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Optimal quantum control for conditional rotation of exciton qubits in semiconductor quantum dots
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Pulse-shaping protocols for subpicosecond optically controlled quantum gates in semiconductor quantum dots
are reported. Our emphasis is the development of shaping schemes for either amplitude or phase control of the
pulse that are easily implemented using commercial pulse shapers and femtosecond laser systems. We illustrate
the efficacy of our approach through simulations of a controlled-rotation gate in a realistic In(Ga)As quantum
dot with electronic structure calculated using eight-band, strain-dependent k · p theory. Our results show that
amplitude- and phase-shaping protocols both lead to substantial improvements in fidelity when compared with
transform-limited pulses with equivalent gate times. Dephasing was found to have a minimal effect on the gate
fidelities due to the ultrafast time scale of the quantum operations.
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I. INTRODUCTION

The pursuit of quantum control in semiconductor quantum
dots (QDs) has been the focus of a considerable body of
research over the past decade.1 In addition to enabling fun-
damental research into light-matter interactions, in which the
three-dimensional quantum confinement provides atomiclike
properties in a solid-state environment,2 semiconductor QDs
may become the future building blocks of a quantum comput-
ing architecture. Fundamental qubits in individual quantum
dots may be realized using the quantum states of an exciton
or individual carrier spin.3–13 Proposals in which optical
excitation may be used for both single-qubit rotations and
two-qubit gates4–13 are especially attractive as the exploitation
of established semiconductor and photonic device fabrication
capabilities enhances the potential for scaling the architecture
to a large number of qubits as well as integrating it with existing
computing technology. Furthermore, the use of short optical
pulses may lead to operating speeds in the THz range. Seminal
demonstrations of coherent optical control in QDs in recent
years include single-qubit rotations involving excitons,14–18

biexcitons,19,20 and single carrier spins,21,22 as well as quantum
state tomography,23 the coherent manipulation of an exciton
spin superposition state,24 and the introduction of controllable
entanglement between excitons.25–27 (For a recent review, see
Ref. 1.) These advancements represent a powerful toolkit for
implementations of quantum hardware based on semiconduc-
tor QDs.

All of the above demonstrations of coherent optical control
utilized transform-limited (TL) optical pulses, for which the
phase of the pulse is constant.28 By harnessing the power
of femtosecond pulse-shaping techniques,29 which allow full
control over the temporal dependence of the amplitude and
phase of the pulse, one may achieve a much greater degree
of flexibility in the manipulation of the quantum state. In
recent years, pulse shaping has been applied to quantum
control in atomic and molecular systems,30–35 in the control of
chemical reactions,36,37 and in various areas of nonlinear op-
tics, including electromagnetically induced transparency38,39

and the generation of high harmonics.40–42 The potential
utility of pulse shaping in quantum computing is clearly
illustrated by various proposals for quantum gates based on

adiabatic passage,10,11,43,44 in which a linear chirp (quadratic
time-dependent phase) results in state evolution through an
anticrossing, something that was very recently demonstrated
involving exciton qubits in self-assembled QDs.45,46 The
implementation of a more general phase profile may greatly
benefit the efficiency, fidelity, and speed of quantum state
control because the control Hamiltonian itself can be tailored
to optimize the physical process involved.6,8,47,48 For example,
in order to avoid unintended dynamics associated with nearby
states, optical control has been limited in experiments to pulses
with a duration of a few picoseconds or longer (e.g., in Ref. 46,
40 ps pulses were used). The achievement of faster operation
speeds using pulse-shaping techniques would allow the full
potential of optical control methods for quantum operations to
be exploited.

Here we develop general pulse-shaping protocols for opti-
mizing the speed and fidelity of optically controlled quantum
gates in self-assembled semiconductor QDs. We focus here
on the controlled-rotation (C-ROT) operation involving two
exciton qubits in a single QD.5 The possibility of scaling such
a system to qubits within different QDs has been addressed in
several recent proposals.4,9,13,49,50 Exciton qubits are attractive
due to the ease and efficiency of quantum state control using
optical techniques, and have recently been shown to benefit
from dynamical decoupling schemes as a means of reducing
the effective decoherence rate.51–53 The C-ROT gate provides a
test case that illustrates the effectiveness of the pulse-shaping
approach in a physical scenario that is readily accessible
using current optical techniques.25 In a recent work by Chen
et al.,6 the fidelity of the C-ROT operation was optimized
through the use of two phase-locked, transform-limited pulses
with independent bandwidth control of each pulse. The
implementation of this approach is complicated by the need for
two separately optimized, synchronous laser sources, as well
as a stabilized Michelson arrangement.8 Our emphasis here
is to develop general amplitude- and phase-shaping protocols
that could be easily implemented with a single mode-locked
femtosecond oscillator and a standard commercially available
pulse shaper.55 We optimize amplitude-shaping protocols
and phase-shaping protocols separately and find that either
leads to a substantial enhancement in fidelity in comparison
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to transform-limited pulses with an equivalent gate time.
Dephasing is found to have a minimal effect on the gate fidelity,
even for T2 times as low as 10 ps, reflecting the benefits of a
subpicosecond gate time. Our findings may be easily extended
to other optical operations in QDs, including two-photon
Rabi rotations of biexcitons,56 adiabatic passage involving
excitons45,46 or biexcitons,43 and schemes for dynamical
decoupling.51–53 Further improvement is likely to be possible
when the amplitude and phase shape of the pulse are optimized
together.

II. CONDITIONAL EXCITON DYNAMICS

The C-ROT operation, originally proposed by Troiani
et al.,5 is achieved using the four-level system created by the
vacuum ground state (|00〉), two oppositely polarized exciton
states (|10〉 and |01〉), and the bound biexciton state (|11〉),
as shown in Fig. 1(a). The single exciton states |10〉 and |01〉
represent two qubits in each quantum dot. In self-assembled
In(Ga)As QDs, the anisotropic exchange interaction together
with a slight elongation of the dot lifts the degeneracy between
the single exciton states and leads to linearly polarized optical
selection rules, in which |10〉 and |01〉 correspond to symmetric
and antisymmetric combinations of spin-up and spin-down
excitons.2,57 In Fig. 1(a), �x (�y) indicates linearly polarized
excitation, with the polarization direction along [110] ([11̄0]),
corresponding to the long (short) axes of the QD. The exchange
splitting (δ) is greatly exaggerated in Fig. 1(a) for clarity: it
is typically found to be �0.2 meV in experiments,58,59 much
smaller than the 12 meV bandwidth of the optical control
pulses considered here. The biexciton state |11〉 corresponds
to the bound state of two excitons with opposite spin, and

FIG. 1. (Color online) (a) Energy-level diagram for the exciton
and biexciton systems in a QD—the vacuum ground state (|00〉),
two single excitons (|01〉,|10〉), and a biexciton (|11〉) with a
binding energy of �b. The arrows indicate optically allowed, linearly
polarized (�x or �y) transitions. (b) Unitary transformation matrix
for the C-ROT gate. (c) Truncated pyramid quantum dot structure and
(d) InxGa1−xAs composition profile within the dot. The composition
is graded from high indium concentration in the shape of an inverted
triangle at the center of the dot to low indium concentration at the
base.

occurs at an energy lower than that required to create two single
excitons by an amount �b, the biexciton binding energy.

Conditional dynamics are realized in this system by
exploiting the polarization selection rules in Fig. 1(a), in
conjunction with the energy separation between the transitions
associated with the excitation of a single exciton (|00〉 → |01〉
or |10〉) and the excitation of a second exciton in the presence
of the first exciton (|01〉 or |10〉 → |11〉). These transitions
are separated in energy by the biexciton binding energy. Using
laser excitation pulses with a spectral bandwidth that is narrow
compared to �b, one can achieve both single qubit rotations
and a C-ROT gate for suitable choice of the carrier frequency
of the laser pulse. For example, for a �y-polarized laser pulse
tuned to the |10〉 → |11〉 transition, the state of the second
(target) bit will be rotated if and only if the first (control)
bit is in state 1. Single qubit rotations (in which a bit is
rotated regardless of the state of the other bit) are achieved
using bichromatic laser pulses with orthogonally polarized
components. The transformation matrix for the C-ROT gate
is shown in Fig. 1(b). The restriction to narrow bandwidth
excitation pulses ensures a high fidelity operation, but at the
expense of a large operation time. As we show in Sec. V, this
trade-off between operation time and fidelity may be alleviated
through the implementation of pulse shaping.

III. ELECTRONIC STRUCTURE OF
SELF-ASSEMBLED QDS

We model the QD as a truncated pyramid of InxGa1−xAs
embedded in GaAs, with its base in the (001) plane, and with its
edges aligned along the [110] and [11̄0] directions, as shown
in Fig. 1(c). The dot has a height of 4.5 nm, a length of 27 nm,
and a width of 20 nm, with the long axis along [110]. The facet
angles for projections onto the (110) and (11̄0) planes are 35 ◦
and 25 ◦, respectively [corresponding to facets with indices
of {(1, − 1,2.020),(−1,1,2.020)} and {(1,1,3.033),(−1, −
1,3.033)}]. We use a graded indium composition within the dot
in the shape of an inverted pyramid. The contours in Fig. 1(d)
mark nested, constant-alloy composition layers with an angle
of 45 ◦ to the growth direction. The composition of the dot is
graded in 16 increments from the innermost layer at the top face
where it is In rich (x = 0.6) to the outermost layer at the base
where it is Ga rich (x = 0.225) (i.e., a change in composition of
�x = 0.025 between layers). The dot shape and compositional
profile is typical of In(Ga)As/GaAs self-assembled QDs.60–62

The confined single-particle states of the QD were calcu-
lated using an eight-band, strain-dependent k · p Hamiltonian
in the envelope approximation,63–66 where the residual strain
is found by minimizing the elastic energy in the structure.
The explicit form of the kinetic and strain Hamiltonians are
given in Ref. 64. Multiparticle states are calculated within the
Hartree approximation, in which the wave functions are found
by iteratively solving the Schrödinger equation for a particle
in the potential of the other carriers in the QD until the energy
eigenvalues converge. The Hartree approach accounts for the
direct Coulomb interaction between the carriers, but does not
capture the exchange interaction or the effects of correlation.
The fine-structure splitting is therefore introduced by hand.
We take a value of 150 μeV, which is typical of values
found in experiment.58 We find that the exact value of δ is
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TABLE I. Transition energies and electric dipole moments calcu-
lated using eight-band, strain-dependent k · p theory. An empirical
value was used for the fine-structure splitting (Ref. 58).

Parameter Value

Exciton transition energy (E00,10) 1.2723 eV
Biexciton transition energy (E10,11) 1.2739 eV
Binding energy (�b) −1.6 meV
Fine-structure splitting (δ) 150 μeV
Dipole moment (d00,10) 22.76 Debye
Dipole moment (d01,11) 22.98 Debye

inconsequential due to the fast time scale of the optical control
process relative to 1/δ. The matrix elements of the electric
dipole operator are directly evaluated using the calculated
multiparticle states. The biexciton binding energy is evaluated
using the difference between the transition energies calculated
using the multiparticle and single-particle wave functions. The
results of our electronic structure calculations are summarized
in Table I.

The biexciton binding energy is a crucial parameter for the
design of optical control pulses for both the single-qubit and
C-ROT gates as it determines the relative spacing of the optical
transitions involved. A small value of �b will require fine
spectral control of the pulse phase and amplitude. Experiments
have shown that it is possible to get both negative (antibinding)
and positive (binding) biexciton binding energies, with values
of �b ranging from 4.8 to −6.3 meV in self-assembled
In(Ga)As QDs.67 This wide range of experimental values
illustrates the strong sensitivity of this parameter to the details
of the QD structure and composition. This sensitivity is further
illustrated by the results in Fig. 2, which show electronic
structure calculations for a range of dot compositions and
heights. Variations in the biexciton binding energy in Fig. 2
reflect changes in the overlap of the electron and hole wave
functions. The average indium composition in Fig. 2(a) is
varied by changing the maximum indium concentration at the
top face of the dot while maintaining an identical graded
structure and compositional gradient �x as in Fig. 1(d).
There is a nonmonotonic dependence on average indium
composition, reflecting relative shifts in the electron and hole
wave functions due to the nonuniform dot composition as the
average indium content varies. The height of the dot in Fig. 2(b)
is varied by adding horizontal layers to the top of the dot
with a starting height of 2.5 nm while maintaining the same
internal and external facet angles and spacing between layers.
With this approach, material added to the top simultaneously
increases the height and the average indium composition
because the top face of the dot contains the indium-rich
layers. (For a dot height of 4.5 nm, the average indium
composition is 0.5.) The results in Fig. 2(b) reflect a tendency
for the biexciton to become more tightly bound (smaller
negative binding energies) with increasing dot height. As our
calculations neglect correlation effects, we can only obtain
qualitative information regarding the trends in �b with QD
structure (e.g., the value we extract for the biexciton binding
energy is consistently negative due to the overestimation of the
effects of electron-electron repulsion68). Nevertheless, these
results suggest that �b may be engineered through appropriate

FIG. 2. (Color online) Exciton transition energy (circles) and
biexciton binding energy (triangles) for variations in (a) average
indium composition and (b) quantum dot height. In varying the dot
height, material was added to the top of the dot [see Fig. 1(d)], while
maintaining the same graded structure, until a complete pyramid was
formed (h = 6.5 nm).

choice of growth conditions. This is consistent with recent
experiments, in which �b was tuned through control of
the height of site-selected QDs.69 The trends observed in
Fig. 2 for the exciton transition energy are determined by
competition between changes in the dot compositional profile
and the degree of quantum confinement. In the numerical
simulations of the C-ROT gate, we have allowed the biexciton
binding energy to vary, spanning the range of accessible
experimental values.67 This will allow us to obtain flexible
pulse-shaping protocols that may be adapted to a particu-
lar QD during experimental implementation of the C-ROT

gate.

IV. OPTIMIZATION OF THE C-ROT GATE

The interaction of a laser pulse with the QD is treated using
the Liouville equation for the density matrix ρ(t),

∂ρ

∂t
= i

h̄
[ρ,H ], (1)

where H is the total Hamiltonian, given by

H =
∑

i

h̄ωiPi,i − 1

2

∑
i �=j

μi,j · ε̂E0(t)

×{exp [−iωt − i�(t)] + exp [iωt + i�(t)]}Pi,j . (2)

The first term in Eq. (2) describes the electronic structure
for the unperturbed system, consisting of the multiparticle
eigenstates obtained using our k · p formalism, where Pi,j

is the associated projection operator |i〉 < j |. The second
term is the control Hamiltonian associated with the laser
field. We employ the rotating-wave approximation to remove
the nonresonant term in the interaction Hamiltonian and
make the change of variables ρi,j (t) → ρ̃i,j (t) to remove the
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fast variations in the coherences. Decay and decoherence
are incorporated in the relaxation-time approximation. The

resulting Bloch equations of the four-level system are given
by

˙̃ρ01,01 = − i

2
(χ01,00ρ̃00,01 − χ00,01ρ̃01,00 + χ01,11ρ̃11,01 − χ11,01ρ̃01,11) − γ01,01ρ̃01,01,

˙̃ρ10,10 = − i

2
(χ10,00ρ̃00,10 − χ00,10ρ̃10,00 + χ10,11ρ̃11,10 − χ11,10ρ̃10,11) − γ10,10ρ̃10,10,

˙̃ρ11,11 = − i

2
(χ11,01ρ̃01,11 − χ01,11ρ̃11,01 + χ11,10ρ̃10,11 − χ10,11ρ̃11,10) − γ11,11ρ̃11,11,

ρ̃00,00 = 1 − ρ̃01,01 − ρ̃10,10 − ρ̃11,11,
(3)

˙̃ρ01,00 = − i

2
[2(ω01,00 − ω)ρ̃01,00 + χ01,11ρ̃11,00 − χ10,00ρ̃01,10 + χ01,00(ρ̃00,00 − ρ̃01,01)] − γ01,00ρ̃01,00,

˙̃ρ10,00 = − i

2
[2(ω10,00 − ω)ρ̃10,00 + χ10,11ρ̃11,00 − χ01,00ρ̃10,01 + χ10,00(ρ̃00,00 − ρ̃10,10)] − γ10,00ρ̃10,00,

˙̃ρ10,01 = − i

2
[2ω10,01ρ̃10,01 + χ10,00ρ̃00,01 − χ00,01ρ̃10,00 + χ10,11ρ̃11,01 − χ11,01ρ̃10,11] − γ10,01ρ̃10,01,

˙̃ρ11,00 = − i

2
[2(ω11,00 − 2ω)ρ̃11,00 + χ11,01ρ̃01,00 − χ01,00ρ̃11,01 + χ11,10ρ̃10,00 − χ10,00ρ̃11,10] − γ11,00ρ̃11,00,

˙̃ρ11,01 = − i

2
[2(ω11,01 − ω)ρ̃11,01 + χ11,10ρ̃10,01 − χ00,01ρ̃11,00 + χ11,01(ρ̃01,01 − ρ̃11,11)] − γ11,01ρ̃11,01,

˙̃ρ11,10 = − i

2
[2(ω11,10 − ω)ρ̃11,10 + χ11,01ρ̃01,10 − χ00,10ρ̃11,00 + χ11,10(ρ̃10,10 − ρ̃11,11)] − γ11,10ρ̃11,10,

where ρi,i is the population in state |i〉, ρi,j is the coherence
between states |i〉 and |j 〉, χi,j = μi,j · ε̂E0(t)/h̄ is the Rabi
frequency, and γi,j are the constant decay rates.

The objective of quantum control is to tailor the control
Hamiltonian to achieve the desired multiparticle state of the
system at the end of the laser pulse. This can be achieved
experimentally, for example, using a 4f pulse shaper,29 as
shown in Fig. 3. The manipulation of the pulse shape is carried
out in the Fourier plane by a spatial light modulator (SLM),
which may be equipped with one or two voltage-controlled
liquid-crystal retarders. When two liquid-crystal retarders are
used in conjunction with polarizers on the input and output of
the SLM, full control of the amplitude and phase of the pulse is
possible. The action of the SLM in this case may be described
as the product of frequency-dependent amplitude [AM (ω)] and
phase [�M (ω)] masks:

M(ω) = AM (ω) exp [i�M (ω)]. (4)

FIG. 3. (Color online) 4f pulse shaper consisting of two diffrac-
tion gratings, two lenses, and an optical mask shown as a spatial light
modulator (SLM). The distance f is the focal length of the lenses.
Manipulation of the pulse shape is carried out in the Fourier plane.

The effect of this mask on the pulse at the Fourier plane is
given by

Ẽout(ω) = Ẽin(ω)M(ω), (5)

where Ẽin(ω) is the Fourier transform of the input pulse, taken
to be transform limited:

Ein(t) = 1
2 ε̂E0(t) exp (−iω0t). (6)

The pulse envelope is chosen to have the form E0(t) =
|E0|sech(1.76t/τ ), with τ = 150 fs, which is consistent with
the typical output from commercially available femtosecond
laser systems operating in the wavelength range of interest.
Ẽout(ω) is the Fourier transform of the output (shaped) pulse
used for quantum control. Phase-only SLM configurations
minimize light losses, and for this reason we develop pulse-
shaping protocols involving phase-only control as well as
amplitude-only control. This will provide the greatest degree
of flexibility in the experimental implementation of the phase
masks presented in Sec. IV A.

We optimize the phase and amplitude masks using the con-
strained optimization by linear approximations (COBYLA)
algorithm.70 The objective function to be maximized by the
optimization routine is the fidelity of the quantum gate, given
by

F = Tr[ρPρI], (7)

where, ρP is the physical density matrix at the end of the
laser pulse and ρI is the ideal density matrix.25 Equation (7)
is applied to the C-ROT operation by averaging the fidelity
over four initial states, corresponding to an occupation of
unity for each of the four levels in the system, with all other
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density-matrix elements equal to zero. In this case, a pure
initial system state is assumed; i.e., we do not model the
quantum state initialization, assuming it to have been carried
out with a fidelity of unity. The time dynamics of the system
are calculated by integrating Eq. (3) over the duration of the
pulse. We define the fidelity F as a function of a vector q, the
components of which describe the mask function M(ω), such
that

F = f (q1, . . . ,qi, . . . ,qn). (8)

The components of the vector q are subject to constraints
dictated by experimental limitations, as described below
for each shaping scheme. We use a Sobol’ sequence71,72

to populate the n-dimensional parameter space with initial
vectors {q init}, each describing different forms of the masking
function, M(ω). For each vector, Eq. (3) is integrated to
determine the density matrix at the end of the laser pulse,
and this density matrix is inserted into Eq. (7) to calculate the
fidelity. The optimization routine drives the system to a local
optimum in fidelity by varying the components of q. We find
that the optimal solution is found uniquely for a population
of 500 (or more) initial vectors, indicating that the parameter
space is adequately spanned for each shaping scheme.

A. Phase control scheme

A scheme for quantum control in which the only degree
of freedom is the phase of the pulse offers some advantages:
(i) light losses in the shaping system will be minimized and
(ii) such a system avoids deleterious effects associated with
rejected light in the shaping system. The phase mask we
utilize here has the following dependence on the individual
frequencies ω within the pulse:

�M (ω) = α cos[γ (ω − ω10,11) − δ]. (9)

Here ω10,11 is the transition frequency resonant with the |10〉
→ |11〉 transition, and α, γ , δ, and the total pulse area
[
 = (μ · ε̂/h̄)

∫ +∞
−∞ E0(t) dt] are taken as free parameters, so

that the fidelity is a function of four variables:

F = f (α,γ,δ,
). (10)

The following constraints are imposed:

0 � α � π,

0 � γ � 315 fs,
(11)

−π � δ � π,

π/2 � 
 � 6π.

The limits on α and γ were chosen to restrict |d�M (ω)/dω|max

to approximately π/10 radians per pixel for a 128-pixel SLM,
representing a readily accessible phase gradient for typical
pulse-shaping systems. 
 was allowed to vary up to 6π radians
as it was found that multiple Rabi oscillation cycles provided
access to higher fidelities, as discussed in Sec. V. 6π radians
is considered to be a good compromise for achieving high
fidelities with experimentally accessible pulse fluences.73

B. Amplitude control scheme

The amplitude mask function we employ here has the
following form:

AM (ω) =
∣∣∣∣∣exp

[
−

(
ω − ω10,11

�ω1/(2 ln 2)1/2

)2
]

−A0 exp

[
−

(
ω − ω00,10

�ω2/(2 ln 2)1/2

)2
]∣∣∣∣∣ . (12)

Equation (12) represents the destructive interference of
simultaneous bichromatic Gaussian pulses centered at photon
energies E10,11 = h̄ω10,11 and E00,01 = h̄ω00,01, with full width
at half maximum frequency bandwidths �ωi , and a relative
amplitude factor A0. For simplicity, we set �M (ω) in Eq. (4)
equal to zero. The analytical form in Eq. (12) was inspired by
the results in Ref. 6, in which a similar four-level system was
considered, and the C-ROT gate was optimized by separately
controlling the pulse durations of two phase-locked Gaussian
pulses. The amplitude mask in Eq. (12) is a more general
form and is easily implemented using a single mode-locked
oscillator and a commercial pulse shaper.

The fidelity is maximized in a four-dimensional parameter
space:

F = f (�ω1,�ω2,A0,
). (13)

The free parameters �ωi , A0, and 
 are subject to the
following constraints:

6.08 � h̄�ωi � 12.2 meV,

0.0 � A0 � 1.0,
(14)

π/2 � 
 � 6π.

The maximum limit on the bandwidths �ωi is determined
by the spectral content of the initial transform-limited optical
pulse, while the minimum limit restricts the total pulse
operation time. The restrictions on 
 were kept the same as
for the phase control scheme, so that the effectiveness of the
two schemes could be compared. It should be noted that it is
not possible to enforce a constant maximum rate of change,
|dAM (ω)/dω|max, for all binding energies. We nevertheless
verified that the spectral amplitude features obtained for the
optimal pulse shapes are sufficiently slowly varying to be well
reproduced by a standard 128-pixel SLM.

V. RESULTS AND DISCUSSION

A. Optimized quantum control pulses

Figure 4 shows the results for the optimum pulse shape
using the phase-only control scheme for a biexciton binding
energy of 2.5 meV. In order to quantify the efficacy of the
pulse-shaping protocols presented in this work, we compare
the gate performance for the shaped pulse to that for a TL
pulse with an equivalent gate time. The optimized parameters
for the shaped pulse are α = 0.511 π rad, γ = 325 fs, δ =
0.243 π rad, and 
 = 5.780 π rad. These data correspond
to a gate time of 555 fs for the TL and shaped pulses. The
population dynamics are shown in the two upper panels in
Fig. 4 for two initial conditions: (i) ρ10,10(t = 0) = 1 and
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FIG. 4. (Color online) Population dynamics and control pulse
characteristics for (a) the optimal phase-shaped pulse and (b) the TL
pulse. Panels (i) and (ii) show the population dynamics for the initial
conditions ρ10,10(t = 0) = 1 and ρ00,00(t = 0) = 1, respectively. The
third panel shows the temporal envelope of the electric-field intensity
of the control pulse. The bottom panel shows the amplitude (solid
curves) and phase (dashed curves) profiles for the control pulse.

(ii) ρ00,00(t = 0) = 1. As discussed in Sec. II, the objective
of the C-ROT gate is to flip the state of the target (second) bit
if and only if the control (first) bit is 1. This implies that the
optical pulse should effect a π Rabi rotation between |10〉 and
|11〉 if the system is initially in either |10〉 or |11〉 and have no
effect if the system is in |00〉 or |01〉 at t = 0.

For ρ10,10(t = 0) = 1 (top row of panels in Fig. 4) the first
bit is 1 at time t = 0. In this case, the C-ROT gate must flip the
second bit so that the occupation ρ11,11 = 1 at the end of the
pulse. As seen in Fig. 4(a), the shaped pulse carries out this
operation with a high fidelity. The occupations ρ11,11 and ρ10,10

are flipped such that ρ11,11 starts at 0 and ends at approximately
1, while ρ10,10 starts at 1 and ends at approximately 0. The
occupation for the nontarget state (ρ00,00) starts at 0 and after
some transient occupation is returned to approximately 0. For
the TL pulse in Fig. 4(b), an incomplete transfer of occupation
between ρ10,10 and ρ11,11 occurs and the residual occupation
in ρ00,00 is nonzero, resulting in lower fidelity.

For the second initial condition, ρ00,00(t = 0) = 1 (second
row of panels in Fig. 4), the first bit is 0 at t = 0, so an ideal
pulse would return the system to its initial state. The shaped
pulse is also able to perform this operation with high fidelity
as seen in Fig. 4(a). The occupations ρ11,11 and ρ10,10 start
at 0 at time t = 0 and both are returned to approximately 0
after some transient dynamics. Additionally, the occupation in
ρ00,00 starts at 1 and is returned to 1. The TL pulse is ineffective
for this operation as it permanently reduces the occupation
ρ00,00, resulting in residual values of the occupations ρ11,11

and ρ10,10 at the end of the pulse. The state evolution for the
initial condition ρ11,11(t = 0) = 1 is linked to the evolution for
ρ10,10(t = 0) = 1 as these state occupations are exchanged in
the C-ROT and so only the dynamics for ρ10,10(t = 0) = 1 are
shown for clarity. The optical selection rules for a �y-polarized
pulse preclude laser-induced dynamics for the fourth initial
condition ρ01,01(t = 0) = 1 [see Fig. 1(a)].

The temporal and spectral properties of the shaped and TL
control laser pulses are shown in the two lower panels of Fig. 4.
The TL pulse with an equivalent gate time has a narrower
frequency spectrum than the shaped pulse and a constant phase.
The sinusoidal phase modulation for the shaped pulse results
in a structured intensity profile and concomitant intermediate
state dynamics. The improvement in fidelity afforded by the
shaping protocol is nevertheless considerable, reaching a value
of 0.964 in comparison to 0.866 for the TL pulse.

An alternative view of the state dynamics is provided by the
Bloch vector representation, shown in Figs. 5(a) and 5(b) for
the phase-shaped and TL pulses, respectively. The solid line
indicates the Bloch vector corresponding to the first qubit for
ρ00,00(t = 0) = 1, while the dashed curve corresponds to the
second qubit for ρ10,10(t = 0) = 1. The complex trajectories
in Fig. 5(a) reflect the intermediate state dynamics in Fig. 4(a).

FIG. 5. (Color online) Bloch vector repre-
sentations of the first qubit for ρ00,00(t = 0) = 1
(solid curve) and the second qubit for ρ10,10(t =
0) = 1 (dashed curve) for the (a) phase-shaped
pulses and (b) TL pulse. Truth table of the gate
operation for the (c) optimal phase-shaped pulse
and (d) TL pulse.
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FIG. 6. (Color online) Population dynamics and control pulse
characteristics for (a) the optimal amplitude-shaped pulse and
(b) the TL pulse. Panels (i) and (ii) show the population dynamics
for the initial conditions ρ10,10(t = 0) = 1 and ρ00,00(t = 0) = 1,
respectively. The third panel shows the temporal envelope of the
electric-field intensity of the control pulse. The bottom panel shows
the amplitude (solid curves) and phase (dashed curves) profiles for
the control pulse.

The increased efficacy of the C-ROT operation for the phase-
shaped pulse is evident in Fig. 5(a) as the second qubit
undergoes a half-cycle rotation for ρ10,10(t = 0) = 1 (dashed
curves), while the first qubit is returned to the initial state for
ρ00,00(t = 0) = 1 (solid curves). The higher fidelity obtained
with the phase-shaping protocol relative to the TL pulse is
also illustrated by the truth tables in Figs. 5(c) and 5(d). The
TL pulse leads to inferior control of the conditional dynamics
because the wide spectral bandwidth relative to �b prevents
discrimination between the target and nontarget states in the
optical excitation process.

Figure 6 shows the results for the optimal amplitude-shaped
pulse for the same binding energy of 2.5 meV. The optimized
parameters for the shaped pulse are h̄�ω1 = 6.083 meV,
h̄�ω2 = 12.166 meV, A0 = 0.772, and 
 = 3.6 π rad. The
gate time for the data in Fig. 6 is 335.5 fs for both shaped
and TL pulses. The Bloch vector and truth table results
corresponding to the state dynamics in Fig. 6 are shown in
Fig. 7. The fidelity of the C-ROT gate for the amplitude-shaped
pulse is 0.967, in comparison with a value of 0.689 for the TL
pulse, illustrating a dramatic improvement with pulse shaping.

The amplitude mask in Eq. (12) is a superposition of two
Gaussians that are π out of phase with each other. From the
bottom panel in Fig. 6, it is clear that the optimum condition
for high fidelity corresponds to the generation of a node in
the pulse spectrum resonant with the |00〉 → |10〉 transition
(occurring at 974.5 nm). The optimum pulse parameters
therefore result in perfect destructive interference between
the two terms in Eq. (12) at ω = ω00,10. Such a cancellation
effect was also found in Ref. 6 for a similar four-level
scheme involving pure exciton spin states in cylindrically
symmetric quantum dots. Our results for the level scheme
in Fig. 1(a), for which the ground state is coupled to the
biexciton via the intermediate state |01〉, and for which our
more general amplitude mask in Eq. (12) permits relative
amplitude control between the two terms, indicates that the
cancellation effect is a general consequence of the use of
this bichromatic control scheme. As described in the next
section, our findings also verify that the spectral node tracks the
|00〉 → |10〉 transition as �b is varied. (In Ref. 6 �b was fixed.)
Unlike the amplitude-shaping scheme, for which there exists a
simple interpretation of the improvement in fidelity introduced
by pulse shaping in terms of destructive light interference at
ω00,10, for the phase-only shaping protocol the pulse spectrum
is unaffected by the shaping mask and consequently no such
simple interpretation exists. In contrast to the case of a TL
pulse, in which the Rabi rotation on the Bloch sphere occurs
about a fixed axis in the x-y plane, the introduction of a
time- (and frequency-) dependent phase in the control pulse
will lead to the motion of the Rabi control vector during the
operation. In conjunction with the freedom to perform more

FIG. 7. (Color online) Bloch vector repre-
sentations of the first qubit for ρ00,00(t = 0) = 1
(solid curve) and the second qubit for ρ10,10(t =
0) = 1 (dashed curve) for the (a) amplitude-
shaped pulses and (b) TL pulse. Truth table of
the gate operation for the (c) optimal amplitude-
shaped pulse and (d) TL pulse.
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than one full Rabi cycle in our shaping protocol, this leads to
a complex motion of the Bloch vector, as evident in Fig. 5(a).
Optimization of the fidelity only requires that the system reach
the target state at the end of the control pulse. The phase-only
shaping scheme used in Eq. (9) was chosen for its simplicity
of implementation and for the ease of monitoring the control
pulses using common pulse measurement techniques. We
expect that another choice of phase mask function would lead
to similar improvements in fidelity provided sufficiently rapid
phase variations may be generated within the experimental
constraints of conventional SLMs. The ability to tailor the
coherent state dynamics using only control over the pulse
phase, illustrated here for exciton qubits in self-assembled
quantum dots, highlights the power and flexibility of pulse
shaping in tailoring the light-matter interaction.

B. Dependence on biexciton binding energy

The variation of the fidelity and gate time with the size of
the binding energy of the biexciton is shown in Fig. 8 for the
optimum-shaped and TL pulses. The gate fidelity is indepen-
dent of the sign of �b, indicating that only the magnitude of the
energy separation between the |00〉 → |10〉 and |10〉 → |11〉
transitions is important. The phase- and amplitude-shaped
pulses outperform the TL pulses for the full range of binding
energies investigated. The pulse parameters corresponding to
the data in Fig. 8 are shown in Tables II and III for the
phase- and amplitude-shaping protocols, respectively. The
pulse parameters for positive and negative binding energies
were found to be similar, and so only the trends for positive
binding energies are provided. For the phase-shaped pulses,

FIG. 8. (Color online) (Top) Fidelity for the optimal phase-shaped
pulses (diamonds) and optimal amplitude-shaped pulses (circles) is
shown as a function of the biexciton binding energy. The fidelities
of the corresponding TL pulses with equivalent gate times are also
shown for the phase-shaped pulses (×) and amplitude-shaped pulses
(+). (Bottom) Gate time of optimal phase-shaped (diamonds) and
amplitude-shaped (circles) pulses as a function of binding energy.

TABLE II. The optimum pulse parameters obtained for the phase-
shaping protocol for a range of values of the biexciton binding energy.
The resulting C-ROT gate time (GT) is also shown.

�b (meV) F α (π rad) γ (fs) δ (π rad) 
 (π rad) GT (fs)

0.00 0.617 0.460 325.0 −0.770 3.617 555.7
0.25 0.658 0.600 325.0 0.854 5.841 584.1
0.50 0.709 0.602 325.0 0.841 5.769 583.3
0.75 0.759 0.603 325.0 −0.165 5.759 583.2
1.00 0.805 0.606 325.0 0.832 5.758 583.8
1.25 0.844 0.608 325.0 −0.168 5.765 584.5
1.50 0.875 0.610 325.0 0.832 5.759 585.3
1.75 0.897 0.613 325.0 −0.165 5.771 586.7
2.00 0.925 0.507 325.0 −0.758 5.775 555.0
2.25 0.947 0.509 325.0 −0.757 5.779 555.2
2.50 0.964 0.511 325.0 0.243 5.780 555.3
2.75 0.974 0.513 323.3 −0.758 5.790 554.2
3.00 0.979 0.514 324.5 0.245 5.782 489.2
3.25 0.980 0.522 301.6 0.218 5.945 555.0
3.50 0.980 0.525 293.1 −0.791 6.000 532.4
3.75 0.975 0.526 291.2 −0.794 6.000 531.1
4.00 0.966 0.527 289.9 −0.796 6.000 530.3

the decrease in the sinusoidal amplitude α and frequency
γ with increasing �b in Table II occurs because less rapid
changes in the phase are required for a high-fidelity operation
between increasingly distant transitions. The phase δ, while
having a critical influence on the temporal pulse profile and
the resulting dynamics, does not have a discernible trend. We
observe that 
 > π in all cases, indicating that the target
quantum state is reached after multiple cycles of the Bloch
vector. As �b increases, the pulse center frequency tracks
the |10〉 → |11〉 transition, and therefore the pulse energy at
the |00〉 → |10〉 transition decreases. A greater overall pulse
energy is then needed to reach the desired final state for all
initial conditions simultaneously, leading to the increase in

 with �b in Table II. Our calculations indicate that further
increasing the binding energy to values that are larger than the
pulse bandwidth causes the optimum value of the pulse area to
decrease toward π radians (e.g., 
 = 4.44π for �b = 12 meV
and 
 = π for �b = 24 meV), as expected because in this
trivial limit the undesired transition is not coupled to the
laser field. We note that the meaning of the optimized pulse
parameters are questionable for �b ≈ 0, likely accounting for
the two anomalous points around �b = 0 in the results for the
amplitude mask in Fig. 8.

As seen in Table III, the amplitude-shaping protocol is
ineffective for small �b. The fidelity nevertheless increases
rapidly as the separation between the transitions increases: A
fidelity near unity is already achieved for �b > 1.5 meV. The
bandwidth of the first Gaussian function is nearly constant at
the lower limit of the imposed constraint because a narrow
function maximizes the fraction of light contributing to the
|10〉 → |11〉 Rabi rotation. In contrast, the bandwidth of
the second term increases to its maximum value as �b

increases. A large value for h̄�ω2 maximizes the overlap
of the pulse bandwidth of the second pulse with that of
the first pulse. However, it is not clear why this overlap is
advantageous for increasing the fidelity. The optimum values
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TABLE III. The optimum pulse parameters obtained for the
amplitude-shaping protocol for a range of values of the biexciton
binding energy. The resulting C-ROT gate time (GT) is also shown.

�b (meV) F h̄�ω1 (meV) h̄�ω2 (meV) A0 
 (π rad) GT (fs)

0.00 0.594 6.967 9.428 0.902 5.843 325.2
0.25 0.629 6.099 6.458 0.898 5.889 472.1
0.50 0.680 6.083 6.744 0.899 6.000 452.3
0.75 0.737 6.083 7.085 0.900 6.000 436.7
1.00 0.795 6.083 7.572 0.902 6.000 405.7
1.25 0.855 6.083 8.340 0.900 6.000 392.1
1.50 0.913 6.083 9.780 0.897 6.000 364.4
1.75 0.962 6.190 11.121 0.885 6.000 348.5
2.00 0.968 6.083 11.991 0.850 5.029 338.2
2.25 0.966 6.083 12.166 0.815 4.318 336.4
2.50 0.967 6.083 12.166 0.772 3.600 335.5
2.75 0.973 6.083 12.166 0.728 3.048 352.3
3.00 0.979 6.083 12.166 0.685 2.683 370.9
3.25 0.983 6.083 12.166 0.643 2.400 384.7
3.50 0.986 6.083 12.166 0.603 2.175 395.2
3.75 0.990 6.083 12.166 0.566 1.998 402.7
4.00 0.992 6.083 12.166 0.530 1.857 406.7

for A0 in Table III ensure that destructive interference at the
|10〉 → |11〉 transition is complete. The pulse area 
 decreases
monotonically with �b in Table III, reflecting the relaxed
requirements for high-fidelity operation. This reduction in 


also leads to a decrease in the fraction of light reflected by the
pulse shaper in imposing the amplitude-shaping scheme.

It should be noted that the amplitude-shaping protocol
provides shorter gate times (by ∼30% on average) than
the phase-shaping protocol, while the phase-shaping scheme
avoids the deleterious effects associated with the rejected light
in the pulse shaper. As only two shaping schemes are inves-
tigated here, it is reasonable to expect a further improvement
in the overall gate characteristics with the generalization of
the shaping protocol to include simultaneous control over
the amplitude and phase of the pulse. Improvements in gate
performance may also be achieved using phase-only control
schemes with a more complex choice for the phase mask
function than that used here. The simple shaping schemes we
have implemented serve to illustrate the power and flexibility
of the pulse-shaping approach in achieving rapid, high-fidelity
quantum operations on qubits in semiconductor quantum dots.

C. Inclusion of relaxation effects

The effects of dephasing were examined by introducing
relaxation to the model, as discussed in Sec. IV. The population
decay constants are set to values that are typical of InxGa1−xAs
dots:76 T1 = 480 ps for the exciton states |01〉 and |10〉, and
T1 = 320 ps for the biexciton state |11〉 (i.e., γ01,01 = γ10,10 =
T −1

1 for the single excitons and γ11,11 = T −1
1 for the biexciton).

As described in Sec. IV, these effects are incorporated in the
relaxation-time approximation. The longitudinal decay times
are held fixed, while the T2 times (γ −1

ij for i �= j ) are taken
to be the same for both exciton and biexciton states and are
varied over a wide range up to the radiatively limited case.
The fidelity was calculated by integrating Eq. (3) over 8 ps,
with the pulse arriving at the center of the temporal window.

FIG. 9. (Color online) Fidelity versus dephasing time T2 for the
optimal phase-shaped pulses (diamonds) and optimal amplitude-
shaped pulses (circles), and the TL sech pulses with gate time
equivalent to that of the phase-shaped pulses (×) and amplitude-
shaped pulses (+).

The results of these calculations are shown in Fig. 9. We find
that dephasing has only a small impact on the fidelity in all
cases, even down to the shortest decoherence time considered
(10 ps). This reflects the rapid nature of the C-ROT gate when
ultrafast optical pulses are used. The impact of dephasing
depends only on the gate time, giving a reduction of 6% for
the phase-shaping scheme and 3% for the amplitude-shaping
scheme with a dephasing time of 10 ps. Dephasing times
for exciton qubits in semiconductor quantum dots in the
range of several hundred picoseconds have been measured
experimentally at low temperature.77 In conjunction with the
implementation of dynamical decoupling schemes for miti-
gating decoherence between gate operations,51–53 these results
indicate the feasibility of high-fidelity quantum computing
using subpicosecond optical gates and semiconductor quantum
dots.

VI. CONCLUSIONS

In conclusion, we have studied the use of pulse-shaping
protocols that can be easily implemented using commercially
available femtosecond laser systems and pulse shapers. We
demonstrated the use of these protocols for the C-ROT gate
in a realistic In(Ga)As quantum dot with electronic structure
obtained using eight-band, strain-dependent k · p theory.
Our results show that engineering the pulse using simple
amplitude-only and phase-only shaping schemes provides
considerable improvements in fidelity over a transform-limited
pulse with the same operation time. The power and flexibility
of pulse-shaping systems, which provide independent control
of the pulse amplitude and phase, may be exploited to obtain
further improvements in gate performance through generaliza-
tion to more complex shaping schemes. The introduction of
relaxation to the model was found to have a minimal effect
on the gate fidelity for experimentally relevant dephasing
times, reflecting the advantages of femtosecond optical pulses
for quantum operations. Our results lay the groundwork
for implementing pulse shaping in other quantum control
processes, including two-photon Rabi rotations, adiabatic
passage, and schemes for dynamical decoupling.
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D. Bimberg, Phys. Rev. Lett. 95, 257402 (2005).

60N. Liu, J. Tersoff, O. Baklenov, A. L. Holmes, and C. K. Shih, Phys.
Rev. Lett. 84, 334 (2000).

61D. M. Bruls, J. W. A. M. Vugs, P. M. Koenraad, H. W. M. Salemink,
J. H. Wolter, M. Hopkinson, M. S. Skolnick, F. Long, and S. P. A.
Gill, Appl. Phys. Lett. 81, 1708 (2002).

62P. W. Fry, I. E. Itskevich, D. J. Mowbray, M. S. Skolnick, J. J.
Finley, J. A. Barker, E. P. O’Reilly, L. R. Wilson, I. A. Larkin,
P. A. Maksym, M. Hopkinson, M. Al-Khafaji, J. P. R. David,
A. G. Cullis, G. Hill, and J. C. Clark, Phys. Rev. Lett. 84, 733
(2000).

63T. B. Bahder, Phys. Rev. B 41, 11992 (1990).
64C. Pryor, Phys. Rev. B 57, 7190 (1998).
65M. Holm, M.-E. Pistol, and C. Pryor, J. Appl. Phys. 92, 932

(2002).
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