element is maximal (see Fig. 3) expecting a
pronounced peak in the absorption spectrum. The oscillation
frequency of pk(t) determines its position and the damping of
the oscillation accounts for the peak width. A clear change in
the frequency can be observed due to the Coulomb contribu-
tion, which leads to a renormalization of the band structure and
to an additional internal Coulomb field at the M point, which
results from all other polarizations pk in the Brillouin zone.

Once we have determined the microscopic polarization, we
can study the absorption of graphene, see Eqs. (25)–(27). To
better understand the influence of the Coulomb effects on the
absorption, we will first show a free-particle spectrum (see
Fig. 6), then we will discuss its change due to the repulsive
electron-electron interaction (see Fig. 7), and finally, we will
investigate the excitonic features (see Fig. 8). Note that we have
fixed the TB parameter γ0 to 2.2 eV to obtain a good description
of high energies around the M point without loosing too much
accuracy around the K point.

In the free-particle spectrum including the carrier-field
interaction, we observe a well pronounced peak at 4.2 eV
corresponding to the free-particle band gap at the M point,
see Fig. 6. Its large width reflects the broad density of states
in graphene, which arises from the saddle point in the band
structure. However, the absorption also differs from the density
of states due to the influence of the optical matrix element. To
illustrate its importance, we show the absorption coefficient
α(ω) in the artificial case of Mvc(k) = 1 (dashed, blue line in
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FIG. 6. (Color online) The free-particle absorption spectrum of
graphene. We plot the absorbance corresponding to the absorption
coefficient α(ω) per graphene layer as a function of energy. To
illustrate the importance of the optical matrix element M(k), the
carrier-field interaction is assumed to be constant (dashed, blue line).
The inset shows a drop-off in absorbance at energies below 1 eV.
To better understand its origin, we compare the absorbance based on
α(ω) from Eq. (25) with αIm χ (ω) = ωIm χ (ω)/c containing only the
contributions from the imaginary part of the optical susceptibility.

Fig. 6). It shows that the matrix element considerably changes
the shape of the absorption peak particularly at higher energies.
As a result, it is important to take into account the full k
dependence of the optical matrix element.

Furthermore, in agreement with recent experiments,7,43,44

our calculations reveal that in the visible region between
1 and 2 eV, the absorption is constant. Within the applied
tight-binding method including effective carbon atom orbital
function, the constant value depends on the optical matrix
element,34 i.e., in particular it is sensitive to the effective
atomic number Zeff , see Eq. (6). Moreover, we observe a
dependence on the Fermi velocity νF , which varies with the
Coulomb-induced renormalization of the band structure and
the Rabi frequency,6 see Figs. 7 and 8.

In addition to the constant absorbance in the visible region,
we find an interesting feature close to the Dirac point:
For energies below 1 eV, we observe a strong decrease of
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FIG. 7. (Color online) Free-particle and renormalized absorption
spectrum of graphene. The inset illustrates the Coulomb-induced
renormalization of the graphene band structure along the high-
symmetry points in the Brillouin zone.
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FIG. 8. (Color online) Excitonic absorption spectrum of
graphene. The peak is redshifted with respect to the Coulomb-
renormalized free-particle transition (dashed line). The asymmetric
shape arises from the overlap with the free-particle transition.

absorbance (see the inset in Fig. 6), which can be ascribed to the
denominator in Eq. (25) or more precisely to the contribution
of the real part of the optical susceptibility. When neglecting
this contribution, the absorbance remains constant (green line
in the inset of Fig. 6). A similar behavior has been observed in
a recent experiment.7

Now, we investigate the influence of the Coulomb inter-
action on the absorption spectrum of graphene. Due to the
vanishing band gap, the screening is expected to be large.
On the other hand, the Coulomb interaction is known to be
generally stronger in low-dimensional structures. The impor-
tance of excitonic effects for optical properties of graphene
has been theoretically predicted6 and recently confirmed
experimentally.7,8 Similarly, the importance of excitons in
the absorption spectra of metallic carbon nanotubes has been
found experimentally47 and theoretically.37,48,49 To obtain a
better insight, we first switch on only the repulsive part of
the electron-electron interaction [term proportional to pk(t)
in Eq. (17)]. In analogy to carbon nanotubes,32,50 this leads
to a renormalization of the band structure resulting in a
considerable blue shift of the free-particle absorption peak,
see Fig. 7. Note that the renormalization does not create a
band gap in the graphene band structure. As shown in the
inset of Fig. 7, it only increases the slope of the dispersion
around the K point, which affects the constant value of the
absorbance in the visible region. Finally, the inclusion of
the attractive electron-hole interaction [terms proportional to
pk′(t) in Eq. (17)] leads to an energy gain of the absorbing
quasi-particles, i.e. to the formation of excitons at the M-point,
see Fig. 8. The absorption peak is significantly redshifted
and reshaped due to the redistribution of the momentum. The
reshape arises from the overlap with the continuum from the
anti-binding contribution of the saddle-point. Both the large
exciton-induced red shift as well as the asymmetric shape are
in good agreement with recent experiments.7,8

IV. ULTRAFAST RELAXATION DYNAMICS

In this section, we focus on the ultrafast relaxation
dynamics of optically excited carriers. We go beyond the
Hartree-Fock approximation (strictly valid only for linear
absorption) and explicitly include second-order contributions
in Eqs. (12)–(14). We excite the electronic system by ap-
plying an optical pulse described by the vector potential
A(t) = A0 exp [−t2/(2σ 2

t )] cos (ωLt). Here, the amplitude A0

(a) (b)

FIG. 9. (Color online) (a) The excitation pulse is determined by
the vector potential A(t). The pulse width is 10 fs, the excitation
energy is 1.5 eV, and the pump fluence is approximately 1 μJcm−2

throughout this work. These parameters correspond to recently
performed high-resolution experiments.14 (b) Increase of the carrier
density due to the excitation pulse (without relaxation processes).

determines the polarization of the pulse, h̄ωL corresponds to its
excitation energy, and σt gives its temporal width (FWHM =
2
√

2 ln2 σt ). The pump fluence describing the flow of energy
density into the system is determined by the product of the
microscopic occupation probability ρλ

k and the energy ελ
k.

Figure 9 illustrates the applied pulse and the corresponding
buildup of the carrier density. We have chosen the pulse
strength in a way that it excites approximately ten times more
carriers compared to the equilibrium distribution. As long as
the pulse is switched on, the carrier density increases up to
a value of 8.5 × 1012 cm−2 and remains constant, if Auger
and phonon-induced processes are not taken into account.
The modulation of the steplike increase of the carrier density
reflects the oscillation of the applied pulse with frequency ωL.

(a) (b)

(c)

FIG. 10. (Color online) (a) Occupation probability ρk as a
function of kx and ky illustrating its angle dependence around the K

point after the excitation pulse. Note that the pulse is polarized along
the x axis. (b) The corresponding angle dependence of the optical
matrix element |Mx |2 showing the strongest carrier-field coupling
in the direction perpendicular to the applied pulse. (c) Occupation
probability ρk at three different angles; the red, green, and blue lines
in (a) (without relaxation processes).

205406-8



MICROSCOPIC THEORY OF ABSORPTION . . . PHYSICAL REVIEW B 84, 205406 (2011)

The generated carrier density in a specific state k = (kx,ky) =
(k,φ) with the absolute momentum k and the angle φ strongly
depending on the polarization of the pulse, which gives rise
to a highly anisotropic carrier distribution, see Fig. 10(a).
The pulse is absorbed to a large extent only in the direction
perpendicular to its polarization [blue solid line in Fig. 10(c)],
whereas no carriers are excited in the parallel direction (red
dot-dashed line). This is a result of the anisotropic optical
matrix element M(kx,ky): the carrier-field coupling is maximal
perpendicular to the polarization of the pulse and vanishes
in the parallel direction, see. Fig. 10(b). Note the slightly
asymmetric angle-resolved carrier occupation around the K

point with respect to the sign of the momentum in Fig. 10(a).
This behavior is reversed around the corresponding K ′ point
resulting in an overall symmetric carrier density.

To obtain microscopic insights into the main relaxation
paths, we will subsequently switch on the carrier-carrier and
the carrier-phonon scattering contributions in Eq. (21). We
focus on the carrier relaxation close to the K point. For the
investigated excitation energy of 1.5 eV, the electronic band
structure is still linear and the absorption is characterized by
a constant value, see Fig. 8. In this region, excitonic effects
(Hartree-Fock contributions) play a minor role and will be
neglected for investigation of the relaxation dynamics.

A. Coulomb-induced carrier dynamics

Figure 11 illustrates the purely Coulomb-induced temporal
evolution of the occupation probability ρk as a function of the
momentum k at different relaxation times and for different
angles around the K point. The initially thermal distribution
is disturbed by an excitation pulse. The maximum of the 10-fs
pulse is reached at 0 fs and gives rise to a nonequilibrium
distribution centered around k ≈ 1.25 nm−1 corresponding to
the excitation energy of 1.5 eV, see Fig. 11(a). The temporally
narrow pulse excites carriers in the range between 1 and
1.5 nm−1. In contrast to Fig. 10, where only carrier-field
coupling has been taken into account, we observe that already
during the pulse, Coulomb-induced intraband scattering takes
place and redistributes the carrier population. Already after
10 fs, the nonequilibrium part of ρk is significantly broadened
[see Fig. 11(b)] arising from the relaxation of nonequilibrium
carriers, which preferably scatter toward the K point via
parallel scattering, i.e., involving states with k||k′. Relaxation
paths including a change of angle are less efficient at the
beginning of the relaxation dynamics. This is expressed in the
separated carrier relaxation at different angles up to 150 fs, see
Figs. 11(b) and 11(c). The carrier-carrier scattering leads to an
ultrafast thermalization of the electronic system resulting in a
hot Fermi distribution already after some tens of femtoseconds.
However, the carrier distribution remains anisotropic. At each
angle, a different Fermi function characterized by a different
temperature (1000–2000 K) is obtained. It takes around 200 fs
to reach a fully thermalized isotropic carrier distribution.

The intervalley relaxation channels involving scattering
from the K to the K ′ point are negligibly small for Coulomb-
induced relaxation, since the matrix elements are strongly
suppressed with increasing momentum transfer q. However,
the Auger processes bridging the valence and the conduction
band turn out to play an important role. They change the

(a)

(b)

(c)

(d)

FIG. 11. (Color online) Purely Coulomb-induced carrier occupa-
tion ρk as a function of the absolute value of the momentum k at
different relaxation times and angles with respect to the polarization
of the exciting pulse, see Fig. 10.

number of carriers within the bands leading to a considerable
carrier multiplication due to the efficient impact ionization.21

These processes also assure that independently of the pulse a
Fermi function with a vanishing chemical potential is reached.
The temperature of the thermalized carrier distribution and
the Coulomb-induced relaxation time depend on the applied
pump fluence: the more scattering partners are available, the
more efficient are the Coulomb-induced scattering channels
resulting in a faster dynamics and an increased temperature of
the thermalized distribution for higher pump fluencies.

B. Phonon-induced carrier dynamics

In this section, we investigate the purely phonon-induced
relaxation dynamics of optically excited carriers. Figure 12
illustrates the temporal evolution of the angle-averaged carrier
occupation probability ρk as a function of carrier energy
and time. We observe a nonequilibrium distribution centered
at 0.75 eV. In the range of some tens of femtoseconds, a
stepwise carrier relaxation toward the K point occurs. It is
driven by phonon-induced intraband scattering and the peak
formation reflects the strict energy conservation combined
with the constant energy of optical phonons. Due to the
initial Bose-Einstein distribution at room temperature, the
number of available phonons is small at the beginning of
the dynamics. As a result, scattering processes toward higher
energies involving the absorption of phonons are not very
efficient. The dynamics is determined by scattering of excited
carriers to energetically lower states accompanied by emission
of phonons. After a few steps of intraband relaxation, all
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FIG. 12. (Color online) Purely phonon-induced angle-averaged
carrier distribution ρk as a function of energy and time. The
steplike relaxation dynamics reflects the constant energy of optical
phonons combined with the strict energy conservation of the Markov
dynamics.

energetically accessible states within the band are filled. Once
the carriers are located in the vicinity of the Dirac point,
phonon-induced interband processes become important, see
Fig. 4. Due to the discrete scattering steps within the Markov
approximation, the phonon-driven carrier relaxation cannot
reach a smooth Fermi function, see also Ref. 18. It is necessary
to include carrier-carrier scattering (as discussed in the next
section) or to treat phonons beyond the Markov approximation
including a softened energy conservation.

In contrast to the purely Coulomb-induced relaxation
dynamics, the parallel scattering with k||q does not play a dom-
inant role. Other scattering processes across the BZ turn out
to be very important as well; while the initial nonequilibrium
carrier distribution can clearly be distinguished for different
angles, the distribution becomes isotropic already after the
first phonon scattering process, see Fig. 13. This is further
illustrated in the inset of the figure revealing the angle-resolved
occupation probability ρk . At energies close to the K point,
intense symmetric rings reflecting an isotropic population are
observed. This confirms the significant contribution of the
phonon-induced angle relaxation.

FIG. 13. (Color online) Phonon-induced carrier occupation ρk

after the excitation pulse as a function of the momentum k at different
angles with respect to the polarization of the exciting pulse. The inset
shows ρk around the K point. Here, symmetric rings correspond to
an isotropic carrier distribution.

FIG. 14. (Color online) Angle-averaged occupation probability
of (a) carriers ρk , (b)–(d) optical phonons nj

q in different modes j , and
(e) acoustic �-LA phonons plotted as a function of the momentum.
In (a), we compare the carrier relaxation considering full phonon
dynamics (solid line) and assuming the bath approximation (dashed
line). In (b)–(e), the phonon dynamics is shown at different relaxation
times. The shaded area emphasizes the region where phonon-induced
interband scattering takes place. The zigzag behavior is only due
to the numerically demanding resolution of the constant energy of
optical phonons.

Our full set of equations does not only treat the electrons
but also the phonons as dynamic quantities. Efficient phonon-
induced scattering leads to generation of hot phonons.42

Therefore it is crucial to go beyond the bath approximation and
to calculate the temporal dynamics of the phonon occupation
n

j
q(t). Figure 14(a) compares the carrier relaxation including

full phonon dynamics (solid line) and assuming the bath
approximation (dashed line)—a comparison illustrating the
importance of hot phonons. We observe a clearly faster
carrier relaxation when the dynamics of phonons is taken
into account. In Figs. 14(b)–14(e), we show the temporal
evolution of the angle-averaged phonon occupation in different
modes as a function of the momentum q. We observe for
all three considered optical phonon modes, a sharp increase
at the specific momentum qp ≈ 0.3 nm−1 describing the
processes of parallel carrier-phonon scattering, i.e., qp||k.
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As shown in Fig. 4, it is possible to distinguish between
intra- and interband processes due to the constant phonon
energy and the conservation of energy and momentum.
Relaxation paths involving phonons with momenta q � qp

correspond to intraband channels, while relaxation paths with
q � qp describe phonon-induced interband scattering [see the
shaded area in Figs. 14(b)–14(d)]. In the first hundreds of
femtoseconds, only intraband channels are efficient. They
contribute to the thermalization of the electronic system and
are responsible for the ultrafast generation of an isotropic
carrier distribution, see Fig. 13. In particular, �-LO phonons
show a broad phonon occupation for large momenta indicating
efficient angle relaxation [see Fig. 14(b)]. In contrast, �-TO
phonons are characterized by a narrow occupation centered at
qp reflecting strong parallel scattering [see Fig. 14(c)]. This
behavior can be explained by the corresponding carrier-phonon
coupling elements, see Eq. (10). While in the case of �-LO
phonons, the parallel scattering is suppressed (1 − cos 0◦ =
0), it is dominant for �-TO phonons (1 + cos 0◦ = 2). The
occupation of the K mode can be explained in an analogous
way, see Eq. (11). After 500 fs, all phonon modes show
an enhanced occupation for small momenta q � qp, see the
shaded area in Figs. 14(b)–14(d). This is due to the interband
scattering, which gains importance after the excited carriers
reach the vicinity of the K point and energy conservation
can be fulfilled for phonon-induced interband scattering. In
particular, �-LO phonons show a significant increase arising
from interband processes.

Scattering via acoustic phonons is found to be signifi-
cantly slower compared to optical phonons. Their occupation
n�−LA

q only slightly changes during the first picoseconds, see
Fig. 14(d). The corresponding scattering time is expected to be
around 300 ps and contributes to the cooling of excited carriers
at later times.16

C. Coulomb- and phonon-induced carrier dynamics

In this section, we consider both carrier-carrier and carrier-
phonon scattering. These relaxation channels directly compete

FIG. 15. (Color online) Angle-averaged occupation probability
for (a), (b) electrons ρk , and (c) and (d) �-LO phonons n�−LO

q plotted
as functions of the momentum for different times. In (a) and (c), a
full calculation containing Coulomb- and phonon-induced relaxation
channels is performed. For comparison and better insights into the
relaxation mechanism, in (b), a purely Coulomb- and in (c), a purely
phonon-driven dynamics are shown.

with each other, i.e., the combined dynamics will not corre-
spond to the sum of single contributions discussed in previous
sections. To illustrate this, Fig. 15 compares the full dynamics
for carriers and phonons to purely Coulomb-induced and
purely phonon-induced scatterings, respectively. Figures 15(a)
and 15(b) show that in the case of full dynamics, a thermalized,
isotropic carrier distribution is reached faster indicating the

FIG. 16. (Color online) Temporal evolution of the angle-averaged carrier distribution [ρk weighted by the density of states D(ω)] as a
function of energy. The relaxation dynamics is determined by Coulomb- and phonon-induced intra- and interband scattering channels. It is
characterized by (a) an ultrafast thermalization followed by (b) cooling of the optically excited carriers.
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FIG. 17. (Color online) Differential transmission spectrum of
graphene. All relaxation channels are included resulting in a biex-
ponential decay of the signal with two distinct decay times (see the
logarithmic plot in the inset) describing the process of thermalization
(τ1 ≈ 100 fs) and carrier cooling (τ2 ≈ 0.5 ps).

importance of the carrier-phonon scattering for the process
of thermalization. A further sign for the strong competition
between carrier-carrier and carrier-phonon scattering channels
is found in Figs. 15(c) and 15(d), where a reduced occupation
of �-LO phonons is found, when both interactions are taken
into account. Furthermore, in the full calculation in Fig. 15(c),
the carriers reach faster the vicinity of the K point and the
phonon-induced interband relaxation is initiated at earlier
times.

In Fig. 16, the angle-averaged carrier distribution [corre-
sponding to the occupation probability ρk weighted with the
density of states D(ω)] is plotted as a function of carrier
energy and relaxation time. We observe that the carrier
dynamics is characterized by two processes occurring on
different time scales. In the first hundred femtoseconds, the
initial nonequilibrium distribution becomes thermalized, see
Fig. 16(a), i.e., the optically excited electrons scatter down
to energetically lower states via carrier-carrier and carrier-
phonon scattering until they are in equilibrium among each
other. However, the obtained hot Fermi function is not in
equilibrium with the lattice. The intra- and interband phonon
scattering leads to a cooling of the system on a subpicosecond
timescale resulting in a narrowing of the carrier distribution,
see Fig. 16(b).

The process of thermalization and carrier cooling cannot be
strictly separated in time, since carrier-phonon scattering con-
tributes to both the thermalization and the energy dissipation,
i.e., during the process of thermalization, also carrier cooling
takes place. Nevertheless, recent experiments measuring the
differential transmission signal (DTS) in graphene report two
distinct decay times.9,14 To model these experiments, we
approximate the DTS [�T/T0(τ,ω)] by the pump-induced
change in the carrier occupation,

�T/T0(τ,ω) ∝ ρ(τ,ω) − ρ(−∞,ω).

This is the first approach neglecting the influence of the optical
matrix element and assuming an isotropic carrier distribution.
Figure 17 shows the differential transmission after optical
excitation and the subsequent relaxation via carrier-carrier

and carrier-phonon scatterings. The initial sharp increase of
the signal accounts for the generation of carriers during the
applied pulse. The increased carrier occupation leads to an
absorption bleaching and results in an enhanced transmission.
After the pulse, the carrier relaxation is responsible for the
decrease of the DT signal. Our calculations show a clear
biexponential decay, see the logarithmic plot in the inset
of Fig. 17. The extracted time constants of τ1 ≈ 100 fs
and τ2 ≈ 0.5 ps are in good agreement with experimental
studies.9,14 The fast component can be ascribed to the process
of thermalization. The following energy dissipation and carrier
cooling is determined by scattering via phonons. This process
is slowed down due to the increased Pauli blocking terms in
Eq. (23) for a thermalized carrier distribution. A third decay
time is expected at larger times around 300 ps stemming from
the carrier cooling via acoustic phonons.16

Our calculations also reveal that the many-particle dephas-
ing of the coherence plays an important role for the relaxation
of nonequilibrium charge carriers. Figure 18(a) illustrates the
importance of the Coulomb-induced off-diagonal dephasing
on the temporal evolution of the microscopic polarization
pk0 at the excitation momentum k0. The sum over different
momenta

∑
k′ T

a
k,k′pk′ in Eq. (20) leads to a coherence transfer

leading to a reduced decay of the polarization compared to the
the case of the diagonal dephasing alone. Since the microscopic
polarization directly couples to the carrier dynamics during
the exciting pulse, this results in the generation of a higher
nonequilibrium distribution and a slowdown overall relaxation
dynamics, see Fig. 18(b). The phonon-induced off-diagonal
dephasing can be included in a straightforward way and it is
expected to enhance this effect.

FIG. 18. (Color online) Influence of diagonal and off-diagonal
many-particle dephasing. (a) Real part of the microscopic polarization
pk0 (t) at the excitation momentum k0 as a function of time with
and without the contribution of the Coulomb-induced off-diagonal
dephasing. (b) The influence of the dephasing on the relaxation
dynamics of the angle-averaged carrier occupation at the relaxation
time t = 0 fs (corresponding to the pulse maximum).

205406-12



MICROSCOPIC THEORY OF ABSORPTION . . . PHYSICAL REVIEW B 84, 205406 (2011)

V. CONCLUSIONS

We have applied a microscopic approach based on a
many-particle density matrix framework to study excitonic
absorption and ultrafast carrier and phonon dynamics in
graphene. In agreement with recent experiments, we observe
interesting features in the absorption spectrum: (i) a pro-
nounced absorption peak at 4.6 eV (often called saddle-point
exciton), (ii) a specific constant value in the visible region
around 1-2 eV, and (iii) a reduced absorption close to the
Dirac point due to intraband contributions. The microscopic
study on the time-, momentum-, and angle-resolved relaxation
dynamics of optically excited carriers reveals the importance
of the combined carrier-carrier and carrier-phonon scatterings
as well as of the many-particle dephasing for understanding
the processes of thermalization and energy dissipation. The
angle-resolved carrier dynamics shows that the initial highly
anisotropic carrier occupation is redistributed mainly due
to phonon-induced intraband processes. In contrast, carrier-
carrier scattering is maximal for parallel scattering account-

ing for an ultrafast thermalization of excited carriers. We
further show the temporal evolution of phonon occupations
in different modes and discuss the influence of phonon-
induced intra- and interband channels. Finally, we present the
differential transmission spectrum reflecting well the carrier
relaxation in graphene. The observed biexponential decay
including a fast femtosecond and a slower subpicosecond
component is in good agreement with recent experimental
data.
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30E. Malić, M. Hirtschulz, F. Milde, A. Knorr, and S. Reich, Phys.
Rev. B 74, 195431 (2006).

31E. Malic, M. Hirtschulz, F. Milde, Y. Wu, J. Maultzsch, T. Heinz,
A. Knorr, and S. Reich, Phys. Rev. B 77, 045432 (2008).

32M. Hirtschulz, F. Milde, E. Malić, S. Butscher, C. Thomsen,
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