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Nonstochastic algorithms for Jastrow-Slater and correlator product state wave functions
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Jastrow-Slater and correlator product state wave functions, two classes of quantum many-body wave functions,
are commonly studied using Monte Carlo methods with the associated drawbacks of stochastic error. Here we
show that efficient nonstochastic algorithms for these wave functions exist, both for observable evaluation
and for optimization. The algorithms rely on the structure of these states as a product of local, commuting,
invertible operators acting on a simple reference wave function. We describe the nonstochastic energy evaluation
and optimization algorithms, and demonstrate them with applications to the Heisenberg and spinless and full
Hubbard models. Our results demonstrate that the nonstochastic algorithms yield optimized wave functions and
energies very close to those obtained with the variational Monte Carlo algorithm. Such algorithms provide new
criteria for identifying new classes of wave functions for efficient computational simulation.
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I. INTRODUCTION

Explicit wave-function approximations present a powerful
approach to understanding the behavior of quantum many-
body systems. For a wave function to be computationally
useful, it is not sufficient to simply have a compact form.
Instead it must also be possible to efficiently evaluate expec-
tation values. Expectation values formally involve a trace over
the Hilbert space, which is of exponential dimension. The
evaluation of this trace can often be carried out efficiently with
Monte Carlo techniques. However, this introduces statistical
error, which must be controlled and which can lead to certain
complications, for example in wave-function optimization.

The Jastrow-Slater wave function1,2 is one of the most
common wave functions used together with Monte Carlo
sampling in fermionic systems. As the name suggests, the wave
function augments a Slater determinant, the appropriate state
for a system of noninteracting fermions, with a set of Jastrow
factors. Jastrow factors are diagonal operators in the lattice
basis and can be thought of as directly introducing correlations
between particles in the system. Jastrow-Slater wave functions
also form the starting point for more flexible wave functions
such as the Jastrow-antisymmetrized geminal power3–5 and
Jastrow-Bardeen-Cooper-Schrieffer6 wave functions.

Recently, a second class of wave functions, termed
correlator product states (CPS),7 entangled plaquette states
(EPS),8,9 or complete graph tensor networks,10 have also been
studied with Monte Carlo methods. We refer to these wave
functions collectively as correlator product states here. These
wave functions were constructed as a way to generalize the
density-matrix renormalization group (DMRG)11,12 to higher
dimensions, while avoiding the computational cost of recent
classes of tensor network wave functions such as the projected
entangled pair states (PEPS)13–23 or multiscale entanglement
renormalization ansatz (MERA).24,25 The correlator product
state directly approximates a wave function as a product
of correlator amplitudes. Correlators are diagonal operators,
and are thus mathematically identical to Jastrow factors.
Consequently the correlator product state is also a pure Jastrow
wave function. In this work the term correlator will be used to
refer to both correlators as used in the CPS, and the Jastrow
factors used in the Jastrow-Slater wave function.

While the form of the Jastrow-Slater and CPS wave
functions make them a natural fit for Monte Carlo algorithms,
it is interesting to ask whether or not statistical algorithms,
with their associated drawbacks of statistical error, are the
only way to manipulate these states. Here we will show
that efficient nonstochastic algorithms exist both to evaluate
observables and to optimize the CPS and Jastrow-Slater wave
function, so long as we are willing to sacrifice the strict
variational principle. The nonstochastic algorithms rely on
the common structure of the Jastrow-Slater and CPS wave
functions, namely that they are a product of local, commuting,
invertible operators acting on a simple reference state. Other
wave functions, such as the coupled cluster wave function, also
take this form, and the algorithms we describe are similar to the
techniques used for observable evaluation and wave-function
optimization in the coupled cluster literature.26

As we shall see, the nonstochastic methodology we employ
can be written in terms of a similarity transform on the
Hamiltonian that attempts to convert the system of correlated
physical particles into a system of weakly correlated or
uncorrelated quasiparticles. In this respect our approach shares
many similarities with a number of other methods, in particular
the transcorrelated wave equation (TWE),27 the method of
correlated basis functions (CBFs),28 and coupled cluster
theory. In each of these methods, as well as in our own,
one must limit the form of the modified Hamiltonian and
possibly introduce other approximations in order to achieve
computational feasibility. It is the nature of these limitations
and approximations that differentiate these methods. In the
TWE, the correlating factor (which here we would refer to
as a correlator or Jastrow factor) is limited to correlating no
more than two particles at a time, allowing one to evaluate the
necessary integrals by numerical quadrature. In the CBF ap-
proach, the variational energy expression is simplified through
a perturbatively motivated truncation based on the ratio of the
(supposedly small) volume in which two particles correlate to
the total volume of the system, and the resulting expression
is minimized using a linear combination of determinants
rather than a single determinant. Our approach also uses the
concept of a small correlation volume, but not in a perturbative
manner. Instead, we explicitly limit the range over which
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our “correlating functions” (correlators or Jastrow factors)
can operate, which makes the complexity of the operators in
the similarity transformed Hamiltonian independent of system
size. Unlike the TWE and CBF methods, our method permits
the use of many-body (i.e., more than two-body) correlation
functions, which is critical when working with CPS tensor
networks. Finally, coupled cluster theory uses an approach
that is mathematically very similar to ours, although there the
form of the correlating function is different and the limitation
is placed not on the range of the correlations in terms of
real-space distances but rather on the particle excitation rank
relative to a reference state. To make a connection with the
concept of locality, limiting the excitation rank in coupled
cluster can be viewed as limiting the “energetic distance” from
the reference.

We begin by reviewing the structure of the CPS and Jastrow
wave functions (Sec. II A). We then proceed to describe the
energy evaluation (Sec. II B) and optimization algorithms
(Sec. II C). Demonstrations of these nonstochastic algorithms
are carried out on the Heisenberg model (Sec. III A), the
spinless Hubbard model (Sec. III B), and the full Hubbard
model (Sec. III C). Our purpose in applying the method to
these models is to establish the validity of our approximations,
and so in this study we have intentionally limited ourselves
to systems for which the correct answers are more or less
already known. After these lattice model tests, we finish with
our conclusions in Sec. IV.

II. THEORY

A. CPS and Jastrow-Slater wave functions

Consider an arbitrary quantum wave function on k lattice
sites. This can be written as

|�〉 =
∑

n1n2···nk

�n1n2··· nk
|n1n2 · · · nk〉

=
∑

n

�n|n〉, (1)

where n denotes the vector of occupancies n1n2 · · · nk . In a
spin-1/2 system,

|ni〉 ∈ {|↑〉,|↓〉}, (2)

while in a fermion system,

|ni〉 ∈ {|−〉,|↑〉,|↓〉,|↑↓〉}. (3)

Here, we describe the CPS and Jastrow-Slater approxima-
tions to |�〉. We first define a Jastrow factor. A Jastrow factor
is an operator that is diagonal in the lattice basis |n〉. It is
usually written as an exponential of an expansion in number
operators,

Ĵ = exp

(
j +

∑
i

ji n̂i +
∑
ij

jij n̂i n̂j + · · ·
)

. (4)

In most applications, the Jastrow amplitudes j,ji,jij . . ., are
restricted to be real numbers, which makes the Jastrow factor
Ĵ positive definite. For full generality, however, we should
regard the amplitudes as possibly being complex.
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FIG. 1. Examples of correlators on the square lattice. A: one-site
correlator, similar to a Gutzwiller factor. B: nearest-neighbor two-site
correlator. C: three-site line correlator. D: four-site line correlator. E:
four-site square correlator. F: nine-site square correlator. G: five-site
cross correlator.

A correlator is also an operator that is diagonal in the
lattice basis. It can be viewed as a Jastrow factor written in
nonexponential form. A single correlator acts on a domain of
sites. For example, a correlator on sites i,j takes the form

ĉij =
∑
ninj

|ninj 〉 cninj
〈ninj |

=
∑
ninj

cninj
P̂ninj

, (5)

where cninj
are the correlator amplitudes, and we have

introduced the projection operator P̂ninj
= |ninj 〉〈ninj |. The

equivalence of the correlator and Jastrow factor is seen by rec-
ognizing that a two-site correlator ĉij is exactly representable
by a two-site Jastrow factor exp(j + ji n̂i + jij n̂i n̂j ), so long
as the Jastrow amplitudes are allowed to be complex. The
choice of using the exponentiated Jastrow representation or the
correlator representation is a matter of numerical expediency.
In the current work, we henceforth use the term “correlator”
to refer to both representations.

A correlator can be chosen to act on an arbitrary number of
sites (see Figs. 1 and 2). Such a general correlator is written as

ĉλ = ∑
nλ

cnλ
P̂nλ

, (6)

where nλ is the occupancy vector of the sites in the domain of
the correlator, and P̂nλ

is the corresponding projector.
Both Jastrow factors and correlators can be applied to

reference wave functions |�〉 to generate approximations to
|�〉. We start with the correlator product state (CPS). This is
obtained from the uniform reference function |�U 〉, an equally
weighted sum over the lattice quantum basis,

|�U 〉 =
∑

n

|n〉. (7)

The summation in Eq. (7) may be chosen with symmetry
constraints. For example, in this work, we always use a uniform
reference such that for spin systems, the summation in Eq. (7)
refers to states only with given Sz, while for fermionic system,
to states with only given N and given Sz.
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FIG. 2. Examples of correlators on the triangular lattice. A and
B: the two orientations of three-site triangle correlators. C and D: the
two orientations of six-site triangle correlators. E, F, and G: the three
orientations of four-site rhombus correlators. H: a seven-site hexagon
correlator.

The CPS is then obtained by applying a product of
correlators to |�U 〉,

|�〉 = Ĉ|�U 〉 =
∏
λ

ĉλ|�U 〉. (8)

The correlator amplitudes cnλ
provide a product approximation

to the wave-function amplitudes �n in Eq. (1),

�n =
∏
λ

cnλ
, (9)

and this expression can be evaluated efficiently in a time
proportional to the number of correlators. Note that the
domains λ of the different correlators will usually contain
overlapping sites. For example, for a CPS wave function in
one dimension with nearest-neighbor correlators, we have

|�〉 = ĉ12ĉ23ĉ34 · · · ĉk−1k|�U 〉. (10)

By using correlators that cover increasingly larger numbers of
sites, CPSs become an exact family of states.

The Jastrow-Slater fermion wave function is obtained by
applying a set of correlators (i.e., Jastrow factors) to a Slater
determinant reference of orbitals |�D〉 = det |φ1φ2 · · ·φN |,

|�〉 = Ĉ|�D〉. (11)

The wave-function amplitudes in this case are given by

�n1n2...nk
=

∏
λ

cnλ
× det |φ1(r1)φ2(r2) · · · φN (rN )|, (12)

where r1,r2 . . . rN label the positions of the N sites occu-
pied in the occupancy vector |n1n2 · · · nk〉. The determinant
contribution to the wave-function amplitude can be evaluated
efficiently in O(N3) time. As in the case of the CPSs,
Jastrow-Slater wave functions become an exact family of states
if the correlators (Jastrows) cover larger and larger numbers of
sites.

Both the CPS and Jastrow-Slater wave functions have so
far been used in conjunction with Monte Carlo algorithms. In
variational Monte Carlo,29,30 the energy is written as

E = 〈�|H |�〉
〈�|�〉 =

∑
n

|�n|2
〈�|�〉EL(n), (13)

where the local energy EL(n) is defined by

EL(n) = ∑
n′

�n′
�n

〈n|H |n′〉. (14)

As long as �n can be evaluated efficiently, which is the case
for both the CPS and Jastrow-Slater wave functions, a Markov
chain can be used to sample the probability distribution
|�n|2/〈�|�〉 and to efficiently compute the overall energy as
an average of the sampled local energies. The wave functions
may also be variationally optimized using stochastic estimates
for the gradient of the energy with respect to the wave-
function amplitudes. Variational Monte Carlo is a stochastic
approach to using the CPS and Jastrow-Slater wave functions.
A disadvantage of stochastic algorithms is the presence of
statistical error, which must be controlled by increasing the
sample size. We now show how statistical noise can be avoided
by using nonstochastic algorithms both to evaluate the energy
of, and to optimize the amplitudes of, CPS and Jastrow-Slater
wave functions.

B. Nonstochastic energy evaluation

The idea behind our approach to nonstochastic energy
evaluation is the following. First, we assume that the CPS
or Jastrow wave function |�〉 = Ĉ|�〉 (we use |�〉 to refer to
either the uniform or determinant reference) is an eigenstate
of the Hamiltonian H ,

HĈ|�〉 = EĈ|�〉. (15)

The energy is then obtained as the asymmetric expectation
value,

E = 〈�|Ĉ−1HĈ|�〉 = 〈�|H̄ |�〉, (16)

where we define the similarity transformed effective Hamilto-
nian, H̄ = Ĉ−1HĈ.

Efficient nonstochastic energy evaluation now reduces to
whether or not 〈H̄ 〉 can be efficiently obtained with the
reference state |�〉, where |�〉 is a uniform reference in the case
of CPSs, or a determinant in the case of the Jastrow-Slater wave
function. By efficient, we mean that the cost is polynomial in
the lattice size. The standard expectation value 〈�|H |�〉 can
be efficiently evaluated in either case because the individual
terms in the Hamiltonian act on a small number of sites,
independent of lattice size. For example, the Heisenberg
and Hubbard Hamiltonians contain terms that only act at
most on a pair of sites. The corresponding terms in the
effective Hamiltonian H̄ act on a larger number of sites due
to the similarity transformation by the correlators. However,
if the size and range of the correlators are independent of
lattice size, then even after similarity transformation, the terms
in H̄ still act on a number of sites that will be independent of
lattice size. Consequently, the expectation value 〈H̄ 〉 can still
be evaluated at a cost scaling polynomially with respect to the
lattice size. As we shall see, the magnitude of the evaluation
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cost (although not its scaling with respect to system size) is
strongly dependent on the range of the correlators. One of
the questions we seek to answer in this work is what the
practical limits for correlator range are and what accuracy can
be achieved within these limits.

For a more concrete view of the nonstochastic energy
evaluation, consider the energy contribution Exy from a
hopping operator a

†
xay associated with sites x and y,

Exy = 〈�|Ĉ−1a
†
xayĈ|�〉. (17)

We can divide the correlators in Ĉ (and their inverses in Ĉ−1)
into two classes: those that involve (touch) sites x or y and
those that do not. Denote the product of all the correlators
that involve x or y as Ĉxy , and the product of the remaining
correlators as Ĉxy . Then we have

Ĉ = Ĉxy Ĉxy. (18)

As an example, consider the hopping operator a
†
3a4, and the

one-dimensional CPS in Eq. (10). Then, Ĉ34 is given by

Ĉ34 = ĉ23ĉ34ĉ45. (19)

Because Ĉxy only contains correlators that do not involve
sites x or y, it can be commuted past a

†
xay in Eq. (17) to cancel

with its corresponding inverse Ĉ−1
xy ,

Exy = 〈�|Ĉ−1
xy Ĉ−1

xy a†
xay Ĉxy Ĉxy |�〉

= 〈�|Ĉ−1
xy a†

xayĈxy |�〉. (20)

Thus the similarity transform of a
†
xay involves only Ĉxy , not

the whole Ĉ operator. The correlators in Ĉxy define a cluster
of kxy sites, where the size depends on the sizes and ranges
of the correlators and the geometry of the cluster, but is
independent of lattice size as long as the correlators are local.
The transformed hopping operator Ĉ−1

xy a
†
xayĈxy now acts on

kxy sites. The energy contribution Exy thus requires evaluating
the expectation value of a kxy site operator with the reference
function |�〉.

To see the explicit dependence of the evaluation of 〈a†
xay〉

on the reference function, we separate Ĉxy into its amplitude
and projection operator components,

Ĉxy =
∑
nxy

Cnxy
P̂nxy

, (21)

where nxy is the occupancy vector for the cluster of sites
defined by Ĉxy . The expectation values of the projection
operators define a many-body reduced density-matrix (RDM)
γ on kxy sites,

γnxy ,n′
xy

= 〈�|P̂nxy
a†

xayP̂n′
xy
|�〉. (22)

The evaluation of γ depends on the form of the reference
function |�〉. In the case of the CPS, each element of the
RDM is obtained in O(1) time (even with particle number
and Sz restrictions). For a Jastrow-Slater wave function, the
corresponding RDM element can be evaluated as a determinant
of one-body RDM elements in O(k3

xy) time. Once the RDM is

obtained, the combination with the amplitudes is independent
of the reference. The expectation value Exy becomes

Exy =
∑

nxy n′
xy

C−1
nxy

γnxy ,n′
xy

Cn′
xy
. (23)

Due to the summation over the occupancy vector, the cost
of Eq. (23) is exponential in the cluster size, kxy , but not in
the lattice size. Note that the cost is effectively the cost of
a single summation over nxy , rather than the formal double
summation shown above, because the sparsity of γ means
that it has O(dkxy ) nonzero elements, where d is dimension of
a single site. For sufficiently short-range correlators, which
lead to small clusters, the summation can be carried out
affordably. As each operator in the Hamiltonian involves
a similar contribution, the entire energy may be efficiently
evaluated.

The nonstochastic energy evaluation algorithm relies on
little of the detailed structure of the Jastrow-Slater and CPS
wave functions. The key steps require only that (i) Ĉ is made of
a product of local, commuting, invertible operators, (ii) only a
small number of these operators do not commute with a given
term in the Hamiltonian, and (iii) the reference function |�〉 is
sufficiently simple that the expectation values in Eq. (22) can
be efficiently obtained. This structure is obeyed by many other
wave functions, such as the coupled cluster wave function26

(although there locality refers to the particle rank of excitations
out of some reference function rather than a distance in real
space), and indeed for any wave function with this structure,
an efficient nonstochastic energy evaluation algorithm may be
formulated.

C. Nonstochastic wave-function optimization

Above we showed that we can evaluate the approximate
energy of a CPS or Jastrow-Slater wave function in a
nonstochastic way, as long as the individual correlators or
Jastrow factors do not cover too many sites. For a complete
calculation, we need to also determine the correlator or Jastrow
amplitudes. Since the nonstochastic energy is not variational,
we cannot obtain the optimal parameters by a minimization
of the energy. Instead, we require that the CPS or Jastrow
wave function satisfies a set of nonlinear projected Schrödinger
equations. Solving these equations yields exactly the same
solution as the minimum of the variational energy if the wave
function provides an exact parametrization, although this is
not the case for approximate CPS and Jastrow wave functions.

As in the previous section, we assume that the CPS or
Jastrow wave function is a true eigenstate of the Hamiltonian,
Eq. (15). From the Schrödinger equation, we need to obtain a
set of nonlinear equations equal in number to the number of
amplitudes in Ĉ. We obtain sufficient equations by projecting
with the bras 〈�|P̂nλ

, where P̂nλ
are the projectors used to

define the correlator operators in Eq. (6). Applying these bra
states gives us

〈�|P̂nλ
(H̄ − E)|�〉 = Rnλ

= 0. (24)

By requiring the residuals Rnλ
to vanish we determine all

the correlator amplitudes cnλ
. As with energy evaluation, the

expectation value in Eq. (24) can be obtained in a nonstochastic
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TABLE I. Comparison of nonstochastic and variational MC results for the antiferromagnetic spin- 1
2 Heisenberg model on the 8 × 8 square

lattice with periodic boundary conditions and total Sz = 0. The energies per site are reported in units of J. The variational Monte Carlo error
is reported relative to the essentially exact stochastic series expansion (SSE) (Ref. 31). Translationally invariant correlators are employed,
with each of the two sublattices having independent correlators. When optimizing the correlators, Marshall’s sign rule is used as an initial
guess. The acronyms NS and VNS refer to the nonstochastic and variational energies, respectively, of the wave function resulting from a
nonstochastic optimization, while %D indicates the percent difference between these energies and the variational energy of the VMC wave
function.

Correlators VMC NS %D VNS %D VMC % Error

Nearest neighbor −0.6534(6) −0.6883 −5.34 −0.6501(2) 0.51 2.98
Four-site squares −0.6617(3) −0.6659 −0.64 −0.6561(2) 0.84 1.76
Five-site crosses −0.6637(3) −0.6449 2.82 −0.6573(2) 0.97 1.46
Nine-site squares −0.6699(2) −0.6651 0.72 −0.6689(1) 0.15 0.53

manner by tracing over clusters of sites associated with each
similarity transformed term in the effective Hamiltonian H̄ .

In order to solve the simultaneous set of equations (24), we
have taken two approaches. In the first case, we use a standard
Newton-Raphson procedure to find the simultaneous zeros
of the residuals Rnλ

. This requires evaluating the Jacobian
matrix ∂Rnλ

/∂cnμ
. Alternatively, we may take the approach of

constructing and diagonalizing a local Hamiltonian for each
correlator’s amplitudes. The local Hamiltonian and overlap
matrices that determine cnλ

are defined as

H̄nλ,n′
λ
= 〈

�|P̂nλ
cnλ

H̄ c−1
n′

λ
P̂n′

λ
|�〉

, (25)

Snλ,n′
λ
= 〈�|P̂nλ

P̂n′
λ
|�〉. (26)

The correlator amplitudes are obtained from solving an
eigenvalue problem for each correlator ĉλ,∑

n′
λ

H̄nλ,n′
λ
cn′

λ
= E

∑
n′

λ

Snλ,n′
λ
cn′

λ
. (27)

The local Hamiltonian matrix H̄nλ,n′
λ

depends on the am-
plitudes of all the correlators, ĉμ �=λ. Thus after each corre-
lator amplitude is obtained from the respective eigenvalue
problem (27), the local Hamiltonians are updated, and the
procedure is iterated until convergence is achieved.

Much as in the case of energy evaluation, the formulation
of the amplitude equations relies only on generic elements
of the product structure of the Jastrow-Slater and CPS wave
functions. By analogy with methods for the coupled cluster
wave function, we can also write down a nonstochastic
algorithm to obtain expectation values of arbitrary operators.

Starting from the amplitude equations, we first define a
Lagrangian as

L = 〈�|H̄ +
∑
nμ

�nμ
P̂nμ

(
H̄ − 〈�|H̄ |�〉) |�〉, (28)

from which the amplitude equations arise from the stationary
conditions

∂L

∂�nμ

= 0. (29)

The values of the Lagrange multipliers �nμ
are found by

requiring the Lagrangian to be stationary with respect to the
correlator variables cnμ

,

∂L

∂cnμ

= 0. (30)

Then, derivatives of the Lagrangian with respect to the
Hamiltonian’s parameters define reduced density matrices as

	ij = 〈�|a†
i aj +

∑
nμ

�nμ
P̂nμ

(a†
i aj − 〈�|a†

i aj |�〉)|�〉, (31)

where a
†
i aj = Ĉ−1a

†
i aj Ĉ. The two body reduced density

matrix 	ijkl is defined likewise using a
†
i a

†
j alak . These density

matrices allow us to obtain expectation values of arbitrary one-
and two-body operators.

III. RESULTS

In this section we report results for a number of benchmark
calculations in which we test the assumptions inherent to

TABLE II. Comparison of nonstochastic and variational MC results for the antiferromagnetic spin- 1
2 Heisenberg model on the 6 × 6

triangular lattice with periodic boundary conditions and total Sz = 0. The energies per site are reported in units of J. Translationally invariant
correlators are employed, with each of the three sublattices having independent correlators. When optimizing the correlators, the solution to
the classical Heisenberg model is used as an initial guess. Here NS, VNS, and %D have the same meaning as in Table I.

Correlators VMC NS %D VNS %D

Nearest neighbor −0.5184(2) −0.5253 −1.33 −0.5183(1) 0.02
Three-site triangles −0.5184(2) −0.5253 −1.33 −0.5183(1) 0.03
Four-site rhombuses −0.5383(3) −0.5353 0.55 −0.5108(2) 5.11
Six-site triangles −0.5419(2) −0.5289 2.40 −0.5353(1) 1.21
Seven-site hexagons −0.5435(2) −0.5390 0.83 −0.5397(1) 0.69
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our nonstochastic approach. It is not within the scope of
our study to investigate new phenomena with our technique.
Instead we limit ourselves to systems for which the correct
results are more or less known in order to assess the perfor-
mance of our approach. To simplify the tabulation of data,
we have used the abbreviations NS (nonstochastic energy of
the nonstochastic wave function), VNS (variational energy of
the nonstochastic wave function), and %D (percent difference
from the variational energy of the variational wave function).
Where appropriate, we include the statistical uncertainty of the
final digit in parentheses.

A. Antiferromagnetic Heisenberg model

We have applied the correlator product state to the antiferro-
magnetic spin- 1

2 Heisenberg model on a periodic 8 × 8 square
lattice and a periodic 6 × 6 triangular lattice using both the
nonstochastic and variational Monte Carlo (MC) frameworks.
The Hamiltonian is written as

H = J
∑
〈ij〉

	Si · 	Sj , (32)

where 〈ij 〉 indicates nearest-neighbor pairs and J > 0. The
results are summarized in Tables I and II. In the case of
the square lattice, we have essentially exact stochastic series
expansion (SSE) results with which to compare.31 While the
accuracy of the CPS ansatz is not the main question we are
studying here (such studies can be found in Refs. 7–9), we
see that both the nonstochastic and variational Monte Carlo
energies are within 2% of the SSE result for four-site square
correlators and about 1% for nine-site square correlators. The
more central question here is the relative difference between
the nonstochastic and variational Monte Carlo energies. We
see that in all cases, the relative difference is comparable to
the intrinsic energy error associated with the wave function,
and in one case it is significantly smaller. As a measure of
the variational quality of the nonstochastic results, we have
also computed the variational energy of the wave functions
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FIG. 3. Energy errors for the 20-site (4 × 5) spinless Hubbard
model with ten particles and open boundary conditions. The non-
stochastic and variational MC methods used four-site square Jastrow
factors (correlators). Exact results were computed using the sparse
diagonalization routine in the ALPS program (Ref. 32).

resulting from our nonstochastic optimization (to save space in
tabulation we term this the VNS energy). We see that in most
cases this energy is very similar to the minimal variational
energy, especially in the case of the largest correlators (nine-
site squares and seven-site hexagons).

As expected, the nonstochastic energy is not variational, and
for small correlators it tends to be slightly below the variational
energy. More surprisingly, the convergence in accuracy for the
nonstochastic energy is not monotonic with correlator size.
We see both larger deviations from the variational Monte
Carlo results, as well as lower accuracy in the total energy,
for five-site crosses (in the square lattice) and six-site triangles
(in the triangular lattice), than for some smaller correlators.
We find that square and rhombus correlators do particularly
well on the square and triangular lattices, respectively, with
relative differences from the variational energy all within
1%. We speculate that these correlators’ success is due
in part to the fact that the amplitude equations used in
their optimization [Eq. (24)] are constructed using projectors
that share the translational symmetry of the underlying
lattice.

One appealing aspect of the nonstochastic method for CPS
on periodic spin lattices is that the cost of the method can be
made independent of the lattice size by using translationally
invariant correlators and by taking advantage of the uniform
reference’s particularly simple RDM elements [Eq. (22)].
As seen in Table VI, the nonstochastic method was much
faster than variational MC for small correlators (five-site
crosses/four-site rhombuses and smaller), while being slower
for larger correlators due to the exponential increase of the
cost with correlator size.

B. Spinless Hubbard model

We have studied a 20-site (4 × 5) spinless Hubbard lattice
with open boundary conditions using the Jastrow-Slater wave
function and the nonstochastic algorithms. We have also per-
formed variational Monte Carlo calculations for comparison.
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FIG. 4. Ground-state energy errors for the 20-site (4 × 5) spinless
Hubbard model with nine particles and open boundary conditions.
The nonstochastic and variational MC methods used four-site square
Jastrow factors (correlators). Exact results were computed using the
sparse diagonalization routine in the ALPS program (Ref. 32).
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TABLE III. Total ground-state energies, in units of t , for the 4 × 5 spinless Hubbard lattice at half filling with open boundary conditions.
Both the nonstochastic and variational MC methods use four-site square Jastrow factors (correlators). Exact results were computed using the
sparse diagonalization routine in the ALPS program (Ref. 32). Here NS and %D have the same meaning as in Table I.

U/t VMC NS %D Hartree-Fock Exact

0.1 −13.8158(1) −13.8157 0.00 −13.8117 −13.8166
0.2 −13.2438(2) −13.2437 0.00 −13.2276 −13.2475
0.4 −12.1368(4) −12.1367 0.00 −12.0709 −12.1544
0.6 −11.0611(2) −11.0591 0.02 −10.9539 −11.1267
0.8 −10.0884(2) −10.0850 0.03 −9.9598 −10.1737
1.0 −9.2273(2) −9.2230 0.05 −9.0917 −9.3066
1.2 −8.4712(2) −8.4660 0.06 −8.3382 −8.5326
1.4 −7.8072(2) −7.8022 0.06 −7.6827 −7.8507
2.0 −6.2529(2) −6.2491 0.06 −6.1622 −6.2658
4.0 −3.6141(1) −3.6139 0.00 −3.5885 −3.6151
6.0 −2.4988(1) −2.4989 −0.01 −2.4895 −2.4991
8.0 −1.9000(1) −1.9007 −0.03 −1.8963 −1.9007

10.0 −1.5304(1) −1.5308 −0.03 −1.5285 −1.5308

While we could treat much larger lattices, we chose this lattice
size in order to compare to exact results. The Hamiltonian for
the spinless Hubbard model is

H =
∑
〈ij〉

−t(a†
i aj + a

†
j ai) + Ua

†
i aia

†
j aj , (33)

in which a
†
i and ai are the fermionic particle creation and

destruction operators on site i, and 〈ij 〉 represents nearest
neighbors.

Results for half filling and single hole doping are presented
in Figs. 3 and 4 and Tables III and IV, respectively. We find
that the difference between the nonstochastic and variational
Monte Carlo energies is small for all ratios of U/t at both
half filling and single hole doping. At half filling, the largest
difference is 0.06%, while for single hole doping, it is 0.18%.
The energy errors of the Jastrow-Slater form (compared to the
exact energy) are less than 1% for all values of U/t at half
filling, and below 3% for single hole doping. We see that the
difference between the nonstochastic and variational Monte

Carlo energies is here much smaller than the intrinsic error
associated with the quality of the wave function.

C. Full Hubbard model

We have also studied the Hubbard model at half filling with
open boundary conditions, in one and two dimensions, using
the nonstochastic and variational Monte Carlo algorithms for
the Jastrow-Slater wave function. The Hubbard Hamiltonian
is

H = −t
∑
〈ij〉

∑
σ=↑,↓

(a†
iσ ajσ + a

†
jσ aiσ ) + U

∑
i

a
†
i↑ai↑a

†
i↓ai↓,

(34)

in which a
†
i↑(↓) and ai↑(↓) are the fermionic creation and

destruction operators for particles with spin ↑ (↓), and 〈ij 〉
refers to nearest neighbors.

Since the fermions have spin, there are several choices of
Slater determinant possible. We use as our Slater determinant

TABLE IV. Total ground-state energies, in units of t , for the 4 × 5 spinless Hubbard lattice with single hole doping and open boundary
conditions. Both the nonstochastic and variational MC methods use four-site square Jastrow factors (correlators). Exact results were computed
using the sparse diagonalization routine in the ALPS program (Ref. 32). Here NS and %D have the same meaning as in Table I.

U/t VMC NS %D Hartree-Fock Exact

0.1 −13.8554(1) −13.8554 0.00 −13.8522 −13.8558
0.2 −13.4339(1) −13.4341 0.00 −13.4214 −13.4359
0.4 −12.6194(4) −12.6195 0.00 −12.5685 −12.6268
0.6 −11.8411(2) −11.8410 0.00 −11.7262 −11.8583
0.8 −11.0985(3) −11.0976 0.01 −10.8940 −11.1303
1.0 −10.3921(3) −10.3886 0.03 −10.0718 −10.4434
1.2 −9.6579(4) −9.6456 0.13 −9.2971 −9.7983
1.4 −8.9483(4) −8.9322 0.18 −8.6411 −9.1958
2.0 −7.4486(3) −7.4356 0.17 −7.1974 −7.6473
4.0 −4.9105(3) −4.9019 0.18 −4.7707 −4.9959
6.0 −3.8238(2) −3.8209 0.08 −3.7374 −3.8793
8.0 −3.244(1) −3.2430 0.03 −3.1820 −3.2846

10.0 −2.885(1) −2.8865 −0.05 −2.8384 −2.9185
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TABLE V. Total ground-state energies in units of t for the Hubbard model at half filling with open boundary conditions and total
Sz = 0. The DMRG results used m = 1600 renormalized states. The Jastrow factors (correlators) employed were three-site lines for the
one-dimensional lattices and four-site squares for the 4 × 5 lattice. See Sec. III C for details. Here NS, VNS, and %D have the same meaning
as in Table I.

Lattice VMC NS %D VNS %D RHF DMRG

U/t = 2
1 × 14 −11.240(1) −11.241776 −0.02 −11.236(1) 0.04 −10.133544 −11.279897
1 × 18 −14.591(1) −14.592961 −0.01 −14.587(1) 0.03 −13.219131 −14.653987
1 × 22 −17.947(2) −17.946260 0.00 −17.938(1) 0.05 −16.307287 −18.029379
4 × 5 −19.917(1) −19.920320 −0.02 −19.915(1) 0.01 −18.800678 −20.127521

U/t = 4
1 × 14 −7.556(1) −7.631100 −0.99 −7.501(1) 0.73 −3.133544 −7.672349
1 × 18 −9.770(3) −9.842409 −0.74 −9.695(2) 0.77 −4.219131 −9.965398
1 × 22 −11.968(4) −12.042344 −0.62 −11.891(3) 0.64 −5.307287 −12.259082
4 × 5 −13.350(1) −13.384297 −0.26 −13.316(2) 0.25 −8.800678 −14.404488

the restricted Hartree-Fock (RHF) Slater determinant. While
better energies could be obtained with an unrestricted or
generalized Slater determinant, the restricted Hartree-Fock
determinant is sufficient for the comparison between the
nonstochastic and variational Monte Carlo algorithms that is
our primary concern.

Results for the ratios U/t = 2 and U/t = 4 are presented
in Table V. For U/t = 2, the bare RHF Slater determinant
produces energies in error by 6–10%, which are reduced to
1% or less after the inclusion of Jastrow factors, optimized
either through the nonstochastic or variational Monte Carlo
algorithms. Importantly, the nonstochastic energies lie within
the error bars of the variational CPS energies for both the one-
and two-dimensional lattices. For the case of U/t = 4, the
RHF reference is qualitatively incorrect with relative errors as
high as 60%. The inclusion of Jastrow factors reduces the error
to 2% and 7% in one and two dimensions, respectively. Despite
the poor quality of the wave function in this problem, the
nonstochastic energy reproduces the variational CPS energy

quite well, with the relative differences in Table V never
exceeding 1%. This is much less than the intrinsic error due to
the quality of the wave function.

As seen in Table VI, the cost of the nonstochastic method
relative to variational Monte Carlo is less favorable than for
the Heisenberg model. The reasons for this slowdown are
twofold. First, the site dimension d is twice as large for
the Hubbard model, and second, the evaluation of the RDM
elements (while still polynomial scaling) is much higher for
the Slater determinant than for the uniform reference. We note,
however, that the cost scaling of the nonstochastic method is
O(N2), while that of variational MC is O(N3) assuming that
the number of samples needed grows linearly with system size.
Thus for very large lattices, the nonstochastic approach may
offer significant efficiencies.

Finally, for the 22-site chain with U/t = 4, we investigated
the effect of varying the size of the Jastrow factor. As shown in
Fig. 5, both the nonstochastic and variational energies improve
when extending the Jastrow factor from one to four sites.

TABLE VI. Computational time taken for various optimizations. Times are reported in total CPU hours, defined as the wall clock time
multiplied by the number of processing cores used.

Lattice Correlators Nonstochastic Variational MC

8 × 8 Sq. Heis. nearest neighbor 2.8×10−5 1.4×100

8 × 8 Sq. Heis. four-site squares 1.9×10−4 1.4×100

8 × 8 Sq. Heis. five-site crosses 2.7×10−2 1.7×100

8 × 8 Sq. Heis. nine-site squares 4.1×102 3.1×100

6 × 6 Tr. Heis. nearest neighbor 9.6×10−4 3.8×100

6 × 6 Tr. Heis. three-site triangles 8.7×10−4 2.6×100

6 × 6 Tr. Heis. four-site rhombuses 1.3×100 6.1×100

6 × 6 Tr. Heis. six-site triangles 4.0×101 4.1×100

6 × 6 Tr. Heis. seven-site hexagons 2.1×101 2.4×100

1 × 14 Hub. U/t = 2 three-site lines 6.7×10−1 2.3×100

1 × 18 Hub. U/t = 2 three-site lines 1.5×100 2.5×100

1 × 22 Hub. U/t = 2 three-site lines 3.7×100 2.8×100

4 × 5 Hub. U/t = 2 four-site squares 1.2×103 3.8×100

1 × 14 Hub. U/t = 4 three-site lines 1.1×100 2.0×100

1 × 18 Hub. U/t = 4 three-site lines 3.1×100 2.1×100

1 × 22 Hub. U/t = 4 three-site lines 4.9×100 2.4×100

4 × 5 Hub. U/t = 4 four-site squares 1.2×103 5.6×100

205132-8



NONSTOCHASTIC ALGORITHMS FOR JASTROW-SLATER . . . PHYSICAL REVIEW B 84, 205132 (2011)

-2

 0

 2

 4

 6

 8

 10

 12

 14

 1  2  3  4

%
 E

rr
or

Sites in Jastrow Factor

VNS
VMC

NS

FIG. 5. Energy errors (relative to m = 1600 DMRG) in the one-
dimensional Hubbard model with U/t = 4 for line-shaped Jastrow
factors of different sizes. The lattice is a 22-site chain with open
boundary conditions. The reference function is the restricted Hartree-
Fock determinant. NS and VNS have the same meaning as in Table I.

We observe in all cases that the nonstochastic and variational
energies differ by an amount significantly less than the intrinsic
energy error of the wave function, except for the four-site
Jastrows, where the nonstochastic energy lies slightly (−0.1%)
below the true energy, while the variational energy is above
(1.2%) and thus the difference between the nonstochastic and
variational energies is almost exactly the same as the intrinsic
variational energy error.

IV. CONCLUSIONS

We have shown that efficient nonstochastic algorithms exist
both to evaluate the energy and expectation values of Jastrow-
Slater and correlator product state wave functions, as well
as to optimize the wave-function parameters. We have tested
our methods in three models: the spin- 1

2 antiferromagnetic
Heisenberg model, the spinless Hubbard model, and the full
Hubbard model. While unlike the variational Monte Carlo
energy, the nonstochastic energy is not a strict upper bound,
the difference between the two energies is comparable to
and often significantly less than the intrinsic error asso-
ciated with the quality of the wave function. In practice
we find that the nonstochastic algorithms are faster than
the variational Monte Carlo algorithms for small correlator
(or Jastrow) sizes, but become more expensive for larger
correlators.

The nonstochastic algorithms we have described rely on
the mathematical form of the Jastrow-Slater and correlator
product state wave functions as a product of local, commut-
ing, invertible operators acting on a simple reference wave
function. Any wave function with this mathematical form may
be studied with analogous efficient nonstochastic techniques.
This possibility can guide the construction of efficient new
classes of wave functions in the future.
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