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Magneto-optical Faraday and Kerr effects in topological insulator films and in other layered
quantized Hall systems
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We present a theory of the magneto-optical Faraday and Kerr effects of topological insulator (TI) films. For
film thicknesses short compared to wavelength, we find that the low-frequency Faraday effect in ideal systems is
quantized at integer multiples of the fine structure constant and that the Kerr effect exhibits a giant π/2 rotation
for either normal or oblique incidence. For thick films that contain an integer number of half wavelengths, we find
that the Faraday and Kerr effects are both quantized at integer multiples of the fine structure constant. For TI films
with bulk parallel conduction, we obtain a criterion for the observability of surface-dominated magneto-optical
effects. For thin samples supported by a substrate, we find that the universal Faraday and Kerr effects are present
when the substrate is thin compared to the optical wavelength or when the frequency matches a thick-substrate
cavity resonance. Our theory applies equally well to any system with two conducting layers that exhibit quantum
Hall effects.
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I. INTRODUCTION

Because topological insulators (TIs) have gapless heli-
cal surface states1–4 that respond strongly to time-reversal
symmetry-breaking perturbations, magneto-optical studies
have emerged as an important tool for their character-
ization.5–15 This article expands on previous work10,11 in
which we demonstrated that ideal TIs exhibit striking uni-
versal features in their long-wavelength response—a universal
Faraday angle equal to the fine structure constant and a giant
90◦ Kerr rotation. The present article details the formalism
used to obtain these results and generalizes the theory to new
circumstances motivated by current experimental activity. In
particular, we include the influence of bulk conduction on the
magneto-optical properties, analyze the role of the substrate
material, and examine the case of oblique incidence of the
light source. We also extend our theory to include thick TI
films in which the electromagnetic wave can excite one of the
cavity resonance modes of the film. Although we focus on the
case of TI thin films, our results apply generically to systems
containing two conducting layers that exhibit quantum Hall
effects.

When bulk conduction and surface longitudinal conduction
are both negligible, the magneto-optical properties of a
TI thin film can be elegantly characterized by adding a
magneto-electric coupling term to the electromagnetic
Lagrangian to obtain topological field theory.8 This description
of magneto-electric properties shows that TIs provide a solid-
state realization of axion electrodynamics, similar to those
anticipated by Wilzcek in Ref. 16. The topological field-theory
formulation of magneto-electric properties can be derived by
integrating out the electronic degrees of freedom to obtain the
magneto-electric polarizability of the bulk insulator, which
is expressible as a Chern-Simons 3 form.8,9 By appealing to
bulk time-reversal invariance considerations, it is possible to
conclude that the coupling constant θ of the topological field
theory8,9 is 0 mod(2π ) for ordinary insulators and π mod(2π )
for TIs. These possibilities correspond, respectively, to
integer-quantized surface Hall conductances in the case of

ordinary insulators and to half-integer-quantized surface Hall
conductances11 in the case of topological insulators, providing
a demonstration of this important TI property. The topological
field-theory approach has a number of limitations, however, in
describing real experiments because (i) it does not account for
the surface longitudinal conductance which is never precisely
zero at finite temperatures even when the quantum Hall
effect is well established, (ii) the surface Hall conductivity in
topological field theory is ambiguous up to an integer multiple
of e2/h, and (iii) real thin-film samples often have a finite bulk
conductivity that is not readily incorporated. In addition, the
thin-film geometry normally used for magneto-optical studies
requires seemingly artificial spatial profiles of the θ coupling
constant, as discussed in the following paragraph. For these
reasons we prefer to model the surface Hall conductivities
using a microscopic two-dimensional massless Dirac model
for the TI surface states that is fully detailed below. The main
disadvantage of our approach is that it captures the precise
quantization of the DC surface Hall conductivity only when
the massless Dirac model’s ultraviolet cutoff is set to infinity.
An important lesson from our approach is that topological
field theory applies only when time-reversal symmetry (TRS)
breaking is strong enough to overcome disorder and establish
a surface quantum Hall effect and then only in the limit of
temperatures and frequencies small compared to the surface
gap induced by time-reversal symmetry breaking.

The original discussion of Wilzcek16 imagined axion
electrodynamics induced by a bulk spherical medium with
a nonzero θ parameter separated from vacuum with θ = 0
by a single simply connected surface. In the case of a
spherical TI sample, this formulation can correctly capture the
material’s surface Hall conductivity. Similarly, the case of an
ideal semi-infinite TI slab8 can be described by a topological
field-theory model with θ �= 0 in the topological insulator and
θ = 0 in vacuum. In a magneto-optics setting, however, a
propagating electromagnetic wave necessarily interacts with
two nearby surfaces, since a real TI thin-film sample has both
top and bottom surfaces. Assuming that the mechanism that
breaks time-reversal invariance at the TI surface does so in the
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same sense on both top and bottom, both surfaces will have the
same Hall conductivity. In topological field theory, this would
be captured by a model in which the discontinuity in θ in the
direction of light propagation has the same sign and magnitude
at both surfaces. To describe a thin film with identical half-
quantized Hall conductivities on opposite surfaces, it is then
necessary to take θ = ±2π in one of the vacuum regions. A TI
thin-film model in which the surrounding material has θ = 0
everywhere would instead describe a system with opposite Hall
conductivities on opposite surfaces. Because of the opposite
contributions, the magneto-optical effects would then vanish
for films thinner than a wavelength.

Given the surface massless Dirac models, our approach to
magneto-electric properties is more conventional. Magneto-
electric properties are completely determined by the con-
ductivity of the material, including bulk and surface, longi-
tudinal, and Hall contributions. The role of the θ term in
axion electrodynamics equations is completely replaced by
the appearance of explicit surface Hall conductivities that
influence electromagnetic wave boundary conditions. These
calculations make it clear that magneto-electric properties
depend essentially on the numerical values of the surface
conductivities, not just on whether they are quantized or
half-quantized. This is especially important when surface
time-reversal invariance is broken by an external magnetic
field, since both the sign and the magnitude of the surface
currents will be sensitive to the position of the Fermi level
within the bulk gap. In addition to this advantage, the optical
response of the surface Dirac fermions can be evaluated
microscopically, enabling a natural incorporation of dynamical
and many-body effects.

Interesting magneto-optical effects occur in both low-
frequency and higher frequency regimes. In the latter case, we
have found interband absorption10 and cyclotron resonance11

features in the Faraday and Kerr rotations that are dramatically
enhanced by the cavity confinement effect of the TI thin film.
We focus mainly on the large topological magneto-optical
effects at low frequencies which can be observed only if the
following conditions are satisfied: (a) The TI surface has a
quantized Hall effect allowed by time-reversal breaking due to
either external magnetic field or exchange coupling to external
electronic degrees of freedom. We know from vast experience
with the quantum Hall effect in an external magnetic field
in graphene, which is also described by a massless Dirac
equation, that the quantum Hall effect can occur at quite weak
magnetic fields when the Fermi level is close to the Dirac
point and disorder is very weak. Exchange-coupling to spin
yields a half-quantized anomalous Hall effect in the absence
of disorder.17,18 Although there are no experimental examples
of quantized anomalous Hall effect as yet, the requirements on
time-reversal breaking perturbation strength in the presence
of disorder are likely to be similar. The magneto-electric
anomalies require large Hall effects at finite electromagnetic
wave frequency. This condition requires that the frequency be
much smaller than the surface gap. (b) The dimension of the
TI along the direction of light travel should be shorter than the
electromagnetic wavelength or a nonzero integer multiple of
the half wavelength. In either case, the dielectric properties of
the TI bulk medium that separates the two quantized Hall layers
do not influence the transmitted and reflected light. When

these conditions are satisfied, the magneto-optical effects are
universal and topologically protected against weak surface
disorder.

The outline of our article is as follows. In Sec. II, we review
linear response theory for the optical conductivity tensor of
TI surface helical quasiparticles. In Sec. III, we summarize
the electromagnetic scattering formalism appropriate for a
system with two metallic surfaces surrounded by dielectrics,
applicable to TI films and to other similar layered systems. We
then present and discuss our results for the magneto-optical
Faraday and Kerr effects, first for TI films that are thinner
than a wavelength and then for the general case. In Sec. V we
address some issues pertinent to experiments, including the
influence of bulk conduction, the role of oblique incidence,
and the role of substrates. Finally, in Sec. VI, we discuss the
closely related magneto-optical properties of graphene-based
layered massless Dirac systems.

II. DYNAMICAL RESPONSE OF A SPIN-HELICAL
DIRAC FERMIONS

We first derive explicit analytic expressions for the lon-
gitudinal and Hall optical conductivities of the spin-helical
quasiparticles of topological insulator surfaces with time-
reversal symmetry broken in two different ways: (a) an
exchange field that couples to spin and (b) an external magnetic
field that couples to both spin and orbital degrees of freedom.
The former case can be realized by exchange coupling between
the TI surface and an adjacent ferromagnetic insulator.8,10 The
response of TI surface carriers to exchange coupling is unique,
and ongoing progress along this direction has been reported
by several experimental groups.19–22

In the presence of time-reversal symmetry breaking, the
massless Dirac Hamiltonians for the top (T ) and bottom (B)
surfaces are

H = (−1)L [vτ · (−i∇ + eA/c) + V/2] + �τz, (1)

where τ is the spin Pauli matrix vector (expressed in 90◦
rotated basis from the real spins),23 A is the magnetic vector
potential, � is the Zeeman coupling strength, V accounts for a
possible potential difference between top and bottom surfaces
due to doping or external gates, and L = 0,1 for the top (0) and
bottom (1) surfaces. Note that in spite of the sign difference in
the kinetic energy terms for the top and bottom surfaces, the
conductivities are identical on the two surfaces. The massless
Dirac surface states description is valid for energies below the
energy cutoff of the Dirac Hamiltonian εc, which we associate
with the separation between the Dirac point and the closest
bulk band.

A. Exchange field

Time-reversal symmetry breaking by an exchange field can
be realized by interfacing the TI surface with an insulating
ferromagnet with magnetization oriented perpendicularly.
Magnetic proximity coupling with strength � will favor
alignment of the TI surface spins. The numerical value of
� would be determined by the orbital hybridization between
the ferromagnetic material and the TI surface. A = 0 in Eq. (1)
in the absence of an applied magnetic field. In this limit, the
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Dirac cone is gapped with conduction (μ = 1) and valance
(μ = −1) band dispersions and eigenstates

εkμ = μεk, |kμ〉 =
[

C↑kμ

C↓kμeiφk

]
, (2)

where εk =
√

(vk)2 + �2, φk is the azimuthal angle of the
crystal momentum, and

C↑kμ = sgn(μ)
√

εk + sgn(μ)�/
√

2εk,
(3)

C↓kμ =
√

εk − sgn(μ)�/
√

2εk.

The optical conductivity tensor of the helical quasiparticles
on topological insulator surface can be obtained from the Kubo
formula:24

σαβ (ω) = ig
∑

k

∑
μμ′

fkμ − fkμ′

εkμ − εkμ′

〈kμ|jα|kμ′〉〈kμ′|jβ |kμ〉
ω + εkμ − εkμ′ + i/2τs

,

(4)

where α,β = {x,y}, μ,μ′ = ±1 denote the band index, fkμ

is the Fermi factor for band μ, 1/τs is the quasiparticle
lifetime broadening of the surface states, and g is the (odd)
number of Dirac cones on the TI surface, which we take for
simplicity and concreteness to be 1. This expression is not
quantitatively correct when disorder is present (i.e., when
τs is finite), because it does not capture the localization
physics that is important in the quantum Hall regime, but it is
adequate for our present interest. We evaluate the longitudinal
conductivity σxx(ω) = σR

xx + iσ I
xx and the Hall conductivity

σxy(ω) = σR
xy + iσ I

xy in the topological transport regime when
the Fermi level lies within the TRS breaking gap. Since all
surface optical conductivities eventually appear in the outgoing
electromagnetic fields in the combination σαβ/c, we shall
adopt the “natural units” for the optical conductivities and
express σαβ in e2/h̄ = α c units (α = 1/137 is the vacuum
fine structure constant) and set c = 1 except where specified.
For the dissipative components of the optical conductivity we
find that:

σR
xx = 1

16πx(ω2 + �2)2
{x[(ω2 + �2)2 + 4(ω2 − �2)�2]g(x)

+ 4��2[ω2 + �2 + ωxf (x)]}∣∣x=εc

x=�
(5)

σ I
xy = �

8π (ω2 + �2)
[−2ωg(x) − �f (x)]

∣∣x=εc

x=�
.

For the reactive, nondissipative components of the optical
conductivity σ I

xx and σR
xy , which are due to off-shell virtual

transitions, we find that

σ I
xx = 1

32πx(ω2 + �2)2
{8ω�2(ω2 + �2) − 16xω��2g(x)

+ x[(ω2 + �2)2 + 4�2(ω2 − �2)]f (x)}∣∣x=εc

x=�
(6)

σR
xy = �

8π (ω2 + �2)
[−2�g(x) + ωf (x)]

∣∣x=εc

x=�
,

where R(x)|x=x2
x=x1

means R(x2) − R(x1), � = 1/2τs, and

f (x) = ln

∣∣∣∣ (ω − 2x)2 + �2

(ω + 2x)2 + �2

∣∣∣∣ ,
g(x) = tan−1

(
ω − 2x

�

)
− tan−1

(
ω + 2x

�

)
. (7)

When the disorder broadening is small such that � 
 �, it
is useful to obtain analytic results in the disorder-free limit
� → 0, in which case

g(x)
∣∣x=εc

x=�
= −πθ (|ω| − 2|�|), (8)

and Eqs. (5)–(7) reduce to our previous results [Eqs. (2) and
(3) in Ref. 10] obtained from the quantum kinetic equation
approach.

B. External quantizing magnetic field

Landau level (LL) quantization of the TI’s surface Dirac
cones has recently been observed by STM experiments.25,26 In
the presence of a quantizing field, the vector potential in Eq. (1)
is given in the Landau gauge by A = (0,Bx) and the Zeeman
coupling by � = gJμBB/2, where gJ is the electron g factor.
Define raising and lowering operators a = (
B/

√
2)[∂x + (x +

x0)/
2
B] and a† = (
B/

√
2)[−∂x + (x + x0)/
2

B] with 
B =
1/

√
e|B| the magnetic length and x0 = ky


2
B the guiding center

coordinate, Eq. (1) can be written as[
� −i(

√
2v/
B)a

i(
√

2v/
B)a† −�

]
|n〉 = ε|n〉, (9)

where |· · ·〉 denotes an eigenspinor. The LLs are labeled by
integers n and for n �= 0 and have eigenenergies [relative to the
respective Dirac point energies (−1)LV/2] and eigenspinors

εn = sgn(n)

√
2v2


2
B

|n| + �2, |n〉 =
[
−iC↑n||n| − 1〉

C↓n||n|〉

]
,

(10)

where ||n|〉 without an overbar denotes a Fock state (|n| is the
absolute value of n) and

C↑n = sgn(n)
√

ε|n| + sgn(n)�/
√

2ε|n|,
(11)

C↓n = √
ε|n| − sgn(n)�/

√
2ε|n|.

In the n = 0 LL spins are aligned with the perpendicular field
so

ε0 = −�, |0〉 =
[

0
|0〉

]
. (12)

In the quantum Hall regime (�Bτs 
 1, where �B = v/
B

is a characteristic frequency typical of the LLs spacing), the
conductivity tensor can be expressed in LL basis as

σαβ (ω) = ig

2π
2
B

∑
nn′

fn − fn′

εn − εn′

〈n|jα|n′〉〈n′|jβ |n〉
ω + εn − εn′ + i/2τs

, (13)

where the current operator is j = ie [H,x] = evτ . For con-
venience we rewrite the LL index as n = sm, where m =
0,1,2, . . . ,Nc and s = ±1 for electron-like and holelike LLs.
The current matrix element 〈n|jα|n′〉 captures the selection
rule |n′| − |n| = ±1 for LL transitions. After some algebra
we find that the conductivity tensor Eq. (13) in e2/h̄ = αc

units is given by

σαβ(ω) = v2

2π
2
B

Nc−1∑
m=0

∑
s,s ′=±1

fsm − fs ′(m+1)

εsm − εs ′(m+1)
�

s,s ′
αβ (m,ω),

(14)
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T B

θF

θK

(a)  (b)

FIG. 1. (Color online) (a) Schematic illustration of the Faraday and Kerr effects. Incident linearly polarized light becomes elliptically
polarized after transmission (Faraday effect) and reflection (Kerr effect), with polarization plane angle rotations θF and θK respectively.
(b) Fabry-Perot-like reflection and transmission in the TI film geometry. T denotes the top surface and B the bottom surface.

where

�
s,s ′

{xx
xy}

(m,ω) = −
{

i

1

}
C2

↑s ′(m+1)C2
↓sm

[
1

ω − εsm + εs ′(m+ 1) + i/2τs
± 1

ω + εsm − εs ′(m+ 1) + i/2τs

]
. (15)

In Eq. (15), Nc � 
2
B(ε2

c − �2)/2v2 is the largest LL index with
an energy smaller than the ultraviolet cutoff εc, prefactor i and
the sign + inside the parenthesis apply to the �xx expression,
1 and − apply to the �xy expression. Equations (14) and
(15) express σαβ as a sum over the interband and intraband
dipole-allowed transitions that satisfy |n′| − |n| = ±1. In the
ω = T = τ−1

s = 0 limit Eq. (14) yields correct half-quantized
plateau values for the Hall conductivity.

III. LIGHT PROPAGATION THROUGH A TI SLAB

In this section, we formulate the problem of electromagnetic
wave scattering through a topological insulator slab illustrated
schematically in Fig. 1(b). Here we discuss only the normal
incidence case. More general results for the oblique incidence
case are presented in the Appendix.

Consider an electromagnetic wave propagating along the
z direction through two materials, labeled by i and j , with
dielectric constant and magnetic permeability εi,μi and εj ,μj ,
respectively. The interface between them is at z = ai . We write
the electric field component of the electromagnetic field in the
form

Ẽi = eikiz

[
Eti

x

Eti
y

]
+ e−iki z

[
Eri

x

Eri
y

]
, (16)

where the tilde accents denote vectors Ẽ = [Ex Ey]T , the
superscripts r and t on E denote the reflected and transmitted
components of the electric field, and ki = (ω/c)

√
εiμi is the

wave vector in medium i. The corresponding magnetic field is
given by Faraday’s law as

H̃ i =
√

εi

μi

{
eikiz

[
−Eti

y

Eti
x

]
+ e−iki z

[
Eri

y

−Eri
x

]}
. (17)

The electric and magnetic fields at the interface z = ai

satisfy the electrodynamic boundary conditions Ẽi = Ẽj and

−iτy(H̃ j − H̃ i) = (4π/c)J̃ i , where τy is the Pauli matrix and
J̃ i = σ̄ i Ẽi is the surface current density at z = ai . Note that
this surface current can have longitudinal and Hall response
components in this microscopic theory and not only Hall
components as assumed in topological field theory.

The scattering matrix that relates incoming [Ẽti Ẽrj ]T and
outgoing [Ẽri Ẽtj ]T fields at a conducting interface can be
written in the form

S =
[
r̄ t̄ ′
t̄ r̄ ′

]
, (18)

where r̄ ,r̄ ′ and t̄ ,t̄ ′ are 2 × 2 reflection and transmission
tensors, which are of the form:

r̄ =
[

rxx rxy

−rxy ryy

]
, t̄ =

[
txx txy

−txy tyy

]
, (19)

and similarly for r̄ ′,t̄ ′. Matching boundary conditions, we
obtain the following expressions for r̄ ,t̄ , r̄ ′, and t̄ ′:{

rxx

rxy

}
= ei2kiai

(
√

εi/μi + √
εj /μj + 4πσxx)2 + (4πσxy)2

×
[
εi/μi − (

√
εj /μj + 4πσxx)2 − (4πσxy)2

−8π
√

εi/μiσxy

]
,

(20)

{
txx

txy

}
= ei(ki−kj )ai

(
√

εi/μi + √
εj /μj + 4πσxx)2 + (4πσxy)2

×
[

2
√

εi/μi(
√

εi/μi + √
εj /μj + 4πσxx)

−8π
√

εi/μiσxy

]
. (21)

For normal incidence, the two diagonal elements of the re-
flection and transmission matrices are identical: r (′)

yy = r (′)
xx and

t (′)
yy = t (′)

xx . r̄ ′ can be obtained from r̄ by making the replacement
ki → −kj and interchanging εi/μi and εj /μj , and t̄ ′ can be
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obtained from t̄ by interchanging εi/μi and εj /μj . In addition,
t̄ and t̄ ′ are related by t̄/

√
εi/μi = t̄ ′/

√
εj /μj .

Scattering from a TI film presents an electromagnetic
problem in which scattering occurs from two interfaces at
which currents flow and dielectric constants are discontinuous.
The reflection and transmission tensor can be composed from
the single-interface scattering matrices r̄ (′),t̄ (′) for the top and
bottom surfaces to obtain

r̄ = r̄T + t̄ ′T r̄B(1 − r̄ ′
T r̄B)−1 t̄T , (22)

t̄ = t̄B(1 − r̄ ′
T r̄B)−1 t̄T . (23)

The presence of a dielectric substrate underneath the TI
film is easily accounted for by propagating the reflection
and transmission tensors Eqs. (22) and (23) through an
additional layer of dielectric. Detailed expressions for the
reflection and transmission tensors that allow for oblique
incidence and account for a dielectric substrate are given in the
Appendix.

IV. MAGNETO-OPTICAL FARADAY AND KERR EFFECTS

For linearly polarized incoming light, the Faraday and Kerr
angles can be defined in terms of the relative rotations of
left-handed and right-handed circularly polarized light to
obtain

θF = (arg{Et
+} − arg{Et

−})/2, (24)

θK = (arg{Er
+} − arg{Er

−})/2, (25)

where E
r,t
± = Er,t

x ± iEr,t
y are the left-handed (+) and right-

handed (−) circularly polarized components of the outgoing
electric fields.

In this section, we present our results for an ideal topolog-
ical insulator under normal light incidence. We then discuss
nonideal effects that may be relevant in experimental situations
in Sec. V. It is important to emphasize that the magneto-optical
effects are essentially the same in this limit for time-reversal
symmetry broken by exchange coupling or by a quantizing
magnetic field. In the case of a quantizing field, there are many
gaps in the surface spectrum because of Landau quantization.
The quantized Hall conductivity in e2/h units is equal to the
filling factor νT,B . The largest gap in the magnetic field case
occurs occurs at νT,B = 1/2 and has the same Hall conductivity
as for the Zeeman gap case. In the magnetic field case, it is
possible to shift the Hall conductivities of either surface by
integer multiples of e2/h away from e2/2h simply by shifting
the position of the Dirac point relative to the chemical potential,
and this shift would influence the magneto-optical effects.

When the chemical potential is placed in the largest gap in
the magnetic field case, the only differences between the two
scenarios are in the details of the higher-frequency response.

A. Thin film d � λ

First, we consider the case of a TI film that is thinner than
the light wavelength. In this limit it follows from Faraday’s
law that the electric field is spatially constant across the film
so the two interfaces can be considered as one. Ampère’s law

implies that the magnetic field changes by a value proportional
to the current integrated across the TI film,

−iτy(H̃ T − H̃ B) = (4π/c) (σ̄T + σ̄B) Ẽ, (26)

where H̃ T ,B denotes the magnetic fields in the top and bottom
vacuum regions outside of the film. Equation (26) says that,
from the viewpoint of the long electromagnetic wave, the TI
film behaves effectively as a single two-dimensional surface
with a conductivity equal to the conductivities integrated
across the film. We therefore obtain the transmitted and
reflected fields

Ẽt = 1

(2 + 4πσxx)2 + (4πσxy)2

[
4(1 + 2πσxx)

8πσxy

]
, (27)

Ẽr = 1

(2 + 4πσxx)2 + (4πσxy)2

×
[

1 − (1 + 4πσxx)2 − (4πσxy)2

8πσxy

]
, (28)

where, for simplicity, we use σxx,σxy to denote the total
longitudinal and Hall conductivities from both surfaces,
respectively. An important observation is that in this limit
the transmitted and reflected fields are independent of the
bulk dielectric properties of the TI film. For weak disorder
and frequencies much smaller than characteristic transition
frequencies (ω 
 � for the exchange field case and ω 
 �B

for the magnetic field case), the optical conductivity has only
a dissipationless dc Hall conductivity contribution:

σR
xy = νT,B

2π
, (29)

and σR
xx = σ I

xx = 0, σ I
xy = 0. In this low-frequency regime, the

magneto-optical response of the exchange field case becomes
a special case of the quantizing magnetic field case with νT =
νB = 1/2 as explained above.

From Eqs. (27) and (28) we find the Faraday and Kerr
angles

θF = tan−1 [(νT + νB) α] , (30)

θK = − tan−1

[
1

(νT + νB) α

]
. (31)

For total filling factor νT +νB values that are not too large,
the Faraday angle is quantized in integer multiples of the fine
structure constant

θF � (νT + νB)α, (32)

and the Kerr angle,

θK = −π

2
, (33)

becomes a full quarter polarization rotation.
It is also possible to understand Eq. (33) in terms of the

scattering mechanism of the reflected partial-wave compo-
nents. This understanding is crucial to see that Eq. (33) applies
over a finite frequency range, as discussed in Sec. V B. The
reflected electric field can be easily found from Eq. (22).
The algebra is simplified and the physics underlying Eq. (33)
more easily illustrated when spatial-inversion symmetry across
the TI film is preserved, i.e., when top and bottom surfaces
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have the same conductivities. This happens when the exchange
fields for both surfaces are the same, or in the quantizing
magnetic field case, when the surface densities (and thus filling
factors) are the same. Spatial-inversion symmetry then implies
that r̄B = r̄ ′

T , r̄T = r̄ ′
B , t̄B = t̄ ′T , and t̄T = t̄ ′B . This allows

the reflected electric field to be expressed solely in terms of the
reflection and transmission matrix elements of one (e.g., the
top) of the two surfaces. The first term on the right-hand side
of Eq. (22) represents the partial wave directly reflected from
the top surface, which we can evaluate in the low-frequency
regime as

Ẽr0 = 1

(1 + √
ε/μ)2 + (

4πσR
xy

)2

[
1 − ε/μ − (

4πσR
xy

)2

8πσR
xy

]
,

(34)

where ε, μ � 1 are the bulk dielectric constant and magnetic
permeability of the TI and the second term constitutes all the
partial waves that originate from successive reflections from
the bottom surface

Ẽr ′ = 1

1 + (
4πσR

xy

)2

[
1

4πσR
xy

]

− 1

(1 + √
ε/μ)2 + (

4πσR
xy

)2

[
2 (1 + ε/μ)

8πσR
xy

]
. (35)

Summing the two contributions, we find that part of the second
term on the right-hand side of Eq. (35) cancels out the first term
on the right-hand side of Eq. (34) completely, yielding a total
reflected field

Ẽr = 1

1 + (
4πσR

xy

)2

[
− (

4πσR
xy

)2

4πσR
xy

]
. (36)

Equation (36) implies that the reflected partial waves that
originate from successive scattering off the bottom surface
destructively interfere with the partial wave scattered off the
top surface, resulting in a suppression by a factor ∼(σR

xy)2

of the reflected electric field component along the incident
polarization direction. This leads to the giant Kerr angle in
Eq. (33). It is worthwhile to make clear that the large Kerr
angle occurs because almost all of the reflected partial waves
have a 90◦ rotated polarization plane; it is not true, however,
that almost all of the light is reflected.

B. Thick film d � λ

In the previous section, we have focused on films with a
thickness that is only a fraction of the wavelength. In this
section, we shall relax this assumption and generalize our
considerations to thicker films, with thickness comparable to
or greater than the wavelength inside the film. Thick films
do not, in general, show spectacular magneto-optical effects
because the Faraday and Kerr angles are suppressed by the
large dielectric constant of the TI bulk. Exceptions occur
when the film thickness contains an integer multiple of half
wavelengths inside the film, i.e., when the cavity resonance
condition kTId = Nπ is satisfied. Here kTI = √

εμω/c is the
wave number in the TI film and N �= 0 is an integer. This
property was first identified in Ref. 13, however the discussion

there assumed an infinitely thick dielectric substrate underneath
the TI film, neglecting scattering from the inevitable substrate-
vacuum interface and thereby overestimating substrate sup-
pression of magneto-optical responses. In this section, we
first consider a free-standing thick film. We will then study
the influence of a substrate, with its finite thickness properly
accounted for, in Sec. V.

At resonance, a standing wave is established inside the film
with the tangential components of the electric and magnetic
fields on the interior of the top and bottom surfaces inside the
film related simply by a ± sign, i.e., E‖(z = −d/2+)/E‖(z =
d/2−) = (−1)N (here z = 0 is taken at the center of the
film), and similarly for H . Under such circumstances, the
transmitted and reflected electric fields become independent of
the film’s bulk dielectric properties and are found to be given
by Eqs. (27) and (28) multiplied by a phase factor e−ik0d ,
where k0 = ω/c is the vacuum wave number. In contrast to
the long-wavelength regime we considered earlier in which
the electromagnetic field varies slowly across the TI film,
at resonance the field amplitudes change rapidly inside the
film and the adiabatic condition k0d 
 1 does not apply.
Regardless of the film thickness, however, the adiabaticity
of TI surface electronic response can always be established
at a sufficiently low frequency satisfying ωN 
 � or �B

[ωN = Nπc/(
√

εμ d) is the cavity resonance frequency],
such that the quantum Hall condition Eq. (29) still holds.
It follows from these considerations that the phases of the
left-handed and right-handed circularly polarized components
of the transmitted and reflected light are given by

arg
(
Et

λ

) = tan−1
−λ sin(k0d) + 2π cos(k0d)σR

xy

λ cos(k0d) + 2π sin(k0d)σR
xy

, (37)

arg
(
Er

λ

) = tan−1
cos(k0d) + λ2π sin(k0d)σR

xy

sin(k0d) − λ2π cos(k0d)σR
xy

, (38)

where λ = ±1 labels the left- and right-handed circularly
polarized light and σR

xy contains the sum of the top and bottom
surface Hall conductivities.

Let us make several remarks here. If we set k0d →
0, Eqs. (37) and (38) coincide with the long-wavelength
(k0d < kTId 
 1) results, from which we recover Eqs. (30)
and (31) for the Faraday and Kerr angles. In general, if in
addition to the requirement kTId = Nπ for resonance we also
have k0d = Mπ , then Eqs. (37) and (38) would imply that
θF = tan−1 [(νT + νB) α] and θK = − tan−1 [1/ (νT + νB) α]
for integer M and θF = − tan−1 [1/ (νT + νB) α] and θK =
tan−1 [(νT + νB) α] for half-odd integer M . These conditions
would require

√
εμ = N/M . With real materials this would

seem to be rather impossible; however, with the advent
of metamaterials it may be possible to engineer one with
a matching dielectric constant (N/M)2 and employ it as
an intervening dielectric between two single-layer graphene
sheets. This point will be discussed further in Sec. VI. In this
light, we see that the long-wavelength limit k0d < kTId → 0
is special because it automatically satisfies both conditions
kTId = Nπ and k0d = Mπ with N = M = 0.

When k0d is not equal to a multiple of integer or half-
odd integer of π , which is generally the case, only the cavity
resonance condition is satisfied and k0d cannot be assumed
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as small in Eqs. (37) and (38). Evaluating θF and θK from
Eqs. (24) and (25) using Eqs. (37) and (38), we find that
the Faraday and Kerr rotations at resonance have the same
universal quantized value

θF,K = tan−1 [(νT + νB) α] . (39)

Note that Eqs. (37)–(39) do not depend on the value of N and,
therefore, all cavity resonant modes yield the same Faraday and
Kerr rotations given by Eq. (39). It is important to emphasize,
at resonance, that although the Faraday angle is the same as the
long-wavelength result Eq. (30), the Kerr angle is not given27

by Eq. (31). Rather, both the Faraday and Kerr rotations at
resonance are given by the same quantized response in units
of α like Eq. (30). The giant Kerr effect Eq. (33), therefore,
is a unique long-wavelength low-frequency property of the
thin-film system only.

V. DEVIATIONS FROM AN IDEAL TOPOLOGICAL
INSULATOR FILM

Magneto-optical measurements of Faraday and Kerr ro-
tations produced by topological insulators5–7 subjected to
an external magnetic field have been performed by several
groups. The samples studied include bulk Bi2Se3 crystals,5

thin Bi2Se3 films,6 and strained HgTe films.7 It has not yet been
possible to achieve ideal samples in which the half-quantized
quantum Hall effect occurs, either in dc transport or optically.
In this section we consider nonideal factors that often arise
in experimental TI samples and explain their consequences
when they act independently. We focus on the influence of
bulk carriers, light scattering at oblique incidence, and the
influence of a dielectric substrate.

A. Influence of bulk carrier conduction

Real TI samples are complicated by the presence of bulk
free carriers that are present because of unintentional doping by
bulk defects.28–31 Recently, some progress has been reported32

in reducing the density of bulk carriers in TI thin films.
Bulk conduction can be described by a complex bulk di-

electric function ε(ω) which is related to the bulk conductivity
�(ω) by

ε(ω) = εb + i
4π

ω
�(ω), (40)

where εb is the high-frequency dielectric constant of the TI.
When the quantized Hall regime is approached on the TI
surfaces, the bulk Hall angle tan−1(�xy/�xx) is expected to
be much smaller than the surface Hall angle (which becomes
π/2 when σxx → 0). For definiteness, the numerical results
reported below assume that the longitudinal bulk conductivity
dominates and that its frequency dependence can be described
by the Drude-Lorentz form,

�(ω) = �2
b

4π (1/τb − iω)
, (41)

where �b =
√

4πNbe2/mb is the plasma frequency of the bulk
carriers (with density Nb and effective mass mb) and 1/τb is
the disorder scattering rate due to impurities present in the
bulk.

The influence of a finite bulk conductivity is particularly
simple to describe in the long-wavelength low-frequency limit
of Eqs. (27) and (28). The total current integrated across the
TI film in Eq. (26) now picks up an extra bulk conductivity
contribution given by �d (d is the film thickness), in addition
to the conductivities from the two surfaces. The change in
the expressions for the transmitted and reflected electric fields
Eqs. (27) and (28) is therefore altered by the replacement
σxx → σxx + �d/c. When the surface has a perfect quantum
Hall effect, the modified expressions for the Faraday and Kerr
angles are

θF = tan−1

[
(νT + νB) α

1 + 2π�d/c

]
, (42)

θK = tan−1

{
4 (νT + νB) α

1 − (1 + 4π�d/c)2 − [2 (νT + νB) α]2

}
,

(43)

where � = �(0) is the bulk dc conductivity. The bulk carriers
thus enter as an effective longitudinal surface conductivity �d.
Equation (42) implies that the influence of bulk conduction is
negligible on the Faraday effect when

�d

(e2/h)

 1/α. (44)

For the Kerr effect, Eq. (43) implies a stricter condition for
negligible bulk conduction:

�d

(e2/h)
� α. (45)

When the bulk conductivity is sufficiently small so that Eq. (45)
is satisfied, Eqs. (42) and (43) reduce to the universal results
for the Faraday and Kerr effects, Eqs. (30)–(33).

Equation (45) can alternately can be expressed as a
condition that has to be satisfied by the bulk carrier density

Nb � αmb

hτbd
. (46)

For a 30-nm-thick Be2Se3 film and disorder broadening h̄/τb =
1–10 meV, we estimate that the to observe the giant Kerr effect,
the bulk carrier density must be smaller than 1014–1015 cm−3.
To reach the regime of the quantized Faraday effect given by
Eq. (44), the bulk carrier density is allowed to be larger by
a factor 1/α2 so that Nb � mb/(αhτbd) � 1018–1019 cm−3.
Figure 2 shows the low-frequency Kerr angle in the presence of
bulk conduction. The magneto-optical response is modified by
the presence of bulk carriers principally in the low-frequency
regime where the bulk Drude-Lorentz conductivity is peaked.

Because bulk carriers originate from bulk defects, Nb and
τb are related. For the purpose of studying their influence on
the magneto-optical response we will, nevertheless, treat Nb

and τb as independent parameters. We first illustrate the case
when there are no impurities in the bulk, i.e., the case of a
bulk free plasma. We find that the giant Kerr angle remains
but undergoes a shift to progressively higher frequencies for
increasing bulk carrier density [Fig. 2(a)]. Including bulk
impurities broadens [Figs. 2(b) and 2(c)] the giant Kerr effect,
but the Kerr angle remains substantial ∼1 rad for a bulk density
Nb = 1017 cm−3 and disorder broadening h̄/τb = 1–10 meV.
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FIG. 2. (Color online) Kerr rotation for top and bottom surface
densities nT = nB = 3 × 1011 cm−2 and filling factors νT = νB =
1/2 (corresponding to a magnetic field of 25 T) for (a) no bulk carrier
scattering, (b) h̄/τb = 1 meV, and (c) 10 meV at different values of
bulk carrier densities Nb = 1015 cm−3 (black solid line), 1016 cm−3

(red dashed), 1017 cm−3 (blue dot-dashed). The dielectric constant of
Bi2Se3 εb = 29, bulk carrier effective mass mb = 0.15me,31,33,34 and
film thickness d = 30 nm.

For thick films, we note that, in the presence of bulk
conduction, the cavity resonance condition becomes nontrivial
and there is no simple analytic criterion for neglecting the bulk
conductivity. Experimentally, this may also present a challenge
since resonance frequencies cannot be readily estimated unless
the bulk conductivity is known from a separate transport
measurement.

In passing, we mention that bulk optical phonon modes
of the topological insulator can also be excited at higher
frequencies. Since phonon energies are specific to different TI
materials and we are mainly interested in the low-frequency
regime for the magneto-optical effects, we shall neglect the
bulk optical phonon contributions to the conductivity. Phonon
effects can be modeled by including an additional term5,6

εph(ω) = fph

ωph
2 − ω2 − iω/2τph

(47)

to the dielectric constant Eq. (40), where fph is the spec-
tral weight of the phonon mode with frequency ωph and
1/2τph is the phonon damping rate. This separation between
the electronic and the phononic contributions to the bulk
dielectric function applies only when the electronic time
scales (�−1

b ,ε−1
Fb , where εFb is the bulk Fermi energy) are

much smaller than the phonon time scale (ω−1
ph ), making

plasmon-phonon coupling negligible.

B. Influence of oblique incidence and the substrate

In this section, we examine the effects of oblique incidence
and of the substrate on the magneto-optical effects. This
discussion is particularly germane to experiments because
oblique incidence may afford an advantage over normal
incidence for Kerr effect measurement as it allows for spatial
separation between the incident light source and the reflected
light polarizer and enhances the reflected light intensity.

1. Thin TI film and thin substrate

We now account for a dielectric substrate layer underneath
the TI film and allow for the (semi-infinite) medium underneath
the substrate to differ from vacuum, solely for generality. The
incident angle on the TI film and the emerging angle from the
substrate can, therefore, assume different values, denoted by
θi and θo, respectively. At low frequencies (ω 
 � or �B)
and long wavelengths compared to both the film thickness d

and substrate thickness ds , the analysis is again simple. We find
the following Faraday and Kerr angles under oblique incidence
(expressions for the transmission and reflection coefficients at
oblique incidence are presented in the appendix) as follows:

θF = tan−1

[
2α(νT + νB)cosθi

cosθi + cosθo

]
, (48)

θK = −tan−1

[
8α(νT + νB)cosθicosθo

cos2θo − cos2θi + 8α2(νT + νB)2cosθicosθo

]
.

(49)

It is important to recognize that Eqs. (48) and (49) are
independent of the bulk dielectric constants of not only the
TI film but also, importantly, the substrate. The transmitted
and reflected fields are generally dependent on the dielectric
constant of the ambient medium surrounding the TI film;
however, these dependencies enter the Faraday and Kerr angles
expressions through the incident and emergent angles θi and θo.
Since the measurement apparatus is almost inevitably located
in vacuum, one has θo = θi by Snell’s law. It is easy to verify
that Eqs. (48) and (49) then reduce to the universal results in
Sec. IV A, and it follows that the long-wavelength low-energy
results are not influenced by the angle of incidence or the
presence of a thin (ds 
 λ) dielectric substrate.

The giant Kerr effect survives10,11 up to a relatively large
frequency which we refer to as the Kerr frequency ωK . First,
we derive an analytic formula for ωK at normal incidence
that also allows for the presence of a substrate. For small
frequencies, the reflected circularly polarized components can
be decomposed into separate leading-order contributions from
the top and bottom TI surfaces, the bulk TI dielectric, and the
substrate dielectric:

Er
± � iω

2c
[(ε − μ) d + (εs − μs) ds]

− i2πσ I
xx

′
(0)ω ± i2πσR

xy(0), (50)

where σxx,σxy contain the top and bottom TI surface conduc-
tivities; εs,μs are the dielectric constant and permeability (=1)
of the substrate; and ′ in σ I

xx denotes a frequency derivative.
The real components of Er

± are smaller by a factor of ∼α in
this regime. As frequency increases, the dielectric contribution
to the imaginary part of Er

± eventually dominates so that the ±
components have the same sign and θK rapidly falls to a small
value. The frequency range for which giant Kerr angles occur
is approximately given by

ωK = 2πσR
xy(0)

[(ε − μ) d + (εs − μs) ds] /2c − 2πσ I
xx

′(0)
. (51)

A similar analysis can be carried out for the case of oblique
incidence. The Kerr frequency θK at oblique incidence without
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FIG. 3. (Color online) Effect of substrate and oblique incidence
on the low-frequency Kerr rotation. [(a) and (b)] The Kerr angle
versus frequency for two cases: (a) normal incidence on a TI film
with a dielectric substrate of thickness ds = 0.5 μm: ε = 1 (a free-
standing sample), ε = 4 (a SiO2 substrate), ε = 12 (a Si substrate).
(b) Oblique incidence on a free-standing TI film at incidence angle
θi = 0,π/12, π/6, π/4. The top and surface densities are nT = nB =
3 × 1011 cm−2 and B = 25 T. [(c) and (d)] Respectively, the Kerr
frequency as a function of magnetic field corresponding to cases (a)
and (b) at the same surface densities. The TI film thickness d = 30 nm.

substrate is given by

ωK = 2πσR
xy(0) cos θi

(ε cos2 θ − μ cos2 θi)d/2c − 2πσ I
xx

′(0)
. (52)

where θi and θ are the incident angle and refracted angle
inside the TI film, respectively, related by Snell’s law sin θi =√

εμ sin θ .
Equations (51) and (52) show that oblique incidence and

the presence of a substrate reduce the frequency window
over which the giant Kerr angles occur. This is illustrated
numerically in Fig. (3) where we have calculated the Kerr
angle as a function of frequency and magnetic field for different
dielectric substrates and different values of incidence angle.

2. Thin TI film and thick substrate

Above we considered the case when the substrate thickness
is small compared with the wavelength. We see that as long as
the substrate thickness remains smaller than the wavelength,
increasing the thickness only suppresses the Kerr frequency
window, but the π/2 rotation at very small frequencies
survives. Experimentally, however, one may have to employ a
substrate with suprawavelength thickness for various reasons;
this motivates us to consider the effect of a thicker substrate.
When the substrate thickness is increased beyond one wave-
length, one can expect that the magnitude of the giant Kerr
rotation is suppressed. But that is not the end of the story.
Indeed, a logic similar to that employed in Sec. IV B tells us
that when the substrate thickness contains an integer number
of half wavelength, the resulting Faraday and Kerr rotations
will again be independent of the substrate dielectric properties.

For wavelength short compared with the substrate thick-
ness, but still long compared with the TI film thickness
(kTId 
 1) and ω 
 � or �B , we find the following phases
for the left- and right-handed (λ = ±) circularly polarized
transmitted and reflected light for normal incidence

arg
(
Et

λ

) = tan−1
2Z−1

s cos(ksds)
[
λ2πσR

xy cos(k0ds) − sin(k0ds)
] + sin(ksds)

[(
1 + Z−2

s

)
cos(k0ds) + λ4πσR

xy sin(k0ds)
]

2Z−1
s cos(ksds)

[
λ2πσR

xy sin(k0ds) + cos(k0ds)
] + sin(ksds)

[(
1 + Z−2

s

)
sin(k0ds) − λ4πσR

xy cos(k0ds)
] , (53)

arg
(
Er

λ

)
= − tan−1

{
2

{(
Z−2

s + 1
)
λ4πσR

xy + (
Z−2

s − 1
) [

λ4πσR
xy cos(2ksds) + Z−1

s sin(2ksds)
]}

(
Z−2

s + 1
)[

Z−2
s − 1 + (

4πσR
xy

)2] − (
Z−2

s − 1
)[

Z−2
s + 1 − (

4πσR
xy

)2]
cos(2ksds) + Z−1

s

(
Z−2

s − 1
)
λ8πσR

xy sin(2ksds)

}
,

(54)

where for notational simplicity we have defined the wave
impedance Zs = √

μs/εs for the substrate. If, in addition, we
impose the requirement that the substrate thickness contains
an integer multiple of half wavelengths (ksds = Nπ , N �= 0),
then Eqs. (53) and (54) greatly simplify, yielding

arg
(
Et

λ

) = tan−1
λ2πσR

xy cos(k0ds) − sin(k0ds)

λ2πσR
xy sin(k0ds) + cos(k0ds)

, (55)

arg
(
Er

λ

) = −λ tan−1 1

2πσR
xy

, (56)

from which we recover the quantized Faraday [Eq. (30)] and
giant Kerr rotations [Eq. (31)]. This tells us that the Faraday
and Kerr rotations can survive suppression effects from a

thick substrate as long as the substrate thickness satisfies the
resonance condition. Although it is remarkable that Eqs. (30)
and (31) still hold in this circumstance, it is important that
the light frequency needs to be precisely tuned to the resonant
frequency of the substrate. In contrast, if one has the liberty
to use a thin substrate, the giant Kerr rotation can be observed
in a relatively broad range of frequencies up to ωK [Eq. (51)].
Figure 4 shows the Kerr angle calculated as a function of
substrate thickness. We see that the Kerr angle remains π/2
for substrate thickness ds much smaller than the wavelength
(up to ∼1 μm in the plot) and then becomes suppressed
for larger substrate thickness. However, when ds becomes
comparable to the wavelength in the substrate, a series of
sharply defined cavity resonance peaks is seen that preserves
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FIG. 4. (Color online) (a) Dependence of the low-frequency Kerr
rotation of a TI thin film on the substrate thickness ds for frequency
ω/εc = 10−3, and substrate dielectric constants ε = 4 (SiO2), ε = 12
(Si). At this frequency, λ � 7 mm is always much longer than the
TI film thickness but becomes comparable to the substrate thickness
when ds ∼ λ/

√
εsμs . Cavity resonances of the giant Kerr rotation

can be seen at values of ds equal to integer multiples of λ/2
√

εsμs .
(b). Close-up showing the finer features of θK additional to the cavity
resonances; Fabry-Perot-type oscillations are clearly seen. For thick
substrates, the value of θK is strongly suppressed compared to the
long-wavelength result away from the cavity resonance values. The
values of nT , nB , and d are the same as in Fig. 3.

the giant π/2 value [Fig. 4(a)]. Around the same range of ds

values, Fabry-Perot-like oscillations of the Kerr rotation are
also clearly seen in Fig. 4(b).

VI. GENERALIZATION TO OTHER SYSTEMS WITH
QUANTIZED HALL CONDUCTING LAYERS

Because topological insulator properties are at present still
obscured by the issue of bulk conduction,28–31 and because
samples do not yet have the quality necessary to yield strongly
developed quantum Hall effects, it is natural to ask if similar
magneto-optical effects can be achieved in other materials
systems. Indeed, the magneto-optical effects we have dis-
cussed are not essentially distinct from those of other systems
with two nearby conducting layers that exhibit quantum Hall
effects. Equations (30), (31), and (39) for the Faraday and Kerr
rotations in Sec. IV apply to a wide variety of other systems
when they are placed in an external magnetic field.

Systems with two nearby graphene layers appear to be
particularly attractive because they are also described by
massless Dirac equations and, like TI surface states, are quite
sensitive to time-reversal symmetry-breaking perturbations. In
fact, the quantum Hall effect can be realized in graphene sheets
at magnetic field strengths that are so low35–37 that applications
in optics are not out of the question. Aside from integer
and fractional quantum Hall effects in external magnetic
fields, monolayer and bilayer graphene can also potentially
exhibit quantized anomalous Hall effects38–40 due to surface
adsorption of transition metal atoms.

FIG. 5. (Color online) Experimental setup of the double-layer
graphene heterostructure sandwiching a hexagonal boron nitride
(h-BN) substrate. A quantizing magnetic field is applied perpendicu-
larly to the layers.

One experimental system that has now been realized
experimentally,41 but not yet studied optically, consists of
two graphene layers separated by a few layers of hexagonal
boron nitride. Transport experiments have demonstrated that
the quantum Hall effect is already strong in this type of
system at fields well below 1 T. We propose the experimental
setup shown in Fig. 5 to observe the dramatic magneto-optical
effects. Because of valley and approximate spin degeneracies
the strongest quantum Hall effects occur at filling factor
νT,B = ±2, rather than at νT,B = ±1/2, but this changes
only some details of the magneto-optical properties. Realizing
systems with two (or, indeed, many) essentially decoupled
layers separated by much less than a wavelength is feasible.
The small spacing between essentially isolated quantum Hall
layers increases the frequency window over which strong
magneto-optical effects are anticipated. In addition, bulk
conduction is automatically eliminated.

VII. CONCLUSION

We have presented a comprehensive theory for the magneto-
optical Faraday and Kerr effects of topological insulator films
and, more generally, of layered quantized Hall systems. We
identify a topological regime in which the light frequency is
low compared to surface gaps opened up by time-reversal
symmetry-breaking perturbations and the light wavelength
is either long compared to the film thickness or an integer
multiple of twice the film thickness. In the topological regime,
the magneto-optical effects are dramatic and universal. For thin
films, the Faraday rotation angle is quantized in units of the
fine structure constant, and the Kerr angle exhibits a giant 90◦
rotation. For thick films that contain a commensurate number
of half wavelengths, both the Faraday and Kerr rotations
are quantized in units of the fine structure constant. In the
presence of bulk conduction, the dramatic Faraday and Kerr
effects for thin films remain robust as long as the effective
two-dimensional conductivity from the bulk, in e2/h units, is
smaller than the fine structure constant. The effect of a thick
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substrate, which may sometimes be experimentally necessary,
can be nullified either by making it thinner than a light
wavelength or, if it must be thick, by tuning its thickness to
an integer number of a half wavelength. The giant Kerr effect
remains unaffected by oblique incidence when a thin film with
a thin substrate is used. These magneto-optical effects can
also be realized, perhaps even more readily, in systems with
two graphene layers separated by hexagonal boron nitride or
another thin dielectric.
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APPENDIX: TRANSMISSION AND REFLECTION
COEFFICIENTS AT OBLIQUE INCIDENCE

We denote the incident and emergent angles of the electro-
magnetic wave after scattering with the interface by θi and θj .
The matrix elements of the reflection and transmission tensors
can be found as

rxx = ei2kiai cos θi

Dji

(√
εi

μi

cos2 θi sec θj

(
4πσxx +

√
εj

μj

sec θj

)
−

√
εi

μi

(√
εj

μj

+ 4πσxx sec θj

)

− cos θi

{
4π

√
εj

μj

σxx + sec θj

[
− εi

μi

+ εj

μj

+ 16π2
(
σ 2

xx + σ 2
xy

) + 4π

√
εj

μj

σxx sec θj

]})
,

ryy = −ei2kiai cos θi

Dji

(√
εi

μi

cos2 θi sec θj

(
4πσxx +

√
εj

μj

sec θj

)
−

√
εi

μi

(√
εj

μj

+ 4πσxx sec θj

)

+ cos θi

{
4π

√
εj

μj

σxx + sec θj

[
− εi

μi

+ εj

μj

+ 16π2
(
σ 2

xx + σ 2
xy

) + 4π

√
εj

μj

σxx sec θj

]})
,

rxy = −ei2kiai cos θi

Dji

8π

√
εi

μi

σxy cos θi sec θj , (A1)

txx = ei(ki cos θi−kj cos θj )ai

Dji

2
√

εi

μi

cos θi sec θj

[√
εi

μi

+ cos θi

(
4πσxx +

√
εj

μj

sec θj

)]
,

tyy = ei(ki cos θi−kj cos θj )ai

Dji

2
√

εi

μi

cos θi sec θj

[√
εj

μj

+ sec θj

(
4πσxx +

√
εi

μi

cos θi

)]
,

txy = −ei(ki cos θi−kj cos θj )ai

Dji

8π

√
εi

μi

cos θi sec θjσxy, (A2)

r ′
xx = e−i2kj ai cos θj

Dji

(
−

√
εi

μi

cos2 θi sec θj

(
4πσxx +

√
εj

μj

sec θj

)
+

√
εi

μi

(√
εj

μj

− 4πσxx sec θj

)

− cos θi

{
−4π

√
εj

μj

σxx + sec θj

[
εi

μi

− εj

μj

+ 16π2
(
σ 2

xx + σ 2
xy

) + 4π

√
εj

μj

σxx sec θj

]})
,

r ′
yy = e−i2kj ai cos θj

Dji

(
−

√
εi

μi

cos2 θi sec θj

(
4πσxx −

√
εj

μj

sec θj

)
−

√
εi

μi

(√
εj

μj

+ 4πσxx sec θj

)

− cos θi

{
4π

√
εj

μj

σxx + sec θj

[
εi

μi

− εj

μj

+ 16π2
(
σ 2

xx + σ 2
xy

) − 4π

√
εj

μj

σxx sec θj

]})
,

r ′
xy = −e−i2kj ai cos θj

Dji

8π

√
εj

μj

σxy cos θi sec θj , (A3)

t ′xx = ei(ki cos θi−kj cos θj )ai

Dji

2
√

εj

μj

[√
εi

μi

+ cos θi

(
4πσxx +

√
εj

μj

sec θj

)]
,

t ′yy = ei(ki cos θi−kj cos θj )ai

Dji

2
√

εj

μj

[√
εj

μj

+ sec θj

(
4πσxx +

√
εi

μi

cos θi

)]
,

t ′xy = −ei(ki cos θi−kj cos θj )ai

Dji

8π

√
εj

μj

cos θi sec θjσxy, (A4)
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where

Dji =
√

εi

μi

cos2 θi sec θj

(
4πσxx +

√
εj

μj

sec θj

)
+

√
εi

μi

(√
εj

μj

+ 4πσxx sec θj

)

+ cos θi

{
4π

√
εj

μj

σxx + sec θj

[
εi

μi

+ εj

μj

+ 16π2
(
σ 2

xx + σ 2
xy

) + 4π

√
εj

μj

σxx sec θj

]}
. (A5)

Note that ryy,tyy are no longer equal to rxx,txx at oblique light
incidence. Equations (A2)–(A5) recover the normal incidence
results Eqs. (20) and (21) when θi = θj = 0.

For completeness, we also include the expressions of the
total reflection and transmission tensors in the presence of a
layer of dielectric substrate. These can be composed from the
expressions Eqs. (22) and (23):

r̄ = r̄T + t̄ ′T r̄S,B (1 − r̄ ′
T r̄S,B)−1 t̄T , (A6)

t̄ = t̄S,B(1 − r̄ ′
T r̄S,B )−1 t̄T , (A7)

where r̄
(′)
S,B and t̄

(′)
S,B (the subscript S denotes substrate)

are the reflection and transmission tensors for light prop-
agation from the bottom surface to the substrate-vacuum
interface

r̄S,B = r̄B + t̄ ′Br̄S(1 − r̄ ′
Br̄S)−1 t̄B , (A8)

t̄S,B = t̄S(1 − r̄ ′
Br̄S)−1 t̄B , (A9)

and r̄
(′)
S and t̄

(′)
S are the reflection and transmission tensors for

light scattering at the substrate-vacuum interface.
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