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Li and Haldane conjectured and numerically substantiated that the entanglement spectrum of the reduced
density matrix of ground states of time-reversal-breaking topological phases [fractional quantum Hall (FQH)
states] contains information about the counting of their edge modes when the ground state is cut in two spatially
distinct regions and one of the regions is traced out. We analytically substantiate this conjecture for a series
of FQH states defined as unique zero modes of pseudopotential Hamiltonians by finding a one-to-one map
between the thermodynamic limit counting of two different entanglement spectra: the particle entanglement
spectrum (PES), whose counting of eigenvalues for each good quantum number is identical to the counting of
bulk quasiholes (up to accidental zero eigenvalues of the reduced density matrix), and the orbital entanglement
spectrum (OES), considered by Li and Haldane. By using a set of clustering operators that have their origin
in conformal-field-theory (CFT) operator expansions, we show that the counting of the OES eigenvalues in the
thermodynamic limit must be identical to the counting of quasiholes in the bulk. The latter equals the counting
of edge modes at a hard-wall boundary placed on the sample. Our results can be interpreted as a bulk-edge
correspondence in entanglement spectra. Moreover, we show that the counting of the PES and OES is identical
even for CFT states that are likely bulk gapless, such as the Gaffnian wave function.
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I. INTRODUCTION

Determining the universality class of a real system ex-
hibiting a topological phase is a difficult task in condensed
matter physics. Renormalization-group methods have been
very successful in uncovering the universal physics in phases
with local order parameters, but, due to their perturbative
approach, can not be readily generalized to topological phases
that do not exhibit symmetry breaking. The density-matrix
renormalization group1–4 and tensor-matrix product states5,6

can probe topological order in one dimension, but have had
limited success with higher-dimensional systems so far. The
prototype of two-dimensional topologically ordered phases are
the experimentally accessible fractional quantum Hall (FQH)
phases. A promising tool to extract topological information
from the ground-state wave function in these phases is the
entanglement entropy.7–11 However, it depends on scaling
arguments, is hard to obtain to sufficient accuracy from
numerical calculations,12,13 and does not uniquely determine
the topological order in the state.

In 2008, Li and Haldane14 proposed a new tool to identify
topological order in non-Abelian FQH states—the entangle-
ment spectrum. They divided the single-particle orbitals in a
Landau level on the sphere along the equator and constructed
the reduced density matrix of the ideal (model) and the realistic
(Coulomb) FQH states in the upper half of the sphere (part A)
by tracing out orbitals in the lower half (part B). Having thus
created a “virtual” edge, they defined the orbital entanglement
spectrum (OES) to be the plot of the negative logarithm of the
eigenvalues of the reduced density matrix of A versus the z

angular momentum of A (LA
z ) for a fixed number of particles

in A. In particular, Li and Haldane considered the part of the
spectrum with the lowest-lying levels and the highest-weight
eigenstates of the reduced density matrix of A. They noticed
that the number of levels in every OES of the model states, such
as the Laughlin and the Moore-Read, was much smaller than

the Hilbert space dimension and was identical to the counting
of the conformal-field-theory (CFT) modes associated with
the edge at large values of LA

z . Although the number of levels
in the OES of the Coulomb state saturated the Hilbert space
dimension, a gap separated the levels higher in the spectrum
from a CFT-like low-lying spectrum at small values of LA

z

with the same counting as the model state. This was taken
as evidence that the Coulomb state at ν = 5/2 and the model
Pfaffian state belonged to the same universality class. Based on
extensive numerical evidence, they conjectured the following:
(1) In the thermodynamic limit, the counting of the OES (i.e.,
the number of nonzero eigenvalues of the reduced density
matrix) of the model state is the counting of the modes of the
conformal theory describing its gapless edge excitations. (2)
The “entanglement gap” separating the low-lying, CFT-like
levels from the generic ones higher in the Coulomb spectrum
is finite in the thermodynamic limit.

Many researchers have investigated properties of the en-
tanglement spectra since. The authors of Ref. 15 discovered
that the entanglement spectrum in the thin-annulus limit (the
conformal limit) had, for several examples, a full gap at finite
system sizes. The counting of the entire low-lying spectrum
of the Coulomb state is the same as that of the corresponding
model state in this limit. Motivated by this result, we recently
conjectured a counting principle for the finite-size counting of
the OES of the Laughlin states.16 Other cuts have also been
studied. Tracing out a fraction of the particles in the many-body
ground state corresponds to a particle cut; the entanglement
spectrum of the resulting reduced density matrix is the particle
entanglement spectrum (PES) introduced in Ref. 17. The level
counting of the PES of a model state (described as a CFT
correlator) is bounded from above by the number of bulk
quasihole states of the model state; along with the OES, it
is conjectured to contain all the topological numbers of the
state. Entanglement spectra in other systems have also been
explored; see, for instance, Refs. 18–35.
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Analytic work in this emerging field is challenging because
of the strongly interacting nature of FQH states. The Li-
Haldane conjecture (the correspondence between the counting
of the number of modes of the real-space spectrum in
the thermodynamic limit and the counting of the edge-
excitation spectrum) is easy to prove in noninteracting systems,
such as the integer quantum Hall system and topological
insulators.36–38

In this paper, we partially prove the first part of the
Li-Haldane conjecture for clustering model states: in the
thermodynamic limit, we show that the counting of the CFT
associated with the edge is an upper bound of the counting of
the low-lying levels of the OES. We give physical arguments
for why this bound should be saturated. We prove the upper
bound for the bosonic (k,2)-clustering states (the Read-Rezayi
sequence) multiplied by any number of Jastrow factors, and
for the Gaffnian. In principle, this should hold for all model
states defined as the unique, highest-density zero modes of
(k + 1)-body pseudopotential Hamiltonians.39 This proof is
obtained by establishing a bulk-edge correspondence in the
entanglement spectra: the particle and orbital entanglement
spectra have the same counting for the range of parameters
that become the most relevant in the thermodynamic limit. For
finite-size systems, the correspondence holds for the counting
at large angular momenta.

The paper is organized as follows: Our notation is intro-
duced in Sec. II. We define the orbital entanglement matrix and
spectrum in Sec. III and the particle entanglement matrix and
spectrum in Sec. IV. In Sec. IV C, we present the upper bound
to the number of levels in the particle entanglement spectrum
and argue for its saturation. In Sec. V, we formulate the
clustering properties of the model state in the single-particle
orbital basis. We use them to relate the counting of the
particle and orbital entanglement spectra of the Read-Rezayi
sequence in Sec. VI. The parameter range for which the bulk-
edge correspondence holds is presented in Sec. VI B. The proof
for the upper bound of the Li-Haldane conjecture is presented
at the end of the same section. In Sec. VI D, we extend the
proof to the other model states. Examples and the mathematical
formulation of the ideas in the proof are in the Appendices.

II. NOTATION

The results that we present in this paper hold on any surface
of genus 0 (such as the disk or the sphere) pierced by Nφ flux
quanta; for simplicity, we choose the sphere geometry. The
single-particle states of each Landau level are eigenstates of
L̂z, the z component of angular momentum and | �L|2, the square
of the magnitude of the total angular momentum vector.40

In the lowest Landau level, the degenerate single-particle
states belong to a multiplet of angular momentum L = Nφ/2
and, consequently, Lz ∈ [−Nφ/2, . . . ,Nφ/2]. Identifying the
coordinate z = tan θeiφ , where θ and φ are the two angles that
parametrize the sphere, the unnormalized monomials

〈z|m〉 = zm, m = Nφ

2
− Lz (1)

span the lowest Landau level and will be our single-particle
basis of choice in this paper. We are forced to adopt a dual
notation in this paper: the single-particle orbitals are indexed

by their z angular momentum Lz in the figures and by a shifted
label m = (Nφ/2 − Lz) in the text. At the north (south) pole,
Lz = Nφ/2 (−Nφ/2).

Fermionic and bosonic many-body wave functions of N

particles and total angular momentum Ltot
z can be expressed as

linear combinations of Fock states in the occupation-number
basis of the single-particle orbitals. Each Fock state |λ〉 can
be labeled either by the list of occupied orbitals λ or by the
occupation-number configuration n(λ). λ = [λ1,λ2, . . . ,λN ] is
an ordered partition of Ltot

z into N parts and each orbital with
index λj is occupied in the Fock state. By definition, λi �
λj if i < j . n(λ) is the occupation-number configuration. It is
defined as n(λ) = {nj (λ),j = 0, . . . Nφ}, where nj (λ) is the
occupation number of the single-particle orbital with angular
momentum j . In the unnormalized polynomial basis,

〈z1, . . . ,zN |λ〉 = S
[
z
λ1
1 · . . . · z

λN

N

]
, (2)

where S is the process of symmetrization and antisymmetriza-
tion over all indices i,j such that λi �= λj . For example, if
Nφ = 2 and N = 2, orbitals 2 and 0 are occupied in the Fock
state |2,0〉 of the three available orbitals. Consequently, λ =
[2,0], n(λ) = {101}, and 〈z1,z2|2,0〉 = z2

1 + z2
2. Similarly,

λ = [1,1], n(λ) = {020}, and 〈z1,z2|1,1〉 = z1z2 for the other
Fock state at the same total angular momentum.

We will repeatedly run into a special kind of partition in this
paper, i.e., the (k,r)-admissible partition. A (k,r)-admissible
partition labels a Fock state, the occupation configuration of
which has no more than k particles in r consecutive orbitals.
These partitions play a prominent role in our discussions
as they count the Hilbert space of the quasiholes of our
model FQH liquids, which have generalized (k,r)-exclusion
Haldane statistics.41 For the examples above, λ = [2,0] is (1,2)
admissible, while [1,1] is not.

Three useful relations between partitions are “dominance,”
“squeezing,” and “addition.” A set of partitions may al-
ways be partially ordered by dominance, indicated by the
symbol >. A partition μ dominates another partition ν (μ > ν)
if
∑r

i=0 μi �
∑r

i=0 νi ∀r ∈ [0, . . . ,N]. Squeezing is a two-
particle operation that connects n(μ) to n(ν). It modifies the
orbitals occupied by any two particles in n(μ) from m1 and
m2 to m′

1 and m′
2 in n(ν), such that m1 + m2 = m′

1 + m′
2

and m1 < m′
1 � m′

2 < m2 if the particles are bosonic or
m1 < m′

1 < m′
2 < m2 if they are fermionic. Dominance and

squeezing are identical concepts: a partition μ dominates
a partition ν if ν can be squeezed from μ by a series of
squeezing operations. The “sum” of two partitions μ + ν

is defined as the partition with occupation configuration
n(μ + ν) = {nj (μ) + nj (ν),j = 0, . . . Nφ}.

FQH wave functions in the lowest Landau level are trans-
lationally invariant, symmetric, homogeneous polynomials of
the coordinates of the N particles (z1,z2, . . . ,zN ). We consider
mainly the bosonic Read-Rezayi sequence at filling ν = k/2
here (see Sec. VI D for other model states). These states
are the unique, highest-density zero-mode wave functions of
(k + 1)-body pseudopotential Hamiltonians.39 Recent work42

has shown the Read-Rezayi bosonic wave functions ψ to be
Jack polynomials J α

λ0
indexed by a parameter α = −(k + 1)

and the densest possible (k,2)-admissible root configuration43

n(λ0) = {k0k0k0 . . . k0k} . (3)
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For the (k,2)-clustering states, the number of fluxes for the
ground-state wave function is Nφ = 2(N/k − 1). All the Jack
polynomials at α = −(k + 1) indexed by (k,2)-admissible
root configurations are (k,2)-clustering polynomials, i.e., they
vanish as

∏
i>k(z − zi)2 when z = z1 = . . . zk . They form a

basis for all many-body (k,2)-clustering polynomials and can
be decomposed into a linear combination of Fock states with
configurations squeezed from the root partition. Importantly
for us, they span the entire zero-mode space of the (k + 1)-
body hard-core model Hamiltonian consisting of the ground
state and all the quasihole states.42 They provide a natural
description of the particle entanglement spectrum as we shall
see in Sec. IV C.

III. ORBITAL ENTANGLEMENT MATRIX

A. Definition

Consider dividing the set of single-particle orbitals
{0,1, . . . ,Nφ} into two disjoint sets A = {0,1, . . . ,lA − 1}
and B = {lA, . . . ,Nφ}. As the single-particle orbitals are
polynomially localized in the θ̂ direction, this partition in the
single-particle momentum space roughly corresponds to an
azimuthally symmetric spatial cut.

The number of orbitals in A (B) is lA (lB), where lB =
Nφ + 1 − lA. Without loss of generality, let lA � lB (lA � lB
for A and B swapped). Any occupation number state |λ〉
may be expressed as a tensor product |μ〉 ⊗ |ν〉 of states with
partitions μ and ν belonging to the Hilbert spaces of A and B,
respectively. Thus, the model state can be decomposed as

|ψ〉 =
∑

λ

bλ|λ〉 =
∑
i,j

(Cf)ij |μi〉 ⊗ |νj 〉, (4)

where the kets {|μi〉} and {|νj 〉} form orthonormal bases that
span the Hilbert spaces of A and B. Note that, for an orbital
cut, all terms in the decomposition are totally symmetric in
all the particles. This is not the case for the particle cut that
is discussed in Sec. IV. The matrix Cf is the full orbital
entanglement matrix (OEM). The (i,j )th matrix element of
the full OEM is equal to the coefficient of |μi + νj 〉 in |ψ〉:

(Cf)ij = bμi+νj
. (5)

In this paper, we will almost exclusively deal with entan-
glement matrices. Unless stated otherwise, the rows (columns)
of these matrices, for both the OEM defined in Eq. (4) and for
the PEM defined below, will be labeled by partitions μi (νj )
corresponding to the occupation basis states |μi〉 (|νj 〉) in A

(B). The vector defined by the entries of a row and column
in the entanglement matrix shall be referred to as row/column
vector.

Readers unfamiliar with the OEM and how to construct
it are encouraged to take a look at Appendix A, where we
explicitly construct the OEM for a simple example.

B. Properties

Cf has a block-diagonal form; each block in the full OEM
Cf is labeled by NA, the number of particles in A, and LA

z ,
the total z angular momentum of the NA particles in A. Note
that LA

z = ∑NA

i=1 μi for the state |μ〉, where μi here are the

components of the partition μ. Due to an unfortunate but
necessary choice of notation, μi also index the partitions of
the Hilbert space of part A. In that case, μi is a partition
by itself, and its components are μi1,μi2, . . . ,μiNA

. The use
of μi as a partition or as a component of a partition μ

will be self-evident in the text. To understand the origin
of the block-diagonal structure of Cf , observe that |ψ〉 is
an eigenstate of the particle-number operator N̂ and the
total z angular momentum operator L̂tot

z . As both operators
are sums of one-body operators, N̂ = N̂A ⊗ I + I ⊗ N̂B and
L̂tot

z = L̂A
z ⊗ I + I ⊗ L̂B

z . Thus, every |λ〉 in Eq. (4) is labeled
by the quantum numbers N and Ltot

z , while every |μi〉 (|νj 〉) is
labeled by NA (NB = N − NA) and LA

z (LB
z = Ltot

z − LA
z ). In

the remainder of this paper, the symbol C refers to the block
of the full OEM Cf with labels NA and LA

z .
The reduced density matrices are obtained from Cf as ρA =

CfCf
† and ρB = Cf

†Cf . The block-diagonal structure of Cf
carries over to the reduced density matrices and the rank of
ρA and ρB in each block is equal to that of C. Neither ρA nor
ρB uniquely determine all the coefficients of |ψ〉; Cf clearly
contains more information than either of the reduced density
matrices.

The singular value decomposition of C is given by

∑
i,j

Cij |μi〉 ⊗ |νj 〉 =
rank(C)∑

i=1

e−ξi/2|Ui〉 ⊗ |Vi〉. (6)

The kets on the left-hand side of Eq. (6) are defined as in
Eq. (4). |Ui〉 and |Vi〉 are the singular vectors in the Hilbert
spaces of A and B restricted to a fixed particle number and
z angular momentum. They are linear combinations of the
occupation-number basis vectors |μi〉 and |νj 〉. The ξi’s are the
energies plotted as a function of LA

z in the orbital entanglement
spectrum (OES) introduced in Ref. 14.

The number of finite energies [rank(C)] at each (NA,LA
z )

is independent of the geometry of the two-dimensional (2D)
surface and the symmetrization factors arising due to multiple
particles occupying the same orbital. Let Cf

d and Cf
s be

the full OEMs in the disk and sphere geometry, or in any
other two genus 0 geometries. Modifying the geometry of
the surface changes the normalization of the single-particle
orbitals (the quantum mechanical normalization); thus, every
bλ in the expansion of |ψ〉 in Eq. (4) in the disk basis is
multiplied by a factor N (λ) = ∏N

i=1 N (λi) when expanded in
the single-particle orbital basis on the sphere. N (j ) is a factor
relating the normalization of orbital j on the disk to that on the
sphere. The OEMs on the disk and the sphere are thus related
as

|ψ〉 =
∑
i,j

(
Cf

d
)
ij

∣∣μd
i

〉⊗ ∣∣νd
j

〉
=
∑
i,j

(
Cf

d
)
ij
N
(
μd

i

)
N
(
νd

j

)∣∣μs
i

〉⊗ ∣∣νs
j

〉
, (7)

where the superscripts d and s refer to the disk and sphere
geometries, or to any other two genus 0 geometries. Cf

s is
obtained from Cf

d by multiplying whole rows and columns
by normalization factors; thus, rank(Cf

s) = rank(Cf
d ). An

identical argument shows the rank of Cf to be independent of
the symmetrization factors that arise in the normalization of the
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FIG. 1. (Color online) Left: Sketch of the partition in orbital space (part B in gray). The tracing procedure creates a virtual edge and the
orbital entanglement spectrum (OES) probes the chiral edge mode(s) of part A. Right: OES of the ν = 1/2 Laughlin state of N = 9 bosons, with
orbital cut lA = 8 and NA = 4. The minimal angular momentum LA

z,min defined in the text is the LA
z,min = 20 sector in the plot. The entanglement

level counting at 	 = |LA
z − LA

z,min| = 0,1, . . . ,4 is (1,1,2,3,5), which is the counting of modes of a U(1) boson in the thermodynamic limit.
Finite-size effects appear at LA

z = 15.

many-body states constructed from normalized single-particle
orbitals. We are therefore free to work in an unnormalized
single-particle basis from this point.

For a given cut lA in orbital space, the maximum number
of particles that can form a (k,2)-clustering droplet in A is
defined to be the natural number of particles NA,nat:

NA,nat = k
(lA + 1)/2� , (8)

where 
x� is the integer part of x. Physically, NA,nat/lA is very
close to the original filling ν. We may think of the original,
homogeneous QH fluid as being composed of two droplets
in A and B of NA,nat and NB,nat = N − NA,nat particles each,
interacting via correlated excitations along their common edge.
We would thus expect the OES at NA,nat, called the natural
spectrum, to be the low-energy sector of the full entanglement
energy spectrum and to contain information about the edge
theory of the model state. In the thermodynamic limit, the
number of finite energies (level counting) of the OES is
conjectured to be identical to the counting of the modes of
the CFT describing the edge for values lA,NA → ∞ such that
lA/Nφ → const.(> 0) and NA/NA,nat → 1.

For future reference, LA
z,min denotes the minimum z angular

momentum of the NA particles in A of a (k,2)-clustering model
state:

LA
z,min = 
NA/k�(2NA − k
NA/k� − k). (9)

We stress that LA
z,min is the maximum value on the x axis of

the numerically generated entanglement spectra existing in the
literature due to the different indexing scheme in the text and
the figures (see also the discussion in Sec. II). For instance, in
Fig. 1, LA

z,min describes the sector of the OES at LA
z = 20.

For an arbitrary pure bosonic state of N particles, the
rank of the OEM Cf must generically be the smaller of its
dimensions. The model states are special because the rank of
the OEM block at given (NA,LA

z ) is in general much smaller
than its smaller dimension. The rank of the OEM block at
given NA, as a function of 	 = |LA

z − LA
z,min|, is called the

counting of the OES (see, also, Fig. 1). For model states,
it has been observed from small-size numerical calculations
that the counting is universal for the first few values of 	,14

i.e., independent of N , NA, and lA. The universal counting
is distinct for each model state, which is why Li and Haldane
proposed it as a way to determine the topological order44 of the
FQH states. For instance, for a Laughlin state, the universal
counting is {1,1,2,3,5,7,11, . . .}, while for the Moore-Read
(MR) state, it is {1,1,3,5,10,16, . . .}. In the OES of the
Laughlin 1/2 state in Fig. 1, the counting is universal for
	 = 0, . . . ,4: {1,1,2,3,5, . . .}, starting from the right edge of
the spectrum. For larger 	, finite-size corrections occur. The
universal counting is identical to counting the modes of a
massless, chiral boson, which is the CFT describing the edge
of the Laughlin FQH states.

IV. PARTICLE ENTANGLEMENT MATRIX

A. Definition

In the orbital cut that we just discussed, the Hilbert space of
A at given (NA,LA

z ) was spanned by the possible occupation
configurations |μ〉 of NA particles, such that

∑NA

i=1 μi = LA
z

and μi < lA ∀i. We now consider making a cut of a FQH state
|ψ〉 in particle space by dividing the N particles into groups
A and B with NA and NB = N − NA particles. Without loss
of generality, let NA � NB .

Let us first consider the model state in the unnormalized
real-space basis ψ(z1, . . . ,zN ) = ∑

λ bλ〈z1, . . . ,zN |λ〉. For
simplicity, we choose the particles at positions {z1, . . . ,zNA

}
as group A and the remaining particles {zNA+1, . . . ,zN } as
group B. Each many-body basis state 〈z1, . . . ,zN |λ〉 can be
decomposed as

〈z1, . . . ,zN |λ〉 = ∑
μ,ν〈z1, . . . ,zNA

|μ〉〈zNA+1, . . . ,zN |ν〉 ,

(10)

where the sum runs over all partitions μ and ν of NA and NB

particles, respectively, such that μ + ν = λ. In particular, there
is no orbital restriction on the partitions in contrast to the orbital
cut considered in the last section. Thus, the Hilbert space of
A (B) is spanned by all possible occupation configurations of
NA (NB) particles in the full single-particle orbital basis of the
state |ψ〉. It contains the smaller Hilbert space of A (B) with
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FIG. 2. (Color online) Left: Sketch of the partition in particle space. The particles of part B that are traced out are denoted in gray.
Right: particle entanglement spectrum (PES) of the ν = 1/2 Laughlin state of N = 9 bosons, with particle cut NA = 4. The minimum angular
momentum LA

z,min defined in the text is LA
z,min = 20 in the plot. The entanglement level counting is identical to the counting of quasiholes

in a Laughlin state of four particles with total flux Nφ = 16 at all angular momenta LA
z . For 	 = |LA

z − LA
z,min| = 0,1, . . . ,4, the counting is

universal, i.e., independent of NA: (1,1,2,3,5).

the orbital restriction that only the first lA (the last lB) orbitals
are occupied. The latter is the Hilbert space obtained from the
orbital entanglement cut, but with fixed particle number NA.

Just as in the preceding section, we can write the model
wave function ψ(z1, . . . ,zN ) as

ψ(z1, . . . ,zN ) =
∑

λ

bλ〈z1, . . . ,zN |λ〉

=
∑

λ

∑
μi+νj =λ

(Pf)ij 〈z1, . . . ,zNA
|μi〉

× 〈zNA+1, . . . ,zN |νj 〉, (11)

where the summation is over all partitions μi (νj ) of NA (NB)
particles in Nφ orbitals. Note that each term in the second line
of Eq. (11) is only symmetric in the first NA and last NB = N −
NA particle coordinates separately; the summation ensures that
the full expression is symmetric in all particle coordinates. The
matrix Pf is the full particle entanglement matrix (PEM). As
was the case for the OEM, the matrix elements of the PEM are
directly related to the weights of the model wave function by

(Pf )ij = bμi+νj
. (12)

Even though Eq. (12) looks very similar to Eq. (5), they define
two different matrices because the sets of partitions {μi} and
{νi}, labeling the rows and columns, are different for the orbital
and particle cuts. However, they are not completely unrelated
as we will see in the next section.

Readers unfamiliar with the particle cut and how to
construct the PEM are encouraged to look at Appendix A,
where we construct the PEM explicitly for a Laughlin model
state.

B. Properties

For a given cut with NA particles in A, Pf is block diagonal
in the angular momentum of part A, LA

z . The block of Pf at
fixed (LA

z ,NA) shall be denoted by P. The reduced density

matrices of parts A and B are given by ρA = Pf P†
f and

ρB = P†
f Pf , respectively. They are block diagonal in LA

z and
have the same rank as Pf in each block. In the same spirit

as the discussion of the OEM, we define the singular value
decomposition of the PEM by∑

i,j

(P)ij |μi〉 ⊗ |νj 〉 = ∑
i e

−ξi/2|Ui〉 ⊗ |Vi〉, (13)

where the singular vectors |Ui〉 and |Vi〉 are orthonormal
vectors in the Hilbert spaces of A and B restricted to fixed
angular momentum. The plot of the energies ξi versus LA

z is
called the particle entanglement spectrum (PES).17 In Fig. 2,
we show the PES of the 9-particle 1/2 Laughlin state for the
particle cut NA = 4.

In the spherical geometry, the PEM is labeled by an
additional quantum number as compared to the OEM,17 i.e.,
the total angular momentum of A, ( �LA)2. Consequently,
the eigenvalues of the block of the reduced density matrix
with ( �LA)2 = 	(	 + 1) have (2	 + 1)-fold degeneracy. This
multiplet structure, apparent in the PES in Fig. 2, does not
play any role in our discussions about the counting of the PES
in this paper.

As for the OES, we can define the counting of the PES
as the number of finite entanglement levels (i.e., the number
of nonzero eigenvalues of the reduced density matrix) as
a function of 	 = |LA

z − LA
z,min| (see, also, Fig. 2). From

numerical calculations, it has been observed17 that the counting
of the PES is identical to the number of quasihole states of the
model state with NA particles in Nφ orbitals at all angular
momenta LA

z . For values 	 = 0, . . . ,
NA/k� we expect the
counting to be universal, i.e., independent of NA and system
size. In the next section, we prove (following Ref. 17) that the
counting is bounded by the number of quasihole states and
argue for the saturation of the bound.

For given particle number NA and angular momentum LA
z ,

the number of entanglement levels in the OES is bounded from
above by the number of entanglement levels in the PES. To
see this, note that the crucial difference between Eqs. (5) and
(12) is the set of partitions that label the rows and columns
of the matrices. The rows (columns) of the PEM block are
labeled by all partitions μ (ν) of LA

z (LB
z = Ltot

z − LA
z ) into

NA (NB) parts, with 0 � μi � Nφ (0 � νi � Nφ). A subset of
these, namely, the ones with the restriction 0 � μi � lA − 1
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(lA � νi � Nφ), are the ones that label the rows (columns) of
the OEM block. Thus, for fixed NA and LA

z the OEM block
is a sub-matrix of the PEM block, which implies that its rank
is smaller or equal to the rank of the PEM block, see Fig. 4.
A simple, explicit example for these results can be found in
Appendix A.

In Fig. 2, we show the PES of the 9-particle 1/2 Laughlin
state for the particle cut NA = 4. The counting is identical
to the number of quasihole states of a Laughlin state with 4
particles in 16 orbitals. For 	 = 0, . . . ,4, the counting of the
PES is universal and identical to the counting of the OES in
Fig. 1.

C. Rank

The property that defines the k-clustered model state
ψ(z1, . . . ,zN ) uniquely is that it is the lowest degree symmetric
polynomial that vanishes when (k + 1) particles are at the
same position. Similar clustering conditions characterize every
ground state of a pseudopotential Hamiltonian. This vanishing
property must persist when we divide the particles into two
groups and rewrite the model state in Eq. (11) as

ψ(z1, . . . ,zN )

=
∑
LA

z

∑
i

e−ξi/2 〈z1, . . . ,zNA
|Ui〉〈zNA+1, . . . ,zN |Vi〉,

(14)

using Eq. (13) at each LA
z . If we choose (k + 1) particles in

group A, say, z1, . . . ,zk+1, to be at the same position z, then the
state must vanish at every LA

z . Further, as the singular vectors
in B form an orthonormal basis,

ψ(z, . . . ,z,zk+2, . . . ,zN ) = 0

⇒ e−ξi/2〈z, . . . ,z,zk+2, . . . ,zNA
|Ui〉 = 0,∀i,LA

z . (15)

A similar relation holds when A and B are interchanged.
We conclude that the singular vectors 〈z1, . . . ,zNA

|Ui〉 and
〈zNA+1, . . . ,zN |Vi〉 must also be clustering polynomials that
vanish when (k + 1) particles are at the same position. A basis
for clustering polynomials is the set of Jack polynomials J α

μ̃ ,
indexed by α = −(k + 1) and the (k,2)-admissible partition
μ̃.42,43,45 ψ can therefore be expanded in the Jack basis as

ψ(z1, . . . ,zN )

=
∑
i,j

(Mf )ij J
α
μ̃i

(z1, . . . ,zNA
)J α

ν̃j
(zNA+1, . . . ,zN ), (16)

where μ̃i and ν̃j denote (k,2)-admissible partitions of NA and
NB particles, respectively. The matrix Mf is block diagonal in
angular momentum LA

z ; let M refer to the block of Mf at fixed
value of LA

z . The row and column dimensions of M are much
smaller than those of P because the (k,2)-admissible partitions
of NA and NB form a small subset of the set of all partitions
with fixed LA

z and LB
z , respectively. Nevertheless, as Eqs. (14)

and (16) are equal, M and P must have the same rank. As
NA � NB , the row dimension of M is smaller (or equal) than
the column dimension and bounds the rank of the PEM block
from above at each LA

z .
Let us reformulate what we have just shown in a more

familiar language and argue for the saturation of the bound.
The row dimension of M is given by the number of (k,2)-

admissible configurations of NA particles in Nφ orbitals
and, thus, is equal to the number of distinct bulk quasihole
excitations of the (k,2)-clustering model state of NA particles
at angular momentum LA

z on a sphere pierced by the number
of fluxes of the original state Nφ = 2/k(N − k).46,47 Hence,
we find that the rank of the PEM is bounded by the number of
quasihole states for all angular momenta LA

z . Without further
symmetry-induced constraints on the reduced density matrices
(we have already used all the symmetries available in the state),
we expect this bound to be saturated. In the thermodynamic
limit (NA,N → ∞ such that NA/N > 0), we therefore argue
that the level counting of the entire PES is identical to
the number of the bulk quasihole excitations. This bound
saturation can be proved exactly for the Laughlin states.48

It is beneficial to identify a set of rows and columns in
P with the same rank as the full matrix. Consider the rows
and columns labeled by the (k,2)-admissible partitions. This
submatrix of P is denoted by P̃ and has the same dimensions
as M. In Appendix B1, we show that P̃ and M have the same
rank. P̃ will play a prominent role in the proof establishing the
bulk-edge correspondence in the entanglement spectra.

Let us summarize the most relevant results presented in
this section. We introduced the PES and argued that the en-
tanglement level counting is identical to counting the number
of quasihole states of the (k,2)-clustering model state with NA

particles in Nφ orbitals. This substantiates the conjecture that
the PES indeed gives us information about the bulk excitations.
Furthermore, we showed that the OEM block at fixed (NA,LA

z )
is a submatrix of the PEM block at LA

z . Consequently, the level
counting of the OES at fixed NA is smaller or equal to the PES
counting for all angular momenta LA

z . In the following section,
we will derive clustering constraints that allow us to prove that
the level counting of the OES and the PES are equal for a range
of angular momenta LA

z that depends on lA and NA.

V. CLUSTERING CONSTRAINTS

In this section, we introduce the (k + 1)-body clustering
constraints that relate the rank of the PEM and the OEM
of the clustering model states and establish the bulk-edge
correspondence in the entanglement spectra. The Read-Rezayi
model wave functions ψ(k,2)(z1,z2, . . . ,zN ) are single Jack
polynomials labeled by a root partition λ0 [Eq. (3)] and a
parameter α = −(k + 1). They satisfy (k,2) clustering: they
are nonzero when a cluster of k particles is at the same
point in space z = z1 = z2 = . . . zk , but vanish as the second
power of the distance between the (k + 1)st particle and
the cluster as zk+1 → z. The clustering property imposes
a rich structure on ψ(k,2)(z1,z2, . . . ,zN ). All the partitions
λ that arise in the expansion of |ψ〉 in the many-body
occupation basis (|ψ〉 = ∑

λ bλ|λ〉) are dominated by λ0.
Furthermore, all the coefficients bλ are known up to a
multiplicative constant. In the Jacks, this constant is chosen
so that bλ0 = 1. In other words, the clustering property and the
requirement to be the densest possible wave function determine
ψ(k,2)(z1,z2, . . . ,zN ) uniquely up to an overall normalization
constant. Here, we formulate the conditions imposed by clus-
tering on ψ(k,2)(z1, . . . ,zN ) as linear, homogeneous equations
on the coefficients bλ. These are called clustering constraints in
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...

FIG. 3. (Color online) The configurations in the PES can be related to those of the OES using the clustering constraints. These constraints
reveal the vanishing properties of the FQH state as particles are brought closer together. They relate the long-wavelength properties of the FQH
state when two particles are far away from each other to the short-wavelength properties of the state when particles are close together, and,
hence, can be used to drag particles from the PES Hilbert space into the more restrictive OES Hilbert space.

the following, and are the main tool to proof the rank equality
of the PEM and OEM in Sec. VI (see Fig. 3).

A. Derivation

Let us introduce a “deletion” operator di for orbital i such
that

di |λ〉 =
{

0, i /∈ λ

|λ\{i}〉, i ∈ λ
(17)

where λ\{i} is the partition with a single occurrence of the
orbital i removed from it. The deletion operators commute with
each other. In Appendix C, we derive the relation between these
operators and the annihilation operators in the normalized
single-particle basis.

We now separate the coordinates of k + 1 particles from
the rest and rewrite ψ(k,2)(z1,z2, . . . ,zN ) as

ψ(k,2)(z1, . . . ,zN )

=
Nφ∑

l1,...,lk+1=0

⎛
⎝k+1∏

j=1

z
lj
j

⎞
⎠ 〈zk+2, . . . ,zN |

k+1∏
j=1

dlj |ψ〉 , (18)

and form a cluster by bringing the k particles with coordinates
z1, . . . ,zk to the same position z. When zk+1 = z, the left-hand
side vanishes and Eq. (18) becomes

0 =
Nφ∑

l1,...,lk+1=0

z
∑k+1

j=1 lj 〈zk+2, . . . ,zN |
k+1∏
i=1

dli |ψ〉. (19)

The right-hand side is a polynomial in an arbitrary complex
number z and has to vanish for every power β = ∑k+1

j=1 lj of z

to satisfy the above equation. Thus, the constraints on |ψ〉 are⎛
⎝ Nφ∑

l1,...,lk=0

dβ−∑k
j=1 lj

k∏
j=1

dlj

⎞
⎠ |ψ〉 = Dβ |ψ〉 = 0. (20)

β is the z angular momentum of (k + 1) particles; it ranges
from 0 to Nφ(k + 1). The equation above requires any
clustering wave function |ψ〉 to be simultaneously annihilated
by the destruction operators {Di ,i = 0 . . . Nφ(k + 1)}.

B. Properties

Every value of β in Eq. (20) yields, in general, a large
number of linear relations between the coefficients of |ψ〉.

Let Sβ be the set of all partitions of N particles such that
the sum of the z angular momentum of (k + 1) particles is β.
For every occupation configuration of N − (k + 1) particles,
Eq. (20) relates the coefficients of partitions λ ∈ Sβ in the
expansion of |ψ〉. Examples of such relations are given in
Appendix D.

The set of linear, homogeneous equations in Eq. (20) are
linearly dependent. The dimension of the null space of the
set is exactly one for the densest possible wave function,
i.e., the vector of coefficients {bλ} is uniquely determined
up to an overall multiplicative factor. Since the solution to
Eq. (20) causes ψ to vanish when any cluster of size greater
than k is formed in real space, we conclude that the set in
Eq. (20) includes all constraints imposed on ψ(z1, . . . ,zN )
due to clustering.

Equivalently, we are describing model FQH wave functions
that are the unique, highest-density zero modes of the Haldane
pseudopotentials or their generalization to the k + 1-body
interaction.39 In fact, the destruction operators above are the
fundamental clustering operators from which the Haldane
pseudopotentials can be obtained as the translationally invari-
ant supersymmetric form

H =
∑

β

f (β)D†
βDβ. (21)

f (β) can be derived at each k; in Appendix C, we work through
the k = 1 case.

VI. RELATING THE OES AND PES COUNTING

We now have all the ingredients necessary to relate the level
counting of the PES to that of the OES for a given number of
particles NA in A and cut lA in orbital space and prove the
bulk-edge correspondence in the entanglement spectra. Let us
first recap our findings so far. In Sec. IV C, we constructed
the full PEM Pf for (k,2)-clustering model states and argued
that the PES level counting is equal to the number of quasihole
states of the same model state with NA particles in Nφ orbitals.
For angular momenta LA

z � LA
z,min + 
NA/k�, the quasihole

state counting is universal and identical to the counting of
modes of the edge CFT.

For given LA
z , we identified the submatrix P̃ of the PEM

block P, with rows and columns labeled by (k,2)-admissible
partitions, which has the same rank as the PEM block P (see
Fig. 4). The block of the OEM C at (NA,LA

z ) is a submatrix of
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FIG. 4. (Color online) A cartoon of the various submatrices in
the PEM block labeled by the angular momentum LA

z . The block of
the OEM labeled by (NA,LA

z ) (C in the figure) is a submatrix of the
PEM block P at LA

z . P̃ is a submatrix of P containing all rows and
columns that are labeled by (k,2)-admissible partitions of NA and NB

particles subject to total flux Nφ .

the PEM block, thus, rank(P) � rank(C). In order to show that
the ranks are equal, we use the clustering constraints derived
in the preceding section to express the row and column vectors
of P that constitute P̃ in terms of those that constitute the OEM
block. In the following, we will refer to this as expressing
the row and column vectors of P̃ in terms of the row and
column vectors of C even though, strictly speaking, the two
matrices have different row and column dimension and can not
be expressed in terms of each other. One should always think
of the linear relations we derive as linear relations between
rows and columns in the bigger matrix P, which contains both
P̃ and C. For finite system sizes, we show that the ranks are
equal for a certain range of angular momenta, which depends
on NA and lA [see Eq. (25)]. This proves that the PES and the
OES (at fixed NA) have the same level counting for a finite
range of angular momentum. In the thermodynamic limit, this
procedure establishes the equality of the level counting of the
entire PES and OES when, roughly speaking, NA ≈ NA,nat,
thus proving a significant part of the Li-Haldane conjecture.

The argument below applies equally well to row and column
vectors. To keep the discussion concise, we formulate it using
row vectors alone.

A. Systemizing the constraints

The biggest challenge in relating the row vectors of the
PEM to those in the OEM for fixed (NA,LA

z ) lies in identifying
a set of linearly independent equations in the entire set
of clustering constraints. To this end, we introduce a few
quantities characterizing a partition μ. nm(μ) below refers
to the occupation number of the mth orbital in partition μ. The
orbital cut is after lA orbitals.

The unit cell: We divide the single-particle orbital space
such that the j th unit cell contains the orbitals of z angular
momentum 2j and 2j + 1, and j ∈ [0, . . . ,Nφ/2). As the total
number of single-particle orbitals is odd for the bosonic (k,2)-
clustering states, the orbital with angular momentum Nφ is
its own unit cell with index Nφ/2. Every orbital belongs to
exactly one unit cell.

The intact unit cell: The j th unit cell of a partition μ is
said to be intact if the occupation numbers of the orbitals
with angular momentum 0, . . . ,2j + 1 are identical to those

k 0 k 0 k 0 k0 k 033 1n(µ) =
Unit cell index: 0 1 2 3 4 5 6

Δµ = 3

Kµ = k + 3, lA = 10

k 0 k 0 k 0 k0 k 033 1n(µ) =
Unit cell index: 0 1 2 3 4 5 6

Δµ = 3 Kµ = 2k + 7
lA = 9

FIG. 5. (Color online) The occupation configuration of a generic
partition μ with the unit cells, the number of intact unit cells �μ,
and the distance from cuts after lA = 9 (top) and lA = 10 (bottom)
shown. Nφ = 12 here.

in the root configuration Eq. (3), i.e., if ni(μ) = ni(λ0) for
i = 0, . . . ,2j + 1. Clearly, the j th unit cell can only be intact
if all unit cells 0, . . . ,j − 1 are intact.

The number of intact unit cells in part A: The number of
intact unit cells in part A, �μ, is the number of intact unit cells
to the left of the orbital cut in n(μ).

Distance from the cut: If we were to number the orbitals to
the right of the cut as 1,2, . . . , then the distance from the cut
is defined as the sum of the indices of the occupied orbitals to
the right of the orbital cut in n(μ). The distance from the cut
Kμ is given by

Kμ =
Nφ∑

m=lA

nm(μ)(m − lA + 1). (22)

K(μ) = 0 for a partition μ labeling a row of the OEM; for a
general partition, it represents the distance in orbital units that
all the particles to the right of the cut need to traverse to cross
the cut. In Fig. 5, we pick as an example a generic partition μ

and identify the number of intact unit cells in A, �μ, and the
distance from the cut Kμ for two different orbital cuts.

Root configuration of part A: For given NA and LA
z , there is

a unique (k,2)-admissible (root) configuration n(μ̃0), with the
property that μ̃0 dominates all the other partitions at angular
momentum LA

z that label rows of the PEM:

n(μ̃0) = { k0 . . . k0︸ ︷︷ ︸
2
(NA−1)/k�

x 0 . . . 0︸ ︷︷ ︸
	−1

10 . . . 0}. (23)

The value of x is fixed by the total particle number being
NA [x = (NA − 1) − k
(NA − 1)/k�]. μ̃0 has the maximum
(total) number of intact unit cells possible, 
(NA − 1)/k�.

B. Method

Consider P̃ at LA
z and the OEM block C at (NA,LA

z ) with
LA

z = LA
z,min + 	. We can express all row vectors of P̃ in terms

of row vectors in the OEM block if the root configuration of
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part A satisfies

�μ̃0 � Kμ̃0 . (24)

For fixed lA and NA, relation (24) is fulfilled for angular
momenta LA

z − LA
z,min = 0, . . . ,	max with

	max =

⎧⎪⎨
⎪⎩

�μ̃0 − k�̄2
μ̃0

− (2�̄μ̃0 + 1)(x + 1) for lA even, lA � 2
(NA − 1)/k�,
�μ̃0 − k�̄μ̃0 (�̄μ̃0 − 1) − 2(x + 1)�̄μ̃0 for lA odd, lA � 2
(NA − 1)/k�,

lA − �μ̃0 − 1 for lA > 2
(NA − 1)/k� ,

(25)

where we abbreviated the difference of the total number of
unit cells and those only in A by �̄μ̃0 = 
(NA − 1)/k� − �μ̃0 .
Note that �μ̃0 = min[
lA/2�,
(NA − 1)/k�], �̄μ̃0 , and x =
(NA − 1) − k
(NA − 1)/k� depend only on NA and lA. Thus,
for all combinations (NA,lA), Eq. (25) gives the range of
angular momenta LA

z = LA
z,min, . . . ,L

A
z,min + 	max for which

all rows of the larger PEM block P can be expressed as linear
combinations of the rows of the OEM block C only.

For values of 	 � 	max, the proof can be broken into two
steps.

(I) If �μ̃0 � Kμ̃0 , then �μ̃ � Kμ̃ for all (k,2)-admissible
partitions μ̃ < μ̃0.

(II) If �μ � Kμ for a partition μ, then the row vector
labeled by μ in P can be expressed as a linear combination of
row vectors in the OEM C alone.

We prove these statements rigorously in Appendices E and
F. The first step shows that the �μ̃ � Kμ̃ for all partitions μ̃

labeling rows of P̃ ; the second ensures that all these rows can
be written as linear combinations of rows in the OEM alone.

To establish the rank equality between the PEM block P and
the OEM block C with labels (NA,LA

z ), we have to express
both the rows and the columns of the PEM block in terms
of those of the OEM block. An identical argument as shown
above can be repeated for the column vectors. Let ν̃0 be the
(k,2)-admissible partition that dominates all partitions of LB

z

into NB parts. For values of 	 such that �μ̃0 � Kμ̃0 and �ν̃0 �
Kν̃0 , the OEM and PEM have the same counting in finite size
and rank(P) = rank(C).

The heart of the proof lies in the use of the (k + 1)-clustering
condition (20) at the z angular momentum of the k particles
in the rightmost intact unit cell in part A and one particle
occupying an orbital to the right of the cut. This relates a
single row vector belonging to the PEM block with �μ and
Kμ to row vectors with �μ′ = �μ − 1 and Kμ′ � Kμ − 1.
This relation is obtained by using the clustering operator Dβ

with

β = 2k(�μ − 1) + μ1, (26)

where μ1 is the angular momentum of the rightmost particle to
the right of the orbital cut. The clustering constraints thus allow
us to replace a row vector, the partition of which has distance
Kμ with a linear combination of row vectors, the partitions of
which have distances reduced by at least one at the cost of
using a single intact unit cell. If �μ � Kμ for a partition μ,
then iterating this procedure provides a linear relation between
the row vector labeled by partition μ and row vectors with
distance zero, i.e., row vectors of the OEM block C.

To clarify our statements, we consider the special case of
the natural spectrum NA = NA,nat = k
(lA + 1)/2� for given
lA. It is straightforward to see that lA > 2
(NA − 1)/k� and
lB > 2
(NB − 1)/k�, so for both the rows and columns, 	max

is given by the third line in Eq. (25). For the natural spectrum,
the number of intact unit cells in part A is �μ̃0 = NA/k − 1;
for part B, it is �ν̃0 = NB/k − 1. Consequently, we can
express the rows of the PEM block in terms of rows of the
OEM block for values 	 = 0, . . . ,lA − 
(lA + 1)/2� = 
lA/2�
and the columns for 	 = 0, . . . ,
lB/2�. Because we chose
lA � lB , the bound from B is always larger or equal to that of
A. For 	 = 0, . . . ,NA/k = 
(lA + 1)/2�, we argued that the
PES level counting is universal and equal to the counting of
modes of the edge CFT. Thus, we find that rank(P) = rank(C)
for LA

z − LA
z,min = 0, . . . ,
lA/2� and both are identical to the

CFT mode counting. We can relate this range to the explicit
examples given in Figs. 1 and 2, where the OES and PES
level counting is indeed identical for 	 = 0, . . . ,
8/2� = 4.
The range of angular momenta, for which the ranks are equal,
grows linearly with system size when the ratio lA/Nφ is
kept constant. Small deviations from the natural number of
particles do not change this picture qualitatively. In general,
increasing lA, while keeping NA fixed, tends to raise 	max,
while decreasing lA tends to lower it.

To analyze how the finite-size results carry over to the
thermodynamic limit, let us fix the ratios NA/N and lA/Nφ and
let N → ∞. Because in that case NA and lA scale with N , the
number of intact unit cells in A (B) in μ̃0 (ν̃0) denoted by �μ̃0

(�ν̃0 ) scales with N as well. There are two different scenarios:
(i) If �̄μ̃0 and/or �̄ν̃0 grow faster than

√
N , then a closer look at

Eq. (25) shows that 	max → −∞ in the thermodynamic limit,
i.e., our method is not applicable. (ii) If both �̄μ̃0 and �̄ν̃0 grow
slower than

√
N , then 	max grows linear with system size.

As

�̄μ̃0 ∼ |NA − NA,nat|, �̄ν̃0 ∼ |NB − NB,nat| ,

|NA − NA,nat| must grow slower than
√

N . Thus, if we choose
NA (for fixed lA/Nφ) such that in the thermodynamic limit
|NA − NA,nat|/

√
N → 0 (or, equivalently, NA/NA,nat → 1),

then Eq. (24) is satisfied for all angular momenta and the
counting of the entire OES and PES is identical. This proves
the bulk-edge correspondence in the (NA,lA) sectors that are
most relevant in the thermodynamic limit. In particular, this
includes the usual hemisphere cut (lA = 
Nφ/2�) with NA =
k · 
N/(2k)� particles. For this choice of (NA,lA), the counting
of the OES and the PES is identical for angular momenta
range 	max = N/k − 
N/(2k)� − 1 ≈ N/(2k) for finite-size
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systems. Thus, in the thermodynamic limit, 	max → ∞, and
the counting of the OES and the PES are identical for all
angular momenta.

In this section, we outlined the main steps in the proof
relating the level counting of the PES and OES; the details
of the proof can be found in the Appendices. For finite-size
systems, Eq. (25) (and its counterpart for the column vectors)
specifies the range of momenta at fixed (NA,LA

z ) for which
the level counting of the PES and OES are equal. For
NA/NA,nat → 1, when N → ∞, this range grows linearly
with system size. Hence, for this choice of (NA,lA), the
entire level counting of the PES and OES are identical in the
thermodynamic limit. For Laughlin states, one can prove that
the counting of the PES is equal to the mode counting of a chiral
massless boson, the CFT describing the edge.48 Thus, the entire
natural spectrum simply counts the number of edge excitations
in the thermodynamic limit. We argued in Sec. IV C that the
same is true for the more complicated (k > 1) Read-Rezayi
model states; the PES counts the number of modes of the CFT
describing the edge. Because of the bulk-edge correspondence
in the entanglement spectra shown above, we conclude that
the OES counting is equal to the number of modes of the edge
CFT if we restrict NA to be the natural number of particles
in A, as specified above. This proves a significant part of the
Li-Haldane conjecture.14

C. Illustrative examples

The proof of the full method is presented in the Appendices;
here, we illustrate the more formal ideas with examples of the
general method at work for the k = 1,2 wave functions.

1. At k = 1

Consider the ν = 1/2 Laughlin state of N = 7 bosons
with Nφ = 12 and Ltot

z = 42. Let lA = 6 and the number of
particles in A be the natural number NA = NA,nat = 3. We
consider the entanglement level counting of the OES and
the PES at LA

z = Lz,min + 	 = Lz,min + 3. We first verify that
the conditions �μ̃0 � Kμ̃0 and �ν̃0 � Kν̃0 are satisfied. The
occupation configurations of μ̃0 and ν̃0 are

n(μ̃0) = {101000 | 0100000}, Kμ̃0 = 2, �μ̃0 = 2,

n(ν̃0) = {000100 | 0010101}, Kν̃0 = 3, �ν̃0 = 3.

The cut in orbital space is indicated in the occupation
configurations by the “|” symbol. Hence, the method discussed
in the preceding section proves the equality of the ranks of the
OEM and the PEM at this LA

z .
The occupation configurations of the (1,2)-admissible

partitions labeling the rows of P̃ are

n(μ̃0) = {101000 | 010 . . . 0}, Kμ̃0 = 2, �μ̃0 = 2,

n(μ̃1) = {100100 | 100 . . . 0}, Kμ̃1 = 1, �μ̃1 = 1, (27)

n(μ̃2) = {010101 | 000 . . . 0}, Kμ̃2 = 0, �μ̃2 = 0 .

μ̃2 labels a row that already belongs to the OEM block C. We
now relate the row labeled by the partition μ̃1 to rows of the
OEM block. In n(μ̃1), only the zeroth unit cell is intact and
the particle to the right of the cut occupies the orbital with

index 6. Following Eq. (26), we pick the two-body clustering
constraint at β = 6 (the sum of the z angular momenta of the
particle in the intact unit cell and the particle to the right of the
cut) in Eq. (20):

[2(d0d6 + d1d5 + d2d4) + d3d3]|ψ〉 = 0. (28)

For every occupation-number configuration of (N − 2) bosons
with angular momentum (Ltot

z − β), Eq. (28) gives one linear
relation. The appropriate occupation-number configuration for
our purpose is n([3] + νj ), as

d0d6(|μ̃1 + νj 〉) = |[3] + νj 〉 . (29)

The partitions νj of LB
z into NB = 4 parts label the columns

of the PEM P. Equation (28) then relates the row indexed by
μ̃1 to row vectors indexed by the following partitions:

n(μ1) = {010101 | 000 . . . 0}, Kμ1 = 0, �μ1 = 0,

n(μ2) = {001110 | 000 . . . 0}, Kμ2 = 0, �μ2 = 0, (30)

n(μ3) = {000300 | 000 . . . 0}, Kμ3 = 0, �μ3 = 0 .

At every column index j , the explicit relation from Eq. (28) is

2(P̃1j + P1j + P2j ) + P3j = 0 , (31)

where Pij is the coefficient in P of the row labeled by μi and
column labeled by νj . We have thus related a row indexed by
a partition μ̃1 with Kμ̃1 = 1 and �μ̃1 = 1 to rows indexed by
partitions μ1, μ2, and μ3 with distance from the cut reduced
by 1 and number of intact unit cells in A reduced by 1. These
partitions label rows in the OEM in this example. A similar
procedure using the additional clustering constraint at β = 9,
involving the particles in the orbitals of angular momenta 2 and
7, can be used to relate the row of P̃ indexed by the partition
μ̃0 to rows in the OEM.

2. At k = 2

Let us now consider the Moore-Read state with N =
18, Nφ = 16, and Ltot

z = 144 and perform an orbital cut after
lA = 7 orbitals. Here, we are interested in relating the rows
of the PEM block to the rows of the OEM block for NA =
8 at LA

z = LA
z,min + 	 = LA

z,min + 3. The occupation-number
configurations of μ̃0 and ν̃0 are

n(μ̃0) = {2020201 | 00100000}, Kμ̃0 = 3, �μ̃0 = 3,

n(ν̃0) = {0000010 | 01020202}, Kν̃0 = 2, �ν̃0 = 3,

where we indicate the orbital cut by the | symbol. Thus, �μ̃0 �
Kμ̃0 and �ν̃0 � Kν̃0 , and we can relate all rows and columns
of the PEM to those in the OEM.

The occupation configurations of the (2,2)-admissible
partitions labeling the rows of P̃ are given by

n(μ̃0) = {2020201 | 0010 . . . 0}, Kμ̃0 = 3, �μ̃0 = 3,

n(μ̃1) = {2020200 | 1100 . . . 0}, Kμ̃1 = 3, �μ̃1 = 3,

n(μ̃2) = {2020111 | 0100 . . . 0}, Kμ̃2 = 2, �μ̃2 = 2, (32)

n(μ̃3) = {2020110 | 2000 . . . 0}, Kμ̃3 = 2, �μ̃3 = 2,

n(μ̃4) = {2011111 | 1000 . . . 0}, Kμ̃4 = 1, �μ̃4 = 1 .
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The trailing 0’s in every occupation configuration indicate
that the orbitals with Lz = 10, . . . ,16 are unoccupied in the
partitions labeling the rows of P̃. �μ̃i

� Kμ̃i
is satisfied for all

i = 0, . . . ,4, as required in step (i) in Sec. VI B.
We illustrate the use of the three-body clustering constraints

by relating the row labeled by the partition μ̃3 to rows labeled
by partitions μj with distance Kμj

= 1 from the cut. The first
unit cell is the rightmost intact unit cell in A in n(μ̃3). Consider
the three-body clustering condition at β equal to the z angular
momentum of the two particles in the rightmost intact unit cell
and a particle to the right of the cut, i.e., at β = 11 = 2 × 2 + 7
[see Eq. (26)]. It is beneficial to divide the clustering condition
(20) into two terms:

3
(
D

(1)
11 + D

(2)
11

)|ψ〉 = 0, (33)

where

D
(1)
11 = d2d2d7 + 2d2d3d6 + 2d2d4d5 + d3d3d5 + d3d4d4,

D
(2)
11 = d0d0d11 + 2d0d1d10 + 2d0d2d9 + · · · , (34)

where D
(2)
11 contains all terms involving angular momentum

orbitals 0 and/or 1.
The clustering constraints in Eq. (33) yield a linear relation

between certain coefficients in |ψ〉 for each occupation-
number configuration of the remaining N − 3 particles. We
choose the configurations n([7,5,4,0,0] + νj ) as

|[7,5,4,0,0] + νj 〉 = d2d2d7(|μ̃3 + νj 〉), (35)

where the |νj 〉 label the column vectors of the PEM block.
Note that d2d2d7 is the only term in D

(1)
11 that contains the

angular momentum 7 orbital; all other terms have highest
angular momentum less than or equal to 6, and thus smaller
distance to the cut. Equivalently, we can note that, as D1

11
annihilates any configuration with an occupied orbital of z

angular momentum greater than 7, the first term in Eq. (33)
relates the row labeled by μ̃3 only to rows labeled by partitions
that are dominated by μ̃3:

n(μ1) = {2011111 | 1000 . . . 0}, Kμ1 = 1, �μ1 = 1,

n(μ2) = {2010220 | 1000 . . . 0}, Kμ2 = 1, �μ2 = 1,
(36)

n(μ3) = {2002120 | 1000 . . . 0}, Kμ3 = 1, �μ3 = 1,

n(μ4) = {2001310 | 1000 . . . 0}, Kμ4 = 1, �μ4 = 1 .

All the partitions above have one less intact unit cell and
smaller distance Kμj

= Kμ̃3 − 1 from the cut as compared
to μ̃3.

The second operator in the clustering condition (33) acts
on states with occupation-number configurations such as

{4000110 | 100010 . . . 0},
{3100110 | 100100 . . . 0},
{3010110 | 101000 . . . 0},
{3001110 | 110000 . . . 0} ,

... .

All the above configurations have distance from the cut
larger than Kμ̃3 = 2 and more than two particles in angular

momentum orbitals 0 and 1. Hence, they are not domi-
nated by the root partition λ0 and have zero weight in the
model wave function (the corresponding row in the PEM is
identically 0).

Thus, the clustering condition at β = 11 for the config-
uration of the remaining particles being n([7,5,4,0,0] + νj )
yields a linear relation between the row labeled by μ̃3 and the
rows labeled by the partitions μ1, . . . ,μ4:

P̃3j + 2P1j + 2P2j + P3j + P4j = 0 , (37)

where Pij is the coefficient in P in the row labeled by μi and
column labeled by νj . The rows labeled by μ1, . . . ,μ4 can in
turn be related to rows in the OEM by using the clustering
constraints at β = 7.

D. Beyond (k,2)-clustering states

Until now, we have restricted our discussions to the bosonic
(k,2)-clustering states ψ(k,2)(z1, . . . ,zN ). In this section, we
generalize our results to other states with the property of
clustering: the states obtained by multiplying (k,2)-clustering
states with M Jastrow factors and the (2,3)-clustering Gaffnian
state. We believe that our results hold for all highest-density
states uniquely defined by clustering, as, for instance, the
Haffnian state. For the nonunitary states, which are supposedly
bulk gapless,49,50 the map relates the counting of the OES to
the number of bulk quasihole states (which is equal to the
counting of the PES); however, in this case, the number of
bulk quasiholes is not equal to the number of the edge modes,
as the edge-bulk correspondence in the energy spectrum does
not hold for nonunitary states.

For the (k,2)-clustering states, we identified a submatrix
of the PEM P̃, with the same rank as the PEM block with
angular momentum label LA

z and whose smaller dimension
was the number of distinct bulk quasihole excitations. We
then argued, based on the lack of other symmetries in P̃,
that its rank was equal to the smaller dimension and that
the PES counted the number of bulk quasi-hole excitations at
each angular momentum. To generalize this argument to other
clustering states, we need to first identify the special submatrix
P̃. We can then establish the bulk-edge correspondence in
their entanglement spectra by slightly modifying the method
used in Sec. VI B. Extending the ideas in Sec. VI is quite
straightforward: We redefine the notion of unit cell and the
intact unit cell, and identify Nc, the number of linearly
independent clustering constraints that involve the k particles
of an intact unit cell and one particle to the right of the cut, for
a fixed occupation configuration of the remaining N − (k + 1)
particles. Nc = 1 for the (k,2)-clustering model states. Using
the Nc-independent linear equations, we can relate a row
labeled by a partition μ with �μ intact unit cells and distance
to the cut Kμ to rows labeled by partitions μ′, such that
�μ′ = �μ − 1 and Kμ′ � Kμ − Nc. Thus, in the notation of
Sec. VI, when �μ̃0 � Kμ̃0/Nc and �ν̃0 � Kν̃0/Nc, the OES
(at fixed NA) and the PES have the same counting. In the
thermodynamic limit, the arguments in the last paragraph in
Sec. VI show that the Li-Haldane conjecture is true for these
states as well when NA ≈ NA,nat.
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1. (k,2)-clustering state multiplied by Jastrow factors

Let us consider the model wave function

ψ(z1, . . . zN ) = ψ(k,2)(z1, . . . zN )
∏
i<j

(zi − zj )M , (38)

where ψ(k,2)(z1, . . . zN ) is the (k,2)-clustering state. In Ap-
pendix B2, we show that P̃ is labeled by row and column
occupation configurations that obey the generalized Pauli
principle: no more than one particle in M consecutive orbitals
and no more than k particles in Mk + 2 consecutive orbitals.
The unit cell has (Mk + 2) orbitals and the occupation configu-
ration of the intact unit cell is {1(0)M−11(0)M−1 . . . 1(0)M−100}
with 1(0)M−1 repeated k times (we could succinctly write
the whole pattern as {[1(0)M−1]k00}). The exponent is the
number of times the pattern in the parentheses is repeated.
In Appendix G2, we show that Nc = 1 for M = 1. More
generally, Nc = 
M/2� + 1 for k = 1 Laughlin states, and
Nc = 2
M/2� + 1 for states with k > 1.

2. Gaffnian state

The Gaffnian state is a (2,3)-clustering state and is a single
Jack polynomial

ψ(z1, . . . zN ) = J α
λ0

(z1, . . . zN ), (39)

where α = −3/2 and n(λ0) = {200200 . . . 2002}. It is de-
scribed by a nonunitary CFT, the W2(3,5) model.51,52 It
has been suggested that the fermionic Gaffnian state is the
critical state between a strong-pairing phase and a Read-
Rezayi phase.53 Despite the Gaffnian being a gapless state,
we can determine the counting of the PES and establish
the correspondence in counting between the orbital and
particle entanglement spectra. The discussion in Sec. IV C
and Appendix B 1 applies to any Jack polynomial with (k,r)
clustering that is a unique zero mode of a pseudopotential
Hamiltonian [aside from the (k,2) Jacks, only one other Jack
(2,3), the Gaffnian, satisfies this constraint]. P̃ is therefore the
submatrix of the PEM labeled by (2,3)-admissible row and
column occupation-number configurations for the Gaffnian
state. The unit cell has three orbitals and the occupation
configuration of the intact unit cell is {200}. We derive the
clustering constraints in Appendix G 1 and show that Nc = 2
for the Gaffnian.

3. Haffnian state

The Haffnian state54 is a (2,4)-clustering state, but is not
a single Jack polynomial. We can not rigorously identify P̃
for the Haffnian state, although we expect, based on our
understanding of the other model states, that P̃ only contains
the rows and columns labeled by partitions obeying the
generalized Pauli principle discussed in Ref. 55. We have
verified this numerically. The occupation configuration of the
intact unit cell is {2000}. The clustering constraints are derived
along the same lines as for the Gaffnian in Appendix G 1,
giving Nc = 3 for the Haffnian. Whenever �μ̃0 � Kμ̃0/3 and
�ν̃0 � Kν̃0/3, we numerically observe that the ranks of the
PEM and the OEM are equal.

VII. CONCLUSIONS

In this paper, we have provided a proof that the Li and
Haldane natural entanglement spectrum in the thermodynamic
limit is bounded from above by the number of modes of the
CFT describing the edge physics. Barring the presence of
extra accidental symmetries in the system, we argue that the
bound should be saturated. In addition, we showed that the two
different entanglement spectra we considered, the PES probing
the bulk excitations and the OES probing the edge excitations,
are related. In fact, they have the same entanglement level
counting for a range of angular momenta, specified by Eq. (25).
The universal counting is different for each model state and
provides valuable information about the topological order
in the FQH state. When restricting to the natural spectrum,
we have proved that, in the thermodynamic limit, the level
counting of the entire OES and PES are identical. Thus, we
established the bulk-edge correspondence in the entanglement
spectra. The main tools in proving this are the clustering
constraints, which enforce the defining clustering properties
of the model states in momentum space. Our method works
for both unitary and nonunitary states that are defined as
unique highest-density zero modes of Haldane pseudopotential
Hamiltonians. In particular, it can be applied to the entire
Read-Rezayi series, as well as the Gaffnian state.
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APPENDIX A: A SIMPLE EXAMPLE

Let us consider the bosonic Laughlin wave function of N =
4 particles at filling ν = 1/2. The number of flux quanta Nφ

is 6 and Ltot
z = 12. The wave function |ψ〉 can be expanded in

the unnormalized basis as

|ψ〉 ≡
∑

λ

bλ|λ〉

= |6,4,2,0〉 − 2|6,4,1,1〉 − 2|5,5,2,0〉 + 4|5,5,1,1〉
+ 2|6,3,2,1〉 − 2|5,4,2,1〉 + 4|5,3,2,2〉 + 4|4,4,2,2〉
− 2|6,3,3,0〉 + 2|5,4,3,0〉 − 6|4,4,4,0〉 − 4|5,3,3,1〉
− 6|6,2,2,2〉+ 4|4,4,3,1〉− 6|4,3,3,2〉+ 24|3,3,3,3〉.

(A1)

We construct several orbital and particle entanglement ma-
trices and use the clustering constraints to prove the bulk-
boundary correspondence in the following sections.
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1. Orbital cut

Let us cut the single-particle orbital space after lA = 3
orbitals. Consider the blocks of the OEM at the natural
number of particles in A: NA = NA,nat = 2. From the above
decomposition, the minimum possible angular momentum
[Eq. (9)] for two particles in A is LA

z,min = 2. At this NA and
LA

z , the Hilbert spaces of A and B are spanned by |μ1〉 = |2,0〉,
|μ2〉 = |1,1〉 and |ν1〉 = |6,4〉, |ν2〉 = |5,5〉, respectively. The
block C at NA = 2 and LA

z = 2 is then given by

( |6,4〉 |5,5〉
|2,0〉 1 −2
|1,1〉 −2 4

)
, (A2)

where we have indicated the states labeling the rows
and columns. Cij = bμi+νj

(+ as defined in Sec. II) and
rank(C) = 1.

The block C with NA = 2, LA
z = LA

z,min + 1 = 3 of
rank 1 is

( |6,3〉 |5,4〉
|2,1〉 2 −2

)
. (A3)

The block C at NA = 2, LA
z = LA

z,min + 2 = 4, also of rank 1,
is given by

( |5,3〉 |4,4〉
|2,2〉 4 4

)
. (A4)

Figure 6(a) shows the numerically generated OES for
the four-particle Laughlin state in the sphere geometry at
1/2 filling with NA = 2 and lA = 3. The counting of the
entanglement levels in the spectrum equals the ranks of C
at each LA

z .

2. Particle cut

Let us construct the entanglement matrices for the particle
cut with NA = 2 by considering the real-space version of
Eq. (A1): ψ(z1, . . . ,z4) = 〈z1, . . . ,z4|ψ〉 in the unnormalized
real-space basis. Let us illustrate the particle cut using the basis
state 〈z1, . . . ,z4|6,4,1,1〉 as an example. For simplicity, part A

consists of particles at positions z1 and z2. We can write the

unnormalized, symmetric polynomial as

〈z1, . . . ,z4|6,4,1,1〉
= S

[
z6

1z
4
2z

1
3z

1
4

]
= S

[
z6

1z
4
2

] · S
[
z1

3z
1
4

]+ S
[
z6

1z
1
2

] · S
[
z4

3z
1
4

]
+ S

[
z4

1z
1
2

] · S
[
z6

3z
1
4

]+ S
[
z1

1z
1
2

] · S
[
z6

3z
4
4

]
. (A5)

Thus, the coefficient of the PEM block P2(2) in the row labeled
by |1,1〉 and column labeled by |6,4〉 is given by b[1,1]+[6,4] =
−2. Doing the same procedure for every basis state occuring in
ψ(z1, . . . ,z4) allows us to determine the PEM blocks P2(LA

z )
at the various allowed angular momenta LA

z . At the smallest
possible angular momentum LA

z = LA
z,min = 2, the PEM and

OEM are identical:

( |6,4〉 |5,5〉
|2,0〉 1 −2
|1,1〉 −2 4

)
. (A6)

The Hilbert space of A at LA
z = LA

z,min + 1 = 3 is spanned
by the occupation number states |3,0〉 and |2,1〉. |3,0〉 was not
a member of the Hilbert space of A for the orbital cut after
lA = 3 orbitals (discussed in the previous section) because the
orbital with index 3 belonged to B. The PEM at LA

z = 3 is
given by

( |6,3〉 |5,4〉
|3,0〉 −2 2
|2,1〉 2 −2

)
. (A7)

We see that the OEM (A3) for NA = 2, LA
z = 2 is indeed a

submatrix of the PEM, as discussed in Sec. IV A.
As the last example, consider LA

z = LA
z,min + 2 = 4. The

row and the column dimension of the PEM is larger than that
of the OEM in (A4):

⎛
⎝

|6,2〉 |5,3〉 |4,4〉
|4,0〉 1 2 −6
|3,1〉 2 −4 4
|2,2〉 −6 4 4

⎞
⎠. (A8)

By inspection, we see that the OEM (A4) is the submatrix
consisting only of the last row and the last two columns. The
rank of the PEM at LA

z = 4 is equal to two and greater than
that of the corresponding OEM.
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FIG. 6. (Color online) (a) Orbital entanglement spectrum of the ν = 1/2 Laughlin state with N = 4, NA = 2, and orbital cut after lA = 3
orbitals. The entanglement level counting is equal to the rank of the OEM at each angular momentum. (b) Particle entanglement spectrum of
the ν = 1/2 Laughlin state with particle cut NA = 2. The entanglement level counting at all angular momenta LA

z is equal to the rank of the
PEM. LA

z,min defined in the text is LA
z = 4 in the plots.
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Figure 6(b) shows the numerically generated PES for the
four-particle 1/2 Laughlin state for NA = 2. The counting of
the spectrum agrees with the ranks calculated above.

3. Relating the OES and PES counting

At LA
z = 2, C [Eq. (A2)] and P [Eq. (A6)] are seen to

be identical. There is precisely one element with a (1,2)-
admissible occupation configuration in the Hilbert spaces of
A and B: |2,0〉 and |6,4〉, respectively. Thus, P̃ = (1) and the
three matrices P, P̃, and C are all of rank one.

At LA
z = 3, P̃ = (−2) and is not a submatrix of C

[Eq. (A3)]. The matrix elements P̃11 and C11 are the coef-
ficients of |6,3,3,0〉 and |6,3,2,1〉 in the wave function |ψ〉.
The two-body clustering constraints (20) at β = 3 relate these
coefficients by

(d3d0 + d2d1)|ψ〉 = 0

⇒ (P̃11 + C11)|6,3〉 = 0.

This relation between the single element in P̃ and C proves
that they have the same rank.

The LA
z = 4 case is interesting. Here, P̃ is

( |6,2〉 |5,3〉
|4,0〉 1 2
|3,1〉 2 −4

)
.

P̃ and C share the column index |5,3〉, but have no row index
configurations in common. A single relation between the row
vectors of P̃ and the row labeled by the partition [2,2] in C
is provided by the two-body clustering constraints at β = 4.
Without another relation, we can not relate the ranks of P and
C at LA

z = 4. Our proof establishing the equality of ranks of
the PEM and the OEM should not and is not applicable at this
angular momentum, as Kμ̃0 = 2 and �μ̃0 = 1 with μ̃0 = [4,0].

APPENDIX B: RANK OF P̃

1. (k,2)-clustering states

The matrices P̃ and M were defined in Sec. IV C as the
particle entanglement matrices with label LA

z in the (k,2)-
admissible occupation configuration basis and the Jack basis.
In Sec. IV C, we showed that the PEM and M have the same
counting; in this appendix, we show that P̃ and M have the
same rank. This proves that the counting of the PEM equals
the rank of P̃.

Suppose we are able to show that P̃ = DMD′, where DT

and D′ are square triangular matrices with 1’s on the diagonal
and, as such, they have nonzero determinant. A theorem in
linear algebra states that pre- and post-multiplying a matrix
by one of triangular form with nonzero determinant leaves its
rank unchanged. Thus, we only need to prove that P̃ = DMD′
to conclude that rank(P̃) = rank(M).

The row and column dimensions of P̃ and M are identical
because every (k,2)-admissible partition μ labels the Jack J α

μ .
We may use partial ordering by dominance to order the (k,2)-
admissible row and column configurations such that, if μ̃k >

μ̃i , then k � i.
Consider a particular (k,2)-admissible partition μ̃i (ν̃j )

labeling the ith row (j th column) of P̃ and M. Let the

coefficient of |μ̃i〉 in |J α
μ̃k

〉 be Dik and the coefficient of |ν̃j 〉 in
|J α

ν̃l
〉 be D′

lj . The partial ordering implies that

Dik = 0 if k > i, (B1)

Dii = 1, (B2)

D′
lj = 0 if l > j, (B3)

D′
jj = 1. (B4)

In other normalizations of Jack polynomials, Dii is not
necessarily one, but is always nonzero. By the definition of a
matrix with row-echelon form, DT and D′ are in row-echelon
form. Recall that∑

i,j

Mij

∣∣J α
μ̃i

〉⊗ ∣∣J α
ν̃j

〉 = ∑
i,j

Pij |μi〉 ⊗ |νj 〉 (B5)

in every block of the full PEM. |μi〉 and |νj 〉 are the
general occupation basis states, not just the (k,2)-admissible
configurations. P̃ is the submatrix of P labeled by (k,2)-
admissible partitions; therefore,

P̃ij =
∑
k,l

Mkl

〈
μ̃i

∣∣J α
μ̃k

〉〈
ν̃j

∣∣J α
ν̃l

〉
, (B6)

P̃ij =
∑
k,l

DikMklD′
lj

⇒ P̃ = DMD′ , (B7)

which proves our statement that the rank of the PEM is given
by the rank of the matrix of the coefficients indexed by the
(k,2)-admissible partitions.

2. (k,2)-clustering states multiplied by Jastrow factors

We consider the PEM of states that are (k,2)-clustering
polynomials multiplied by Jastrow factors

∏
i<j (zi − zj )M

[see Eq. (38)]. Here, we identify P̃, a submatrix of the
PEM with the same rank, and find that it contains only
rows (columns) that are labeled by partitions γ̃i (η̃j ) of NA

(NB) particles and angular momentum LA
z (LB

z ) that obey the
generalized Pauli principle: there is no more than one particle
in M consecutive orbitals and no more than k particles in
Mk + 2 consecutive orbitals. The total flux Nφ of the partitions
γ̃i ,η̃j is equal to the total flux of the ground state |ψ〉 being
cut.

Instead of expanding |ψ〉 in terms of monomials, we can
choose a different basis that incorporates all the vanishing
properties of the NA (NB) particles among themselves:

〈{zj }|ψ〉 =
∑
i,j

Mi,j

⎛
⎜⎝J α

μ̃i

∏
k<k′

k,k′∈A

(zk − zk′)M

⎞
⎟⎠

×

⎛
⎜⎝J α

ν̃j

∏
l,l′

l,l′∈B

(zl − zl′ )
M

⎞
⎟⎠ , (B8)

where the Jastrow factors include only particles in parts A

and B, respectively. μ̃i (ν̃j ) are (k,2)-admissible partitions
of NA (NB) particles with angular momentum LA

z (LB
z ) in
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2(N − 1) + MNB + 1 (for μ̃i) and 2(N − 1) + MNA + 1 (for
ν̃j ) orbitals. The matrix M = (Mij ) has the same rank as the
PEM.

Let us, for simplicity, focus on the basis states labeling
the rows of M. The Jastrow factor can be written as a
(1,M)-clustering Jack polynomial. Hence, both the Jack and
the Jastrow states obey a dominance property. They have a
root configuration with coefficient 1 that dominates any other
configuration in the expansion in terms of occupation-number
states. This implies that also their product

J α
μ̃i

·
∏
k<k′

(zk − zk′)M (B9)

has a root configuration γ̃i with expansion coefficient 1, where
(γ̃i)j = (μ̃i)j + M(N − j ). Note that the γ̃i’s are precisely
the configurations that label the rows of P̃. In addition, the
partitions γ̃i have the same partial ordering as the μi , i.e., if
μ̃i < μ̃j , then γ̃i < γ̃j . Thus, all arguments from the previous
section are applicable here as well: There are row-echelon
matrices DT and D′ such that P̃ = DMD′, which proves that
rank(P̃) = rank(M) = rank(P).

APPENDIX C: MODEL HAMILTONIAN EXPRESSED AS
CLUSTERING OPERATORS

We rewrite the rotationally invariant, two-body Haldane
pseudopotential Hamiltonian, the zero modes of which are
(1,2)-clustering states, in terms of the clustering operators
introduced in Sec. V. Recall that the single-particle orbitals in
the lowest Landau level form the multiplet of L = Nφ/2. In
the L̂z basis, any two-body interaction V̂ can be expanded as

H =
∑
mi

〈m1,Nφ/2; m2,Nφ/2|V̂ |m3,Nφ/2; m4,Nφ/2〉

× c†m1
c†m2

cm3cm4 . (C1)

c
†
m1 is the creation operator of a single-particle state of Lz =

m1, L = N�/2; c
†
m1 |0〉 = |m1,Nφ/2〉. We first change basis

as follows:

|m1,Nφ/2; m2,Nφ/2〉 =
Nφ∑
	=0

|m1 + m2,	〉

× 〈m1 + m2,	|m1,Nφ/2; m2,Nφ/2〉,
where 〈m1 + m2,	|m1,Nφ/2; m2,Nφ/2〉 in the right-hand side
are Clebsch-Gordan coefficients. For brevity of notation, we
drop the label Nφ/2 in the superscript. To determine the
components of the model pseudopotential in the new basis,
we recall that V̂ is rotationally invariant (commutes with |L̂2|
and L̂z) and penalizes only the relative angular momentum of
0, thus,

〈n1,	1|V̂ |n2,	2〉 = δn1,n2δ	1,	2δ	,Nφ
.

The Hamiltonian in Eq. (C1) can therefore be written as

H =
Nφ∑

β=−Nφ

∑
m1,m3

〈β,Nφ |m1,Nφ/2; β − m1,Nφ/2〉�

×〈β,Nφ|m3,Nφ/2; β − m3,Nφ/2〉
× c†m1

c
†
β−m1

cm3cβ−m3 . (C2)

The creation and annihilation operators above create and
destroy particles in the normalized single-particle orbitals. Let
us denote the normalization of the single-particle orbital with
Lz = m by N (m). To move to the unnormalized basis, we
make the transformation

dm = N (m)cm. (C3)

This set of operators is identical to the deletion operators
defined in Sec. V A. In spinor coordinates (u,v), the wave
function of the unnormalized orbital is

〈u,v|d†
m|0〉 = uNφ/2+mvNφ/2−m. (C4)

The Clebsch-Gordan coefficients appearing in Eq. (C2) have
the form

〈β,Nφ|m1,Nφ/2; β − m1,Nφ/2〉
= KN (m1)N (β − m1)

√
(Nφ − β)!(Nφ + β)!. (C5)

K is independent of β and m1:

K =
[(

4π

Nφ + 1

)2
π1/4√

Nφ!2Nφ

√
(Nφ − 1/2)!

]2

. (C6)

By substituting Eqs. (C5) and (C3) in (C2), we have

H =
Nφ∑

β=−Nφ

∑
m1,m3

K2(Nφ − β)!

× (Nφ + β)!d†
m1

d
†
β−m1

dm3dβ−m3 . (C7)

By comparing the equation above with the one in the text
[Eq. (21)], we see that f (β) = (Nφ − β)!(Nφ + β)!.

APPENDIX D: TWO EXAMPLES OF CLUSTERING
CONSTRAINTS

We write down the explicit relations imposed by the
(k + 1)-body clustering constraints discussed in Sec. V on
the coefficients of small wave functions at k = 1,2. Let us first
consider an example at k = 1, i.e., the 1/2 Laughlin states.
The clustering constraints are two body:

β∑
i=0

dβ−idi |ψ〉 = 0 for β = 0,1, . . . ,Ltot
z . (D1)

Consider the N = 3, Ltot
z = 6 wave function in the infinite

plane geometry in which the number of orbitals is not restricted
to Nφ + 1 = 5 as in the case of the sphere. The Hilbert
space is spanned by seven partitions {λi,i = . . . 7}. Their
corresponding coefficients in |ψ〉 are {bi,i = 1 . . . 7}

|ψ〉 = b1|6,0,0〉 + b2|5,1,0〉 + b3|4,2,0〉 + b4|3,3,0〉
+ b5|4,1,1〉 + b6|3,2,1〉 + b7|2,2,2〉 .

The relations at β = 0,1, respectively, are

b1|6,0,0〉 = 0 ⇒ b1 = 0,

b2|5,1,0〉 = 0 ⇒ b2 = 0 .

Thus, the clustering constraints assign zero weight to λ1 and
λ2, which are not dominated by the root partition λ3 = [4,2,0]
[n(λ3) = {10101}]. The values of β from 2 to 6 generate a
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TABLE I. Possible occupation configurations and the clustering
constraints for the N = 3, ν = 1/2 Laughlin state at Ltot

z = 6 on the
infinite plane (no restriction to the number of orbitals). On the sphere,
the first two configurations have zero weight and the last two orbitals
are missing as Nφ = 4.

Coefficient of mμ n(μ) Constraint

b1 {2000001} β = 0 : b1 = 0
b2 {1100010} β = 1 : b2 = 0
b3 {1010100} β = 2 : 2b3 + b5 = 0
b4 {1002000} β = 3 : b4 + b6 = 0
b5 {0200100} β = 4 : 2b6 + 2b3 + b7 = 0
b6 {0111000} β = 5 : b5 + b6 = 0
b7 {0030000} β = 6 : 2b3 + b4 = 0

set of five linearly dependent equations that fix four out of
the five remaining coefficients. All the relations obtained are
shown in Table I. The solution in terms of the coefficient of
the root partition b3 is {b1,b2,b3,b4,b5,b6,b7} = {0,0,b3, −
2b3, − 2b3,2b3, − 6b3}.

The bosonic Moore-Read state is the clustering polynomial
at k = 2. The clustering constraints involve three particles:

β∑
i,j=0

dβ−i−j didj |ψ〉 = 0 for β = 0,1, . . . ,Ltot
z . (D2)

Consider the six-particle wave function with Ltot
z = 12.

Equation (D2) for β = 0 ensures that the weight of the
partitions [4,4,4,0,0,0], [5,4,3,0,0,0] . . . [12,0,0,0,0,0] not
dominated by [4,4,2,2,0,0] is zero in the wave function.
The number of such partitions, the coefficients of which
are set to zero at β = 0, is the number of partitions of 12
into at most 3 parts. Similarly, the constraints at β = 1 set
the weights of the partitions [4,4,3,1,0,0], [5,4,2,1,0,0], . . .
[11,1,0,0,0,0] (the number of such partitions is the number
of partitions of 11 into at most 3 parts) in the wave function
to zero. The linear dependence of the set of constraints in
Eq. (D2) is apparent in the fact that the coefficient of the
partition [7,4,1,0,0,0] is set to zero by a constraint at β = 0
and one at β = 1. The constraints at β = 11,12 are also
seen to give identical relations to those at β = 0,1 for this
example. The configurations [5,4,3,0,0,0] . . . [12,0,0,0,0,0]
are only allowed in an infinite plane geometry. On the
sphere, they would involve more orbitals than Nφ + 1 = 5
existent ones and would not appear in the Hilbert space
of the decomposition of the Moore-Read ground state. The
configurations [4,4,4,0,0,0] and [4,4,3,1,0,0] appear on the
sphere but, due to the same reason as on the infinite plane, i.e.,
that they are not squeezed from the root partition, have zero
weight.

The 16 partitions dominated by the root partition
[4,4,2,2,0,0] and their corresponding coefficients in ψ are
shown in the second and first columns of Table II, respectively.
Let us discuss the three-body clustering at β = 4 in more
detail:

3(d4d0d0 + 2d3d1d0 + d2d2d0 + d2d1d1)|ψ〉 = 0 . (D3)

TABLE II. Possible occupation configurations and the clustering
constraints for the N = 6 MR state at Ltot

z = 12.

n(μ) Constraint

b1 {20202} β = 2: b1 + b2 = 0
b2 {12102} b3 + b6 = 0
b3 {20121} β = 3: 3b3 + 6b7 + b9 = 0
b4 {20040} 3b4 + 6b8 + b13 = 0
b5 {04002} 6b2 + b5 = 0
b6 {12021} β = 4: b1 + 2b7 + b10 + b12 = 0
b7 {11211} b3 + 2b8 + b11 + b14 = 0
b8 {11130} 2b6 + b7 + b9 = 0
b9 {03111} β = 5: 2b2 + 2b7 + b9 + b10 = 0
b10 {02301} 2b7 + 2b11 + b14 + b15 = 0
b11 {10320} 2b6 + 2b8 + b13 + b14 = 0
b12 {10401} 2b3 + b6 + b7 = 0
b13 {03030} β = 6: 6b1 + 3b2 + 6b7 + 3b3 + b12 = 0
b14 {02220} 6b2 + 3b5 + 6b9 + 3b6 + b10 = 0
b15 {01410} 6b3 + 3b6 + 6b8 + 3b4 + b11 = 0
b16 {00600} 6b7 + 3b9 + 6b14 + 3b8 + b15 = 0

6b12 + 3b10 + 6b15 + 3b11 + b16 = 0

The four terms in Eq. (D3) individually are

d4d0d0|ψ〉 = b1|4,2,2〉 + b3|3,3,2〉,
d3d1d0|ψ〉 = b6|4,3,1〉 + b7|4,2,2〉 + b8|3,3,2〉,
d2d2d0|ψ〉 = b1|4,4,0〉 + b7|4,3,1〉 + b12|4,2,2〉

+b11|3,3,2〉, (D4)

d2d1d1|ψ〉 = b2|4,4,0〉 + b9|4,3,1〉 + b10|4,2,2〉
+b14|3,3,2〉 .

The right-hand side of each of the four terms above is a
linear combination of different occupation configurations of
three bosons with total angular momentum Ltot

z − β = 8. Since
different occupation configuration states are orthogonal to each
other, Eq. (D3) can only be satisfied if the coefficient in front
of every noninteracting many-body state is zero. Thus, we
obtain four constraints on the coefficients from each of the
four occupation configurations in Eq. (D4):

|4,2,2〉 : b1 + 2b7 + b12 + b10 = 0,

|3,3,2〉 : b3 + 2b8 + b11 + b14 = 0, (D5)

|4,3,1〉 : 2b6 + b7 + b9 = 0,

|4,4,0〉 : b1 + b2 = 0.

The last relation also arises from the clustering constraint at
β = 2.

All the relations imposed by the clustering constraints at
β = 2, . . . ,6 are shown in Table II. Although not obvious, in
this case as in the previous, the dimension of the null space of
Eq. (D2) is 1. This can be analytically proved by realizing that
the Moore-Read state is the densest unique ground state of a
Haldane pseudopotential Hamiltonian, which can be written
in terms of the clustering operators.

APPENDIX E: PROOF OF STEP (i) IN SEC. VI B

We now prove the statement in step (i) of Sec. VI B: Kμ̃0 �
�μ̃0 implies that Kμ̃ � �μ̃ for all (k,2)-admissible partitions
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μ̃ that are dominated by μ̃0. We defined μ̃0 to be the partition
that dominates all other (k,2)-admissible partitions at given
NA, LA

z [Eq. (23)]:

n(μ̃0) = k0 . . . k0︸ ︷︷ ︸
2
(NA−1)/k�

x 0 . . . 01︸ ︷︷ ︸
	

0 . . . 0, (E1)

where 0 � x < k is fixed by the total particle number being
NA. We are given that �μ̃0 � Kμ̃0 .

The main idea how to prove this statement is to reduce
the distance from the cut by squeezing particles across the
cut. Squeezing with the particle just left to the cut [at
angular momentum (lA − 1)] can not reduce the distance, but
squeezing with any other particle to the left of the cut does.
Let us in the following only consider squeezing operations
from orbitals with index m1 � lA and m2 < lA − 1 to orbitals
with index m′

1 = m1 − 1 and m′
2 = m2 + 1. Starting from a

(k,2)-admissible partition, there are two choices to reduce the
distance to the cut by one and still retain (k,2) admissibility:
either one squeezes with a particle of the rightmost unit
cell, which reduces the number of unit cells by one, or one
squeezes with a particle that is not in an intact unit cell.
The latter may retain (k,2) admissibility, depending on the
occupation configuration of the remaining particles, and does
not change the number of intact unit cells. All (k,2)-admissible
configurations μ̃′ < μ̃0 can be obtained from μ̃0 by such a
series of squeezings. As Kμ̃0 � �μ̃0 , they obey Kμ̃′ � �μ̃′ .
Let us make this argument more rigorous in the following
paragraphs.

The case when Kμ̃0 = 0 is trivial. All (k,2)-admissible
partitions have distance from the cut 0 and at least 0 intact unit
cells; therefore, Kμ̃ � �μ̃ for all (k,2)-admissible partitions
μ̃.

In order to prove the required statement for Kμ̃0 > 0, we
consider all (k,2)-admissible partitions μ̃ < μ̃0 at given, but
arbitrary, Kμ̃ < Kμ̃0 . Let us construct the partition μ [not
necessarily (k,2) admissible] at the given distance Kμ̃ = Kμ >

0 that is dominated by all the (k,2)-admissible partitions. This
partition can always be obtained by first reducing the distance
to the cut Kμ̃0 − Kμ̃ times by squeezing each time with a
particle from the rightmost intact unit cell, and afterward
squeezing all the particles at angular momenta �(lA − 1) to
their maximally dense configuration. The latter operation does
not change the distance from the cut. Assume that the orbital
to the left of the cut is unoccupied, i.e., nlA−1(μ̃0) = 0. If the
number of particles to the right of the cut in μ̃0, Nr (μ̃0), is
equal to one, then the occupation-number configuration of μ

is given by

n(μ) = k0 . . . k0︸ ︷︷ ︸
2�μ

(k − 1)1 . . . (k − 1)1︸ ︷︷ ︸
2(�μ̃0 −�μ)

x0 . . . 0︸ ︷︷ ︸
lA−2�μ̃0

| 0 . . . 01︸ ︷︷ ︸
Kμ

,

(E2)

where we denote the orbital cut by | in the occupation
configuration. For Nr (μ̃0) > 1, n(μ) is

n(μ) = k0 . . . k0︸ ︷︷ ︸
2�μ

(k − 1)1 . . . (k − 1)1(k − 1)0︸ ︷︷ ︸
2(�μ̃0 −�μ)

|X . . . X,

(E3)

where the sequence X . . . X denotes the occupation configura-
tion of [Nr (μ̃0) + 1] particles at distance Kμ that is maximally
squeezed.

The configurations in Eqs. (E2) and (E3) are such that the
particles on the left of the cut form the densest possible (k,2)-
admissible configuration, i.e., squeezing any two particles on
the left of the cut yields a configurations that is not (k,2)
admissible. As the particles to the right are in their most
squeezed configuration, we conclude that any (k,2)-admissible
partition with distance to the cut Kμ dominates μ.

As compared to n(μ̃0), the z angular momentum of the
particles to the left of the cut in n(μ) is increased by �μ̃0 − �μ,
while that of the particles to the right of the cut is reduced by
Kμ̃0 − Kμ̃. Since n(μ) has the same total z angular momentum
as n(μ̃0),

�μ̃0 − �μ = Kμ̃0 − Kμ,

�μ̃0 � Kμ̃0 ⇒ �μ � Kμ.

As every (k,2)-admissible partition μ̃ with distance Kμ̃ = Kμ

that dominates μ has at least �μ intact unit cells

�μ̃ � �μ, Kμ̃ = Kμ ⇒ �μ̃ � Kμ̃ (E4)

at every distance from the cut.
The argument for nlA−1(μ̃0) �= 0 is identical to the one

described above. The only difference lies in the form of n(μ):

n(μ) = k0 . . . k0︸ ︷︷ ︸
2�μ

(k − 1)1 . . . (k − 1)1︸ ︷︷ ︸
2(�μ̃0 −�μ)

0|X . . . X, (E5)

where the sequence X . . . X is the maximally squeezed
configuration of x + 1 particles [for Nr (μ̃0) = 1], respectively,
k + Nr (μ̃0) [for Nr (μ̃0) > 1] at distance Kμ.

APPENDIX F: PROOF OF STEP (II) IN SEC. VI B

1. Effect of dominance on the distance from the cut

We show that dominance, i.e., μ > μ′ implies that the
distance to the cut Kμ � Kμ′ , or that squeezing can not
increase the distance from the cut. The property of dominance
is defined by

μ > μ′ ⇒
n∑

i=1

μi �
n∑

i=1

μ′
i (F1)

for all n � N . Recall that μi � μj for i < j , where μi and
μj are the components of the partition μ. Let us denote the
number of particles to the right of the cut for any partition μ

by Nr (μ). The distance from the cut Kμ can then be rewritten
as

Kμ =
Nφ∑

m=lA

nm(μ)(m − lA + 1)

=
Nr (μ)∑
i=1

(μi − lA + 1) . (F2)

When comparing the total distances for two partitions μ and
μ′, there are three possibilities: Nr (μ) = Nr (μ′), Nr (μ) >

Nr (μ′), and Nr (μ) < Nr (μ′). We will discuss them in that
order:

205136-17



CHANDRAN, HERMANNS, REGNAULT, AND BERNEVIG PHYSICAL REVIEW B 84, 205136 (2011)

(i) Nr (μ) = Nr (μ′):

μ > μ′ ⇒
Nr (μ)∑
i=1

μi �
Nr (μ)∑
i=1

μ′
i

⇒
Nr (μ)∑
i=1

(μi − lA + 1)

︸ ︷︷ ︸
=Kμ

�
Nr (μ)∑
i=1

(μ′
i − lA + 1)

︸ ︷︷ ︸
=Kμ′

. (F3)

Thus, Kμ � Kμ′ .
(ii) Nr (μ) > Nr (μ′):

μ > μ′ ⇒
Nr (μ′)∑
i=1

μi �
Nr (μ′)∑
i=1

μ′
i

⇒
Nr (μ′)∑
i=1

(μi − lA + 1) �
Nr (μ′)∑
i=1

(μ′
i − lA + 1)

︸ ︷︷ ︸
=Kμ′

. (F4)

As μi � lA for all particles to the right of the cut, Kμ =∑Nr (μ)
i=1 (μi − lA + 1) >

∑Nr (μ′)
i=1 (μi − lA + 1). This shows that

Kμ > Kμ′ .
(iii) Nr (μ) < Nr (μ′):

μ > μ′ ⇒
Nr (μ′)∑
i=1

μi �
Nr (μ′)∑
i=1

μ′
i

⇒
Nr (μ)∑
i=1

(μi − lA + 1)

︸ ︷︷ ︸
=Kμ

+
Nr (μ′)∑

i=Nr (μ)+1

(μi − lA + 1)

︸ ︷︷ ︸
�0

�
Nr (μ′)∑
i=1

(μ′
i − lA + 1) = Kμ′ . (F5)

The second term must be � 0, as the particles to the left of the
cut have angular momentum μi < lA. It is strictly negative if
at least one of the μi for Nr (μ) < i � Nr (μ′) is smaller that
(lA − 1).

Thus, Kμ � Kμ′ for every μ′ that is dominated by μ.

2. Effect of clustering constraints

We show that the (k + 1)-body clustering constraints
presented in the body of the paper [Eq. (20)] relate partitions
μ with �μ > 0 intact unit cells and distance Kμ > 0 from the
cut to partitions μ′ with number of intact unit cells given by
�μ − 1 and distance from the cut by Kμ′ < Kμ.

Let us consider an arbitrary partition μ with �μ intact unit
cells (2�μ orbitals) and distance Kμ:

n(μ) = {k0 . . . k0︸ ︷︷ ︸
2�μ

x . . . x︸ ︷︷ ︸
lA−2�μ

| x . . . x︸ ︷︷ ︸
�Kμ

0 . . . 0} , (F6)

where we placed the orbital cut after lA orbitals. In order to keep
the discussion general, we denote an arbitrary occupation-
number configuration by the sequence x . . . x. For the orbitals
to the right of the cut (with angular momentum � lA), two

examples of such configurations with distance from the cut
Kμ are

{k0 . . . k0︸ ︷︷ ︸
2�μ

x . . . x︸ ︷︷ ︸
lA−2�μ

| 0 . . . 0︸ ︷︷ ︸
Kμ−1

10 . . . 0},

{k0 . . . k0︸ ︷︷ ︸
2�μ

x . . . x︸ ︷︷ ︸
lA−2�μ

| Kμ 0 . . . 0} . (F7)

Let us now analyze the clustering condition that involve the
k particles of the (�μ − 1)th unit cell and the rightmost particle
to the right of the cut in the partition μ [Eq. (F6)]. Remember
that we chose to number the intact unit cells starting from 0. We
choose β = 2k(�μ − 1) + μ1 for the clustering operator (20)
and require the remaining NA − (k + 1) particles to occupy the
same orbitals as in n(μ). For instance, for the configuration in
the first line of (F7), we choose β = 2k(�μ − 1) + (lA − 1 +
Kμ) and require the remaining NA − (k + 1) particle to have
the occupation configuration

{k0 . . . k0︸ ︷︷ ︸
2�μ−2

00 x . . . x︸ ︷︷ ︸
lA−2�μ

| 0 . . . 0} . (F8)

While, for the second line, we choose β = 2k(�μ − 1) + lA
and the occupation-number configuration of the remaining
NA − (k + 1) particles to be

{k0 . . . k0︸ ︷︷ ︸
2�μ−2

00 x . . . x︸ ︷︷ ︸
lA−2�μ

| (Kμ − 1) 0 . . . 0} . (F9)

In particular, the occupation configurations of the remaining
particles have �μ − 1 intact unit cells.

The clustering condition relates μ only to partitions that are
dominated by a partition μ′ of the form:

n(μ′) = {k0 . . . k0︸ ︷︷ ︸
2�μ−2

(k − 1)1 x . . . x︸ ︷︷ ︸
lA−2�μ

|x̃ . . . x̃0 . . . 0}, (F10)

where x̃ . . . x̃ is used to indicate an occupation-number
configuration where the rightmost particle to the right of the
cut is moved to the left by one orbital. The distance from the
cut is reduced by one: Kμ′ = Kμ − 1. For our examples in
Eq. (F7), the dominating partition is given by

n(μ′) = {k0 . . . k0︸ ︷︷ ︸
2�μ−2

(k − 1)1 x . . . x︸ ︷︷ ︸
lA−2�μ

| 0 . . . 0︸ ︷︷ ︸
Kμ−2

10 . . . 0} (F11)

for the configuration of the first line of Eq. (F7), and

n(μ′) = {k0 . . . k0︸ ︷︷ ︸
2�μ−2

(k − 1)1 x . . . x︸ ︷︷ ︸
lA−2�μ

| (Kμ − 1) 0 . . . 0} (F12)

for the configuration in the second line of Eq. (F7).
Using the results from Appendix F1, we conclude that all

partitions μ′ �= μ involved in the clustering condition have
�μ′ = �μ − 1 intact unit cells and distance from the cut
Kμ′ � Kμ − 1. The (k + 1)-body clustering condition yields
one constraint on the rows labeled by all the involved partitions.
Thus, we have shown that the row labeled by μ can be written
as a linear combination of the rows labeled by partitions μ′
with Kμ′ < Kμ and one less intact unit cell.
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3. Relating PEM rows to OEM rows

Let us assemble the results of the previous appendices
to prove the following statement: Any PEM row labeled by
a partition μ with Kμ � �μ is linearly dependent on rows
labeled by partitions μ̂j with Kμ̂j

= 0. The latter are partitions
that label the rows of the OEM. We prove this statement by
induction, starting with a row partition μ with Kμ = 1 and
�μ � 1. Such a row partition is necessarily of the form

{k0 . . . k0︸ ︷︷ ︸
2�μ

x . . . x︸ ︷︷ ︸
lA−2�μ

|10 . . . 0} . (F13)

By using the (k,2)-clustering constraint for β = 2k(�μ − 1) +
lA and fixing the occupation configuration of the remaining
N − (k + 1) particles to be

{k0 . . . k0︸ ︷︷ ︸
2�μ−2

00 x . . . x︸ ︷︷ ︸
lA−2�μ

|0 . . . 0}, (F14)

the row partition (F13) can be related to rows labeled by μ̂j ,
which satisfy Kμ̂j

= 0. This result is independent on �μ as
long as �μ � 1.

For the induction hypothesis, let us now assume that all row
partitions λj with Kλj

� Kλ (for given Kλ > 1) and �λj
�

Kλj
can be written as linear combinations of rows labeled by

partitions μ̂j with Kμ̂j
= 0.

Now consider a row partition μ with Kμ = Kλ + 1 and
Kμ � �μ. In Appendix F 2, we have shown that a clustering
condition involving any of the particles to the right of the
cut and the k particles of the rightmost intact unit cell (to
the left of the OEM cut) relates this partition to partitions μ′
with Kμ′ < Kμ and �μ′ = �μ − 1. This implies that the row
partition μ is a linear combination of the row partitions λj .
Using the induction hypothesis yields that all partitions μ with
distance to the cut Kμ � Kλ + 1 fulfilling Kμ � �μ can be
written as linear combinations of rows of the OEM. This shows
that any row partition μ fulfilling Kμ � �μ can be written as
a linear combination of rows labeled by partitions μ̂j that have
distance to the cut Kμ̂j

= 0. These are the partitions that label
the rows of the OEM.

APPENDIX G: MORE CLUSTERING CONSTRAINTS

We derive the clustering constraints of two particular states
that are uniquely defined by vanishing properties distinct from
(k,2). It should be possible to extend the general ideas here
to other model states. For r > 3, or for r = 3 and k > 2, the
clustering constraints derived by requiring that the polynomial
wave function dies with the rth power of the difference
between the coordinates of k + 1 particles do not uniquely
define the wave function.39

1. Gaffnian state

The bosonic Gaffnian state is a (2,3)-clustering state.53,56 It
vanishes as the third power between the coordinate of a cluster
of two particles and that of a third particle approaching the
cluster:

ψ(2,3)(z1,z1,z3, . . . ,zN ) ∝ (z1,3)3 for z1,3 → 0 , (G1)

where we define zi,j = zi − zj . Therefore,

lim
z1,2,z1,3→0

(z1,3)−αψ(2,3)(z1,z2,z3, . . . ,zN ) = 0 (G2)

for α = 0, 1, and 2. Exactly as we did in Sec. V, we separate
the coordinates z1, z2, and z3 from the rest and rewrite the
Gaffnian wave function as

ψ(2,3)(z1, . . . ,zN )

=
∑

l1,...,l3

⎛
⎝ 3∏

j=1

z
lj
j

⎞
⎠ 〈z4, . . . ,zN |

3∏
j=1

dlj |ψ〉, (G3)

where the dlj ’s are the destruction operators defined in Sec. V.

By expanding z
l3
3 as

z
l3
3 = [z1 − (z1,3)]l3

=
l3∑

j=0

(
l3

j

)
z
l3−j

1 (−z1,3)j (G4)

and inserting (G3) into Eq. (G2), we obtain the clustering
constraints∑

l2,l3

(
l3

α

)
dβ−l2−l3dl2dl3 |ψ〉 = 0, ∀β � α (G5)

for α = 0,1,2. The clustering constraints at α = 0 are identical
to those we derived for the Moore-Read state in Sec. V, as a
(2,3)-clustering state also satisfies (2,2) clustering. The set of
clustering constraints at each value of β are linearly dependent;
in fact, for each β > 2, the number of linearly independent
clustering constraints is Nc = 2.

2. Fermionic (k,2)-clustering states

The fermionic counterpart of the (k,2)-clustered bosonic
state is

ψ(z1, . . . ,zN ) = ψ(k,2)(z1, . . . ,zN ) ·
∏
i<j

(zi − zj ) . (G6)

Let us start with the simplest example, the Laughlin state
for k = 1. From the form of the wave function ψ = ∏

i<j (zi −
zj )3, we see that

lim
z1,2→0

z−α
1,2 ψ(z1, . . . ,zN ) = 0 for α = 0,1,2 (G7)

with zi,j = zi − zj . Let us introduce a fermionic deletion
operator di that destroys a fermion in angular momentum
orbital i, analogous to the bosonic case Eq. (17). We can rewrite
the wave function as

ψ(z1, . . . ,zN ) = ∑
l1,l2

z
l1
1 z

l2
2 〈z3, . . . ,zN |dl1dl2 |ψ〉 (G8)

and expand z
l2
2 as

z
l2
2 = (z1 − z1,2)l2

=
l2∑

j=0

(
l2

j

)
z
l2−j

1 (−z1,2)j . (G9)

By inserting this expression of ψ into Eq. (G6) and taking
the limit z1,2 → 0, the only nonvanishing contribution is for
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j = α(= 0,1,2) (all others vanish trivially) and we arrive at
the clustering constraints

0 =
∑
l1,l2

(
l2

α

)
dl1dl2 |ψ〉. (G10)

The condition at α = 0 is identically zero due to the anticom-
mutation relations of the fermionic operators.

For α = 1, we find, using β = l1 + l2,

0 =
β∑

l=0

ldβ−ldl|ψ〉 for β � 1. (G11)

When applying the above conditions, one must account for
the anticommutation of the fermionic deletion operators dl .
Choosing α = 2 yields clustering constraints that are identical
to those at α = 1, up to an overall multiplicative constant.
Thus, for the fermionic model state at ν = 1/3, we find only
one clustering condition [Eq. (G11)] as in the bosonic case.

For k > 1, a very similar picture emerges. The two-body
clustering constraints that originate from requiring

lim
z1,2→0

ψ(z1, . . . ,zN ) ≡ 0 (G12)

are equivalent to Pauli exclusion statistics. In order to find
the relevant (k + 1)-particle clustering condition, we divide

the wave function by a full Jastrow factor of the particles
z1, . . . ,zk+1:

0 ≡ lim
z1,2,...,z1,k+1→0

⎛
⎝k+1∏

i<j

z−1
i,j

⎞
⎠ ψ(z1, . . . ,zN ) . (G13)

Following the same steps as in the preceding section, we find
the clustering constraints

0 =
∑

l1,...,lk+1

k+1∏
j=1

(
lj

j

)
dlj |ψ〉 (G14)

with l1 + l2 + . . . lk+1 = β.
In principle, one can also analyze variants of Eq. (G13),

where not a full Jastrow factor is divided out, and derive
clustering constraints from them. However, the resulting
conditions are identically zero due to the anticommuting
operators. The only nontrivial relation is the one given in
Eq. (G14).

In general, when multiplying the (k,2)-clustering model
state with M Jastrow factors (M > 1), we find 
M/2� two-
body clustering constraints and (for k > 1) 
M/2� three-body
clustering constraints, in addition to the original (k + 1)-body
clustering constraint from the model state. Thus, the total
number Nc of clustering constraints is Nc = 2
M/2� + 1.
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10J.-M. Stéphan, S. Furukawa, G. Misguich, and V. Pasquier, Phys.
Rev. B 80, 184421 (2009).

11S. Dong, E. Fradkin, R. G. Leigh, and S. Nowling, J. High Energy
Phys. 05 (2008) 016.

12M. Haque, O. Zozulya, and K. Schoutens, Phys. Rev. Lett. 98,
060401 (2007).

13A. M. Lauchli, E. J. Bergholtz, and M. Haque, New. J. Phys. 12,
075004 (2010).

14H. Li and F. D. M. Haldane, Phys. Rev. Lett. 101, 010504 (2008).
15R. Thomale, A. Sterdyniak, N. Regnault, and B. A. Bernevig, Phys.

Rev. Lett. 104, 180502 (2010).
16M. Hermanns, A. Chandran, N. Regnault, and B. Bernevig, Phys.

Rev. B 84, 121309(R) (2011).
17A. Sterdyniak, N. Regnault, and B. Bernevig, Phys. Rev. Lett. 106,

100405 (2011).
18E. Prodan, T. L. Hughes, and B. A. Bernevig, Phys. Rev. Lett. 105,

115501 (2010).
19L. Fidkowski, T. Jackson, and I. Klich, e-print arXiv:1101.0320.
20T. Hughes, E. Prodan, and B. Bernevig, Phys. Rev. B 83, 245132

(2011).

21A. Turner, Y. Zhang, R. Mong, and A. Vishwanath, e-print
arXiv:1010.4335.

22H. Yao and X.-L. Qi, Phys. Rev. Lett. 105, 080501 (2010).
23M. Fagotti, P. Calabrese, and J. Moore, J. Stat. Mech. (2010)

P09012.
24F. Franchini, A. R. Its, V. E. Korepin, and L. A. Takhtajan, Quantum

Inf. Process. 10, 325 (2011).
25A. M. Turner, F. Pollmann, and E. Berg, Phys. Rev. B 83, 075102

(2011).
26F. Pollmann and J. E. Moore, New J. Phys. 12, 025006

(2010).
27F. Pollmann, A. M. Turner, E. Berg, and M. Oshikawa, Phys. Rev.

B 81, 064439 (2010).
28D. Poilblanc, Phys. Rev. Lett. 105, 077202 (2010).
29R. Thomale, D. P. Arovas, and B. A. Bernevig, Phys. Rev. Lett. 105,

116805 (2010).
30P. Calabrese and A. Lefevre, Phys. Rev. A 78, 032329 (2008).
31A. M. Läuchli, E. J. Bergholtz, J. Suorsa, and M. Haque, Phys. Rev.

Lett. 104, 156404 (2010).
32O. S. Zozulya, M. Haque, and N. Regnault, Phys. Rev. B 79, 045409

(2009).
33Z. Papic, B. A. Bernevig, and N. Regnault, Phys. Rev. Lett. 106,

056801 (2011).
34Z. Liu, H.-L. Guo, V. Vedral, and H. Fan, Phys. Rev. A 83, 013620

(2011).
35J. Schliemann, Phys. Rev. B 83, 115322 (2011).
36L. Fidkowski, Phys. Rev. Lett. 104, 130502 (2010).
37A. M. Turner, Y. Zhang, and A. Vishwanath, Phys. Rev. B 82,

241102 (2010).
38I. Peschel, J. Phys. A: Math. Gen. 36, L205 (2003).

205136-20

http://dx.doi.org/10.1103/PhysRevLett.69.2863
http://dx.doi.org/10.1103/RevModPhys.77.259
http://dx.doi.org/10.1103/PhysRevLett.86.5755
http://dx.doi.org/10.1103/PhysRevLett.100.166803
http://dx.doi.org/10.1103/PhysRevLett.100.166803
http://dx.doi.org/10.1103/PhysRevLett.99.220405
http://arXiv.org/abs/cond-mat/0407066
http://dx.doi.org/10.1103/PhysRevLett.96.110405
http://dx.doi.org/10.1103/PhysRevLett.96.110404
http://dx.doi.org/10.1088/1742-5468/2004/06/P06002
http://dx.doi.org/10.1103/PhysRevB.80.184421
http://dx.doi.org/10.1103/PhysRevB.80.184421
http://dx.doi.org/10.1088/1126-6708/2008/05/016
http://dx.doi.org/10.1088/1126-6708/2008/05/016
http://dx.doi.org/10.1103/PhysRevLett.98.060401
http://dx.doi.org/10.1103/PhysRevLett.98.060401
http://dx.doi.org/10.1088/1367-2630/12/7/075004
http://dx.doi.org/10.1088/1367-2630/12/7/075004
http://dx.doi.org/10.1103/PhysRevLett.101.010504
http://dx.doi.org/10.1103/PhysRevLett.104.180502
http://dx.doi.org/10.1103/PhysRevLett.104.180502
http://dx.doi.org/10.1103/PhysRevB.84.121309
http://dx.doi.org/10.1103/PhysRevB.84.121309
http://dx.doi.org/10.1103/PhysRevLett.106.100405
http://dx.doi.org/10.1103/PhysRevLett.106.100405
http://dx.doi.org/10.1103/PhysRevLett.105.115501
http://dx.doi.org/10.1103/PhysRevLett.105.115501
http://arXiv.org/abs/arXiv:1101.0320
http://dx.doi.org/10.1103/PhysRevB.83.245132
http://dx.doi.org/10.1103/PhysRevB.83.245132
http://arXiv.org/abs/arXiv:1010.4335
http://dx.doi.org/10.1103/PhysRevLett.105.080501
http://dx.doi.org/10.1007/s11128-010-0197-7
http://dx.doi.org/10.1007/s11128-010-0197-7
http://dx.doi.org/10.1103/PhysRevB.83.075102
http://dx.doi.org/10.1103/PhysRevB.83.075102
http://dx.doi.org/10.1088/1367-2630/12/2/025006
http://dx.doi.org/10.1088/1367-2630/12/2/025006
http://dx.doi.org/10.1103/PhysRevB.81.064439
http://dx.doi.org/10.1103/PhysRevB.81.064439
http://dx.doi.org/10.1103/PhysRevLett.105.077202
http://dx.doi.org/10.1103/PhysRevLett.105.116805
http://dx.doi.org/10.1103/PhysRevLett.105.116805
http://dx.doi.org/10.1103/PhysRevA.78.032329
http://dx.doi.org/10.1103/PhysRevLett.104.156404
http://dx.doi.org/10.1103/PhysRevLett.104.156404
http://dx.doi.org/10.1103/PhysRevB.79.045409
http://dx.doi.org/10.1103/PhysRevB.79.045409
http://dx.doi.org/10.1103/PhysRevLett.106.056801
http://dx.doi.org/10.1103/PhysRevLett.106.056801
http://dx.doi.org/10.1103/PhysRevA.83.019903
http://dx.doi.org/10.1103/PhysRevA.83.019903
http://dx.doi.org/10.1103/PhysRevB.83.115322
http://dx.doi.org/10.1103/PhysRevLett.104.130502
http://dx.doi.org/10.1103/PhysRevB.82.241102
http://dx.doi.org/10.1103/PhysRevB.82.241102
http://dx.doi.org/10.1088/0305-4470/36/14/101


BULK-EDGE CORRESPONDENCE IN ENTANGLEMENT SPECTRA PHYSICAL REVIEW B 84, 205136 (2011)

39S. H. Simon, E. H. Rezayi, and N. R. Cooper, Phys. Rev. B 75,
195306 (2007).

40F. D. M. Haldane, Phys. Rev. Lett. 51, 605 (1983).
41F. D. M. Haldane, Phys. Rev. Lett. 67, 937 (1991).
42B. A. Bernevig and F. D. M. Haldane, Phys. Rev. Lett. 100, 246802

(2008).
43R. Stanley, Adv. Math. 77, 76 (1989).
44X.-G. Wen, Adv. Phys. 44, 405 (1995).
45B. A. Bernevig and F. D. M. Haldane, Phys. Rev. B 77, 184502

(2008).
46V. Gurarie and E. Rezayi, Phys. Rev. B 61, 5473

(2000).
47N. Read and E. Rezayi, Phys. Rev. B 59, 8084 (1999).
48B. Estienne (private communication).

49N. Read, Phys. Rev. B 79, 045308 (2009).
50P. Bonderson, V. Gurarie, and C. Nayak, Phys. Rev. B 83, 075303

(2011).
51B. Estienne and R. Santachiara, J. Phys. A: Math. Gen. 42, 445209

(2009).
52B. Bernevig, V. Gurarie, and S. Simon, J. Phys. A: Math. Gen. 42,

245206 (2009).
53S. H. Simon, E. H. Rezayi, N. R. Cooper, and I. Berdnikov, Phys.

Rev. B 75, 075317 (2007).
54D. Green, Ph.D. thesis, Yale University, 2001.
55M. Hermanns, N. Regnault, B. A. Bernevig, and E. Ardonne, Phys.

Rev. B 83, 241302 (2011).
56B. A. Bernevig and F. D. M. Haldane, Phys. Rev. Lett. 101, 246806

(2008).

205136-21

http://dx.doi.org/10.1103/PhysRevB.75.195306
http://dx.doi.org/10.1103/PhysRevB.75.195306
http://dx.doi.org/10.1103/PhysRevLett.51.605
http://dx.doi.org/10.1103/PhysRevLett.67.937
http://dx.doi.org/10.1103/PhysRevLett.100.246802
http://dx.doi.org/10.1103/PhysRevLett.100.246802
http://dx.doi.org/10.1016/0001-8708(89)90015-7
http://dx.doi.org/10.1080/00018739500101566
http://dx.doi.org/10.1103/PhysRevB.77.184502
http://dx.doi.org/10.1103/PhysRevB.77.184502
http://dx.doi.org/10.1103/PhysRevB.61.5473
http://dx.doi.org/10.1103/PhysRevB.61.5473
http://dx.doi.org/10.1103/PhysRevB.59.8084
http://dx.doi.org/10.1103/PhysRevB.79.045308
http://dx.doi.org/10.1103/PhysRevB.83.075303
http://dx.doi.org/10.1103/PhysRevB.83.075303
http://dx.doi.org/10.1088/1751-8113/42/44/445209
http://dx.doi.org/10.1088/1751-8113/42/44/445209
http://dx.doi.org/10.1088/1751-8113/42/24/245206
http://dx.doi.org/10.1088/1751-8113/42/24/245206
http://dx.doi.org/10.1103/PhysRevB.75.075317
http://dx.doi.org/10.1103/PhysRevB.75.075317
http://dx.doi.org/10.1103/PhysRevB.83.241302
http://dx.doi.org/10.1103/PhysRevB.83.241302
http://dx.doi.org/10.1103/PhysRevLett.101.246806
http://dx.doi.org/10.1103/PhysRevLett.101.246806

