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A general nonlinear response theory is derived for an arbitrary time-dependent Hamiltonian, not necessarily
obeying time-reversal symmetry. We consider the application of this theory to a multiterminal mesoscopic
system with arbitrary interactions and time-dependent voltages. This allows us to obtain a generalized Kubo-type
formula. We derive a microscopic expression for the finite frequency differential conductance matrix, which
preserves current conservation and gauge invariance. We exploit this result to show that the asymmetric part
of the current fluctuation matrix at finite frequency obeys a generalized time-dependent fluctuation-dissipation
theorem. In the stationary regime, this theorem provides a common explanation for the asymmetry of the excess
noise with respect to positive and negative frequencies that has been obtained in several systems as a consequence
of nonlinearity. It also explains the origin of the unexpected negative sign of the excess noise. Finally, we apply
these general results to the case of a tunnel junction and obtain a nonperturbative out-of-equilibrium link between
conductance and current fluctuations. We also derive a universal property of the finite frequency noise in the
perturbative regime.
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I. INTRODUCTION

Linear response theory is a cornerstone of quantum theory.
It allows one to derive extremely useful formulas such as
the Kubo formula1 or the fluctuation-dissipation theorem
(FDT),2–4 which are extensively used in all fields. It has been
commonly believed that the validity of the Kubo formula is
essentially limited to the linear regime. This has motivated
the search for alternative methods to deal with correlated
systems5,6 or weak nonlinearities.7 In this work we present
an elegant and simple proof for a generalized Kubo formula
that is valid for systems which have both a nonlinear behavior
and a time-dependent Hamiltonian, from which we obtain a
time-dependent, out-of-equilibrium FDT relation.

The derivation of these results is based on a formal and
exact evaluation of the evolution of operators under the
action of time-dependent external parameters, without making
any assumption on the system. These results can thus be
used indifferently in atomic physics, quantum chemistry,
condensed matter physics, etc. Here we choose to illustrate
the power of this approach by deriving new relations of
general validity in multiterminal mesoscopic systems with
arbitrary time dependence of the electrochemical potentials
at the terminals. Multiply connected structures have been of
great interest in quantum transport8,9 because they can reveal
more information compared to the two-terminal setup. This is,
for instance, the case of single- or two-particle quantum inter-
ference in Aharonov-Bohm geometries,10 Hanbury-Brown–
Twiss setups11,12 related to statistics and entanglement,13

and Mach-Zehnder interferometers.14 Quantum Hall edge
states are particularly suited for performing quantum optics
with electrons. It is, however, important to go beyond the
independent electron picture, as Coulomb interactions have
to be taken into account: they intervene either at integer
filling or, in a more fundamental way, within the fractionnal
quantum Hall effect (FQHE). In the latter case, for instance,
three-terminal geometries have been proposed in order to

probe fractional statistics,15 which require one to consider
out-of-equilibrium transport.

In this paper, we give a microscopic expression for the dif-
ferential out-of-equilibrium conductance matrix with minimal
assumptions on the system under study, and ensuring current
conservation and gauge invariance. We thereby provide a
convenient general framework to describe the time-dependent
behavior of interacting multiterminal systems in a single,
uniform formalism. This contrasts markedly with previous
approaches in which ad hoc approximations often had to
be made, depending on the system and questions under
investigation. The formalism should prove to be useful both for
the stationary regime and for time-dependent Hamiltonians.
Our approach allows us to consider not only ac voltages,
and thus photo-assisted transport,16–20 but also arbitrary time
dependence of the voltages. Therefore this approach should
allow one to study the injection of electrons on demand,21–23

classical sources of noise, pumping,8,24 or mixing setups,25

where the potentials in the terminals have different periods, etc.
We can also consider spontaneous generation under a dc

bias, such as finite frequency (FF) noise,11 or combine both, for
instance, by applying time-dependent voltages and considering
FF current fluctuations, which in this situation depend on two
frequencies26 and form a matrix containing both autocorrela-
tions and cross correlations. By using our out-of-equilibrium
and time-dependent Kubo formula, we show that the asym-
metric part of this matrix obeys a general time-dependent
out-of-equilibrium FDT. This FDT goes well beyond that
obtained in the stationary regime for linear systems,27 and for
the nonlinear scalar conductivity28,29 (obtained for antennas
or one-dimensional systems), in particular, it is not restricted
to stationary situations. We will nevertheless discuss its
consequences in the stationary case, where we derive universal
properties of the FF current fluctuations matrix.

An application showing the utility of the present formalism
has been performed in quantum wires and carbon nanotubes
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described by a Tomonoga-Luttiger liquid (TLL),30 where
the FF conductance, depending on the dc voltage, has been
analyzed in these prototypical strongly correlated systems.
A recent investigation has been achieved in a quantum dot
in Ref. 31. Here we apply our nonlinear response theory to
a tunnel junction between arbitrary correlated systems in an
arbitrary dimension subject to a time-dependent voltage and
tunneling amplitude, not necessarily weak, which is contrary
to most previous work on tunnel junctions.32,33 We will derive a
general Kubo-type formula for the differential FF conductance
where we show the presence of a diamagnetic term, which is
rather related to the tunneling Hamiltonian. In particular, this
formula applies also to weak impurities in a one-dimensional
system, as that studied in the nonlinear regime,30 and extends
that obtained in the linear regime in Ref. 22.

II. GENERALIZED NONLINEAR RESPONSE THEORY

For generality, we consider a system with a time-dependent
Hamiltonian H(t), which includes arbitrary interactions or
disorder, and does not necessarily obey time-reversal sym-
metry. H(t) depends on a set of time-dependent parameters
generically denoted by X(t ′). For any operator Ô(t), we denote
its average O(t) = Tr[ρÔ(t)], taken in the presence of H(t)
and with an initial density matrix ρ, which need not be thermal.
The evolution of O(t) under an arbitrary time evolution of the
parameter X(t ′) can be formally expressed as

O(t) =
∫ 1

0
dε

∫
dt ′

δOε(t)

δX(t ′)
X(t ′),

where Oε(t) is computed replacing X → εX, and δOε(t)
δX(t ′) is its

functional derivative with respect to X(t ′), playing the role of
a generalized susceptibility for a nonlinear system.

To obtain δO(t)
δX(t ′) (for ε = 1, but the derivation is obvi-

ously similar for other values of ε), we split the Hamil-
tonian into the part that does not depend on X, denoted
by H0(t), and the remaining part that depends on X(t):
H(t) = H0(t) + H1[t,X(t)].34 We switch to the interaction
picture where H1 is viewed as the interaction Hamil-
tonian. Then, Ô int(t) = U0(−∞,t)Ô(t)U0(t, − ∞), where
ih̄∂tU0(t, − ∞) = H0(t)U0(t, − ∞). Even though this is
not strictly necessary, we prefer to exploit the Keldysh
formulation35 to make our argument more compact. The
Keldysh time contour has two branches labeled by η = ±,
going from −∞ to ∞ on the upper one and inversely on the
lower one. TK is the Keldysh ordering operator, which makes
time (antitime) ordering on the upper (lower) contour, while
operators labeled with a minus sign (−) are placed on the
left of these labeled with a plus sign (+): 〈TKA+(t)B−(t ′)〉 =
〈B̂(t ′)Â(t)〉. Ô can be labeled indifferently by η = + or − to
express its average. The functional derivative with respect to
X(t ′) reads

δO(t)

δX(t ′)
= δ

δX(t ′)
〈
TKÔ+(t)e− i

h̄

∫ ∞
−∞

∑
ηηH

η

1
〉

= −i

h̄
θ (t − t ′)

〈[
Ô(t),

δH
δX(t ′)

]〉
+ δ(t − t ′)

〈
∂Ô

∂X
(t)

〉
,

(1)

where we have used
∑

η η〈TKA+(t)Bη(t ′)〉 =
θ (t − t ′)〈[Â(t),B̂(t ′)]〉, and the fact that H0 does not
depend on X. In the last term, we have further assumed that
Ô does not depend on the time derivatives ∂tX,∂t2X, . . ., in
order to avoid a cumbersome expression.

III. APPLICATION TO TRANSPORT AND FLUCTUATIONS
IN ARBITRARY TIME-DEPENDENT

MULTITERMINAL MESOSCOPIC SYSTEMS

Now we apply this formula to a mesoscopic system
described by a Hamiltonian H0(t), which can, for instance,
include time-dependent scatterers (see Fig. 1). It is connected
to N reservoirs with electrochemical potential μn(t) = eVn(t)
and a total charge operator Qn; thus the outgoing current reads

In = ∂tQn.

The system is also coupled to a gate whose role could be
played, for instance, by the ground. Extension to many gates
is straightforward. One can view the system and the gate as a
capacitor, and the current measured on the gate side is given
by I0 = ∂tQ0. On the other hand, by charge conservation, the
total charge of the system and reservoirs is zero, as they do not
exchange electrons with the gate:

N∑
n=1

Qn + Q0 = 0, (2)

and thus Kirchoff’s law is ensured as
N∑

n=0

In = 0. (3)

These last two equations assume that the plasma frequency
is high enough, otherwise they would need to be modified
to take into account local charge density in the leads. We
discuss now the coupling to reservoirs. These are defined as
in the standard scattering approach, where inelastic processes
are efficient enough to ensure a quasiequilibrium state. This
requires the inelastic time to be smaller than the characteristic
time scale of variations of μn(t). Their modeling can be chosen
to make the microscopic calculation convenient. For instance,
one could introduce intermediate ideal leads between the
system and the reservoirs, in which case a global Hamiltonian
H0 would include a noninteracting Hamiltonian for the leads,

FIG. 1. A mesoscopic system coupled to many terminals, includ-
ing a gate, with arbitrary time dependence of their electrochemical
potentials. The time-dependent Hamiltonian H includes arbitrary
interactions or disorder and can depend on other parameters X(t ′) in
a nonlocal and nonlinear way. The differential of the current average
〈In(t)〉 at terminal n either with respect to Vn′ (t ′) or to X(t ′) can be
expressed through a generalized response formula keeping all Vn and
X finite.
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connected continuously or by tunneling terms. Then each lead
n has a uniform voltage Vn(t). The coupling Hamiltonian reads
H1(t) = ∫

dd�rV (�r,t)ρ(�r), where ρ(�r) is the charge density at
space coordinate �r , and d is the dimension. By using the fact
that the potential is piecewise constant, this becomes

H1(t) =
N∑

n=0

QnVn(t). (4)

More generally, even with no recourse to leads, this coupling
was adopted, for instance by Büttiker,8 without a detailed
description of the reservoirs.

It is now possible to express in a microscopic way the
out-of-equilibrium differential conductance with no constraint
either on the Hamiltonian or on the initial density matrix. We
use Eq. (1), where X(t) is replaced by Vn(t), upon which
the interaction Hamiltonian in Eq. (4) now depends linearly,
while there is no explicit dependence of In on Vn′ . By denoting
Gnn′ (t,t ′) = δIn(t)/δVn′(t ′) for n,n′ = 0, . . . ,N , we get the
generalized Kubo formula

h̄Gnn′ (t,t ′) = iθ (t − t ′)〈[In(t),Qn′(t ′)]〉, (5)

where the average is calculated still in the presence of
the time-dependent Hamiltonian H0(t) + H1(t), and keeping
Vn′ (t ′) finite.

We have to stress that the gate is implicitly included in
the N + 1 terminals. This ensures current conservation; see
Eq. (3). It turns out that the same conservation law in Eq. (2)
guarantees gauge invariance automatically: a translation of all
potentials Vn(t) by the same function V (t) has no effect on
H1(t) in Eq. (4). Let us introduce the double Fourier transform
of a function F (t,t ′) defined as

F (ω,	) =
∫ ∫

dxdseiωx+i	sF̃ (x,s), (6)

where we have performed the change of variable F (t,t ′) =
F̃ (x,s) with s = t + t ′ and x = t − t ′. By using Eqs. (2), (3),
and (5), we get simultaneously the two constraints

N∑
n=0

Gnn′ (ω,	) =
N∑

n′=0

Gnn′ (ω,	) = 0, (7)

in which the second one corresponds to gauge invariance,
which is tied to the first one. We emphasize that time-reversal
symmetry is not necessarily required. Nevertheless, the FF
differential conductance matrix G still has some symmetries
imposed by the fact that δIn(t) and δVn′ (t ′) are real quantities,

G∗
nn′(ω,	) = Gnn′ (−ω, − 	), (8)

where the star denotes the complex conjugate. Furthermore,
due to causality with respect to t − t ′, its real and imaginary
part obey the Kramers-Krönig relations

Im Gnn′ (ω,	) = PP

∫
dω′ ReGnn′ (ω′,	)

ω − ω′ ,

where PP denotes the principal part of the integral.
Now we consider the nonsymmetrized current fluctuations

matrix S(t,t ′) whose elements are given by

Snn′ (t,t ′) = 〈În′ (t ′)În(t)〉 − In′ (t ′)In(t). (9)

They obey the symmetry Sn′n(t ′,t) = S∗
nn′ (t,t ′), whose Fourier

transforms read

Sn′n(ω,	) = S∗
nn′ (ω, − 	). (10)

Let us consider

S±(t,t ′) = S(t,t ′) ± ST (t ′,t), (11)

which are the symmetric and the antisymmetric parts of S
where the subscript T refers to the transpose. In view of Eq. (5),
one can show easily that

h̄∂t ′Gnn′ (t,t ′) − h̄∂tGn′n(t ′,t) = iS−
nn′ (t,t ′)

(notice that the δ function with respect to t − t ′ cancels),
which, once Fourier transformed, becomes [see Eqs. (9) and
(5)]

S−
nn′ (ω,	) = Snn′ (ω,	) − Sn′n(−ω,	)

= h̄(ω − 	)Gnn′ (ω,	) + h̄(ω + 	)Gn′n(−ω,	),

(12)

or in the matrix form,

S−(ω,	) = −h̄ (ω − 	) G(ω,	) − h̄ (ω + 	) G†(ω, − 	).

(13)

This equation is the central result of the paper. It is a completely
general FDT for the asymmetric part of the matrix S. It is
valid in an out-of-equilibrium regime and for time-dependent
Hamiltonian and voltages, including in the presence of a finite
magnetic field that would break time-reversal symmetry.

One consequence of this expression is relating both
symmetrized and nonsymmetrized current fluctuations [see
Eq. (11)], as one can inject it into the right-hand side (r.h.s.) of

2S = S+ + S−. (14)

If we consider the case 	 = 0 to get the dc component of S,
then S(ω,0) and hence S±(ω,0) are now Hermitian, in view of
Eq. (10), in particular, their diagonal elements are real. Now
Eq. (13) reduces to

S−(ω,0) = −2h̄ωGh(ω,0), (15)

where the Hermitian part of the matrix G is given by

2Gh = G + G†. (16)

Notice that if the potentials in all the terminals are periodic
with the same frequency 	0, then 	 must be commensurate
with 	0 [i.e., 	 = (l/k) 	0, with l,k integers], but ω can take
arbitrary values.

A. Stationary regime

We will focus in the following on both time-independent
Hamiltonian and potentials in the reservoirs. Then the time
translation invariance is restored [F(t,t ′) = F(t − t ′)] for F =
S,G, and one requires 	 = 0 in Eqs. (5) and (13). Let us keep
similar notations but stress the dependence of F = S,G on the
voltage vector V = (V0,V1, . . . ,VN ) by denoting

F(ω,	) = δ(	)F(V ; ω),
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where

F(V ; ω) =
∫

dteiω(t−t ′) F(t − t ′).

For convenience, we also introduce the matrices for the “excess
FF differential conductance” and excess current fluctuations:


F(V ; ω) = F(V ; ω) − F(V = 0; ω). (17)

As noticed above for the case 	 = 0, the matrices
S(V ; ω),S±(V ; ω) are Hermitian, while G (V ; ω) is not. Only
the diagonal elements of S(V ; ω), which are real, can be
referred to as FF noise; Snn(V ; ω) for positive (negative) ω

corresponds then to the emitted (absorbed) noise spectrum in
terminal n. The asymmetric part of the whole matrix S(V ; ω)
follows Eq. (15):

S−(V ; ω) = −2h̄ωGh(V ; ω). (18)

In particular, the diagonal elements read

S−
nn(V ; ω) = −2h̄ωReGnn(V ; ω). (19)

Equation (18) generalizes, to a much larger extent, that
obtained for the scalar FF noise in specific systems in Refs. 29
and 27. It offers an out-of-equilibrium FDT for the asymmetric
part of the fluctuation matrix S(V ; ω). Indeed, one can use it to
obtain directly the standard equilibrium FDT. At equal voltages
in the N + 1 terminals (taken as zero for convenience), and
specifying to a thermal distribution, one has the detailed
balance equation S(V = 0; −ω) = eβω S(V = 0; ω). Thus,
Eqs. (18) and (11) yield

S(V = 0; ω) = 2h̄ωN (ω)Gh(V = 0; ω), (20)

where N (ω) = 1/(−1 + eβω). Recall that Eq. (14) establishes
the link between the symmetrized and nonsymmetrized cur-
rent fluctuations. Similarly, the FF fluctuations for negative
(respectively positive) frequencies can be deduced from those
at positive (respectively negative) frequencies. An interesting
alternative is to deduce Gh(V ; ω) from S−(V ; ω). This allows
one to get rid of any undesirable background sources of noise,
which would appear in the same way in both S(V ; ω) and
S(V ; −ω), and thus would cancel when taking their difference,
S−(V ; ω). Another advantage is that the measurement of
the current correlations is not subject to the limitations on
frequencies as the FF conductance: these are due to capacitive
effects and to the equilibration condition in the reservoirs,
ωτin 	 1, where τin is the inelastic time, in order to define a
quasiequilibrium distribution.22,30,36

An important feature which Eq. (18) clarifies concerns
the asymmetry of 
S(V ; ω), in Eq. (17), with respect to
positive/negative frequencies. While many theoretical works
dealt with the symmetrized noise, it turns out that most
experiments are based on quantum detectors measuring
the nonsymmetrized excess noise,37,38 which has been the
subject of few theoretical works dealing with electronic
interactions.29–31,39,40 In a coherent conductor with energy-
independent transmission, the excess noise is identical whether
or not one symmetrizes the current-current correlator, i.e.,

S+(V ; ω) = 
S(V ; ω), which is therefore symmetric with
respect to positive/negative frequencies.11 An important ques-
tion is which criterion could violate the symmetry obtained

there, thus giving evidence for a quantum measurement. It is
interesting to discuss the asymmetry of the matrix 
S(V ; ω)
within our formalism, and thus to find the criterion for
asymmetric, excess cross correlations as well. This can be
achieved by using Eq. (18) [see Eqs. (11) and (17)]:41


S(V ; −ω) − 
ST (V ; ω) = 2h̄ω
Gh(V ; ω).

Therefore, the asymmetry between 
Snn′ (V ; −ω) and

Sn′n(V ; ω) requires that 
Gh

nn′ (V ; ω) 
= 0. This yields a
necessary criterion, i.e., a nonlinear regime, in the sense
that the FF differential conductance depends on the dc
voltage. However, this criterion is not sufficient for different
terminals n 
= n′: one could have Gh

nn′ (V ; ω) = 0 at any V ,
which ensures instead symmetry of both cross correlations
and their excess value, even in the nonlinear regime. This
feature has been obtained in chiral edges of the FQHE:40 in
the corresponding setup, some nondiagonal elements of the
conductance matrix vanish due to chirality. At the same time,
excess autocorrelations were found to be asymmetric in that
setup, as well as in quantum wires and carbon nanotubes,30

due to the nonlinear behavior associated with backscattering
in the presence of interactions. Obviously, interactions are
not necessary to induce nonlinearity. The FF noise has been,
for instance, studied in noninteracting systems where the
transmission is energy dependent, such as a wire with two
barriers,42 hybrid structures,43 and Josephson junctions where
the asymmetry between the emission and absorption of the
excess FF noise has been measured experimentally.38 Recently,
the FF noise through a quantum dot has been investigated,31

and the dissipative nonlinear FF conductance expressed using
Eq. (18). Thus nonlinearity with respect to the dc voltage is a
common origin for the asymmetry obtained in all those various
systems.

Turning back to an arbitrary, multiterminal, nonlinear
system, it is instructive to introduce a combination we call
a “modified” excess current fluctuations matrix:


̆S(V ; ω) = S(V ; ω) − 2h̄ωN (ω)Gh(V ; ω). (21)

The second term on the r.h.s. of Eq. (21) is inspired by
Eq. (20), and would be identical to equilibrium fluctuations
in a linear system, where 
̆S(V ; ω) = 
S(V ; ω) becomes
identical to the excess current fluctuations matrix. Indeed,
such an identity holds in a nonlinear system in the quantum
regime, i.e., for positive frequencies obeying h̄ω � kBT . For
arbitrary frequencies, 
̆S(V ; ω) has analogous properties to
those of 
S(V ; ω) in linear systems: it vanishes at equilibrium
(
̆S(V = 0; ω) = 0 [Eq. (20)]), and more interestingly, it
restores the symmetry (
̆S(V ; −ω) = 
̆S(V ; +ω)).

In view of Eq. (18), we can also express it as


̆S(V ; ω) = [1 + N (ω)]S(V ; ω) − N (ω)S(V ; −ω). (22)

Notice that if one replaces the electron temperature T in N (ω)
by that of a detector, the r.h.s. would be the quantity expected
to be measured in a linear system, as predicted by Lesovik and
Loosen in the case of a scalar noise.27

Now we show how the out-of-equilibrium FDT, given by
Eq. (18), solves the paradox of the negative sign of the excess
noise. This looks counterintuitive, since by applying a bias, we
expect to induce more noise (hence the qualifier “excess”).44
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We focus on autocorrelations as they are real and can be
interpreted in terms of the emission and absorption spectrum.
In two-terminal geometries, they were found to be negative for
certain frequencies, such as in TLLs, whether symmetrization
is performed45,46 or not,30,40 and without interactions for an
energy-dependent transmission.43,45 Indeed, for h̄ω � kBT ,
one has


Snn(V ; ω) = Snn(V ; ω), (23)

which is the correlator of the same current at terminal n,
and thus (using a spectral decomposition) is always positive.
Therefore, 
Snn(ω � T ) � 0. Nevertheless, the absorption
excess noise 
Snn[− (ω � T )] can be negative for frequencies
and voltages where Re
Gnn(V ; ω) is negative and large
enough; see Eqs. (17) and (19). Finally, the symmetrized
excess noise 
S+

nn(V ; ω) = 
Snn(V ; ω) + 
Snn(V ; −ω), be-
ing a superposition of both emission and absorption, can be
negative too.

IV. APPLICATION TO A TUNNEL JUNCTION

Let us now consider a tunnel junction between two
conductors with arbitrary dimensions, possibly with disorder
and internal or mutual interactions encoded in a Hamiltonian
H0. We could allow for many tunneling processes transferring
different charges, but for purely pedagogical reasons, we
consider a unique process transferring a charge q. Thus the
starting model is similar to that in Ref. 47 (see Fig. 2), but
with no restrictions on the supercurrent. We require only to
have well-defined charges for both systems Q1 and Q2, which
are conserved by H0, i.e., that [Ql,H0] = 0 for l = 1,2. We
allow for possible explicit time dependence of the tunneling
operators T (t) (in the Schrödinger representation) and of
which we do not specify the form. Indeed, we allow for the
tunneling amplitudes to depend on both right- and left-side
states, as well as on time. But, contrary to Ref. 47, it is
not necessary for our present purpose to require the same
time dependence for different states. Finally, we allow for
a magnetic field breaking the time-reversal symmetry, and
coupling to an arbitrary electromagnetic environment could
be incorporated. As we do not need to specify the density
matrix, one could deal with many subsystems with different
distributions, for instance, the case where the tunnel junction
has a thermal distribution with a temperature different from
that of the environment. Both conductors are subject to
time-dependent potentials V1(t), V2(t), and we denote V (t) =
V1(t) − V2(t). We introduce φ̇(t) = V (t)/h̄. The coupling of
the tunneling charges to these potentials can be absorbed by
a gauge transformation. Here we skip the details, described in
Ref. 47, and write the total Hamiltonian in its final form:

H = H0 + HT (t),

HT (t) = eiqφ(t)T (t) + e−iqφ(t)T †(t). (24)

Thus the tunneling current operator across the tunnel
junction is given by

Î (t) = −i
q

h̄
[eiqφ(t)T (t) − e−iqφ(t)T †(t)]. (25)

FIG. 2. Tunnel junction between two conductors 1 and 2 for ar-
bitrary dimension, interactions or disorder, subject to time-dependent
potential V1,2(t), and with time-dependent tunneling (not necessarily
weak) of charges q. These conductors can be either similar or
different, such as fractional edge states with equal or different filling
factors, leads that are superconducting, insulating, or normal, etc. One
can also view one system as a probe, such as the tip of a scanning
tunneling microscope or a Fermi liquid coupled to edge states or
to a quantum dot. Capacitive coupling is possible, and we require
only charges Q1 and Q2 to be well defined, commuting with the
total Hamiltonian. Coupling to an electromagnetic environment can
be incorporated as well.

A. Generalized Kubo formula and FDT

Our goal is to express the associated nonequilibrium, time-
dependent conductance

G(t,t ′) = δI (t)

δV (t ′)
,

where the average tunneling current is

I (t) = 〈Î (t)〉.
Using (1) and the fact that ∂Î/∂φ = q2

h̄
HT (t), we can derive

the nonperturbative expression

∂t ′G(t,t ′) = χ (t,t ′) − χ0
(
t,t ′

)
, (26)

where

χ (t,t ′) = i

h̄
θ (t − t ′) 〈 [Î (t),Î (t ′)] 〉 ,

and

χ0
(
t,t ′

) = δ
(
t − t ′

) (q

h̄

)2 〈HT (t)〉 .

This exact Kubo-like expression of the differential conduc-
tance G(t,t ′) is different from known results in that the
averages taken here are still in the presence of an arbitrary
time dependent finite voltage V (t) and tunneling amplitudes.
Note also that in addition to the current commutator, one has
a nontrivial analogous of a diamagnetic term (χ0) obtained
usually in the conductivity.

If one assumes now the absence of any Josephson current,
one can use the gauge invariance to show that χ0(t,t ′) =
δ(t − t ′)

∫
dt ′′χ (t,t ′′), which in the frequency domain yields

χ0(ω,	) = χ (	,	), independent of ω due to the δ function
with respect to t − t ′. Then, the Fourier transform Eq. (7) of
G(t,t ′) reads

i(ω − 	)G(ω,	) = χ (ω,	) − χ (	,	).

Note that the out-of-equilibrium FDT for the asymmetric part
of the current fluctuations in Eq. (18) is not affected by the χ0

term,

S−(t,t ′) = S(t,t ′) − S(t ′,t)
= ∂t ′G(t,t ′) − ∂tG(t,t ′), (27)
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where the nonsymmetrized current correlator [as in Eq. (9)] is

S(t,t ′) = 〈
Î (t ′)Î (t)

〉 − I (t ′)I (t). (28)

The exact relation (26) was shown to hold in the limit of
weak tunneling in Ref. 47, while (27) will be shown to hold
in the same limit in a separate paper.48 More interestingly,
the last work will include other universal FDT relations as FF
current fluctuations and the FF differential conductance can
be expressed in terms of the dc current. The remainder of the
present paper we also focus on this weak tunneling limit.

B. Finite frequency noise in the weak tunneling limit

Being related to the asymmetry discussed in the above,
we choose to present here a universal property of the FF
noise, S(V ; ω) = ∫

dtS(t,t ′)eiω(t−t ′), in the stationary regime
where S(t,t ′) = S(t − t ′) (implying 	 = 0), i.e., when both
the tunneling amplitudes and the voltage are time independent,
and thus T (t) = T and V (t) = V . We further assume that
tunneling is weak so that we can use the equilibrium density
matrix of the unperturbed system, and, in addition, that
〈T T 〉 = 0, thus a possible supercurrent has to be negligible.
Then, to the lowest order in tunneling, one can simply
express the FF noise given by Eq. (28) through a spectral
decomposition over the many-body exact eigenstates |α〉 of
the Hamiltonian H0 [see Eq. (24)]:

S(V ; ω) = 2πq2
∑
α,α′

[ραδ(h̄ω − qV + Eα′ − Eα)

+ ρα′δ(h̄ω + qV − Eα′ + Eα)] | 〈α |T (0)|α′〉|2,
where ρα = 〈α |ρ| α〉 is the diagonal element of the equi-
librium density matrix. If we assume it to be thermal, i.e.,
ρ = e−βH0/Z, one has ρα = e−β(Eα−E0)ρ0, where 0 labels
the ground state (or one of the ground states in case they
are degenerate), and β = (kBT )−1. Note that since one can
exchange the indices α and α′, S(V ; ω) is even in V and can
be expressed as

S(V ; ω) = 2πq2ρ0

∑
α,α′

[e−β(−|qV |+h̄ω+Eα′−E0)

× δ(h̄ω − qV + Eα′ − Eα)

+ e−β(|qV |+h̄ω+Eα−E0)δ(h̄ω + qV − Eα′ + Eα)]

× |〈α|T (0)|α′〉|2,
where the differences Eα′ − E0 and Eα − E0 are positive. Let’s
consider ω positive. Then, as soon as

h̄ω − |qV | � kBT , (29)

all exponentials vanish. This shows a universal property of
the emitted noise, which is independent on the quantum
many-body states in both electrodes: it vanishes at frequencies
obeying Eq. (29). We do not expect this result to be valid to
higher orders in tunneling, being related to energy conservation
of one quasiparticle tunneling. In a future paper,48 we will show
a universal FDT-type expression of the nonsymmetrized noise
S (V ; ω) in terms of the dc current only, which allows one
to prove the same property as well. For frequencies obeying

Eq. (29), using Eq. (19) yields in contrast a non-vanishing
absorption noise in that frequency range:

S(V ; −ω) = 2h̄ωRe G(V ; ω),

where G(V ; ω) = ∫
dtG(t,t ′)eiω(t−t ′), and G is expressed in

Eq. (26). This later equation expresses a generalized out-of-
equilibrium FDT for the absorption noise in the quantum
regime. Note that in that regime the absorption noise is not
necessarily linear in omega. We now consider the excess noise,
still in the frequency range defined by Eq. (29). In that range
Eq. (23) is valid and thus the excess emitted noise vanishes as
the emitted noise, while the excess absorption noise is given
by:


S(V ; −ω) = 2h̄ω[Re G(V ; ω) − Re G(0; ω)].

In particular, in the limit of zero temperature, Eq. (29) becomes
h̄ω > |qV |, from which we conclude that the excess FF noise
vanishes for h̄ω > |qV | (emitted noise) but not for −h̄ω <

−|qV | (absorption noise) for systems that are non-linear with
respect to the dc voltage V.

Consequently, the symmetrized excess noise, being the
mean of emission and absorption spectrum, does not vanish
either for |h̄ω| > |qV | in nonlinear systems. This gives a
common explanation for the behavior of the FF noise obtained
in the case of one-dimensional systems with weak or strong
backscatttering.30,40,45,46

We have to draw attention to the important facts that matter
if one-dimensional systems are to be considered. First, the
above generalized Kubo formula can be applied not only
for tunneling barriers, but also for arbitrary backscattering,
even spatially extended. Nevertheless, in both limits, the total
current operator in the electrodes is, strictly speaking, different
from the tunneling or backscattering current operator. When its
average is measured at the junction, but at some distance L, the
total current, conductance, and current fluctuations coincide
with their values given in expressions (25), (26), and (28)
only for low enough frequencies ωL/v 	 1, with v being a
typical velocity, e.g., that of plasmonic modes. The difference
was explicitly established in Refs. 30, 40, and 45, and is
partly due to the propagation of plasmons from the tunneling
junction or backscattering centers along the distance L. At
higher frequencies, one has to use instead the expression for
the conductance in Eq. (5), where the current operator is that
defined at the contacts. We do not expect such a difference
if the electrodes are two or three dimensional, as oscillating
contributions due to the propagation in the electrodes are
expected to be washed out.

V. CONCLUSIONS

To conclude, we have derived a general time-dependent
response formula for a Hamiltonian depending in an arbitrary
way on time-dependent parameters [Eq. (1)]. When applied
to a multiterminal mesoscopic system described by a time-
dependent Hamiltonian, this formula yields a microscopic and
current-conserving expression of the differential conductance
matrix [Eq. (5)]. Its elements consist of the derivative of the
average current at a given terminal and time with respect to
the potential at any other terminal and time. We thus provide a
promising framework to study systematically time-dependent
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transport in nonlinear systems, including strongly correlated
ones. This formulation is expected to be useful for investigating
pumping or mixing setups. It is noteworthy that we are able
to express higher-order derivatives of any operator average.
Thus we can express the variation of the current in one
terminal in response to change in the potentials in many
terminals.49

We have used this framework to derive a universal time-
dependent, out-of-equilibrium fluctuation-dissipation theorem
(FDT) for the asymmetric part of the current fluctuations
matrix [Eq. (12)]. In the stationary regime, the FDT applied
to current autocorrelations states that the difference between
the emitted and absorption spectrum in terminal n is related
to the dissipation in an out-of-equilibrium situation. We
extend the FDT to cross correlations, provided the appropriate
combination of nondiagonal elements of the conductance
matrix are taken into account. We show that the FDT sheds
light on the asymmetry of the excess FF current fluctuations
matrix, and on the negative sign of its diagonal elements in
certain systems for some frequencies and voltages. We show
that nonlinearity is a common origin for both features, which
explains their occurrence in various nonlinear systems studied

previously. Furthermore, we propose a “modified” FF excess
noise showing properties that are analogous to the excess
fluctuation matrix in linear systems. In particular, it restores
symmetry with respect to positive and negative frequencies.

Then, we have explicited these time-dependent Kubo
formula and FDT in the case of a nonlinear tunnel junction
in the presence of arbitrary voltage, interactions within
or between the electrodes (even extended ones), tunneling
strength, and time dependence. Finally, restricting to the weak
tunneling limit (or weak backscattering in 1D) and negligible
supercurrent, we have derived a universal property of the FF
emitted noise.
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(2001); M. Moskalets and M. Büttiker, ibid. 66, 205320 (2002);
69, 205316 (2004); M. Switkes, C. M. Marcus, K. Campman, and
A. C. Gossard, Science 283, 1905 (1999); L. J. Geerligs et al.,
Phys. Rev. Lett. 64, 2691 (1990); L. DiCarlo, C. M. Marcus, and
J. S. Harris, Phys. Rev. B. 91, 246804 (2003); M. D. Blumenthal
et al., Nature Phys. 3, 343 (2007); I. Snyman and Yu. V. Nazarov,
Phys. Rev. B 77, 165118 (2008); B. Hiltscher, M. Governale, and
J. König, ibid. 81, 085302 (2010).

25J. R. Tucker, IEEE J. Quantum Electron. 15, 1234 (1979); J. R.
Tucker and M. J. Feldman, Rev. Mod. Phys. 57, 1055 (1985).

26The symmetrized part of the current fluctuations under an ac voltage
has been measured in a linear tunnel junction. J. Gabelli and
B. Reulet, Phys. Rev. Lett. 100, 026601 (2008).

27G. Lesovik and R. Loosen, JETP 65, 295 (1997).
28R. L. Peterson, Rev. Mod. Phys. 39, 69 (1967).
29For an antenna, see U. Gavish, Y. Levinson, and Y. Imry, Phys. Rev.

B 62, R10637 (2000); U. Gavish, Y. Imry, and B. Yurke, Proc SPIE
5469, 257 (2004). where the authors restrict to a one-dimensional
electronic system, and specify the form of the kinetic Hamiltonian.
They also define the current as the integral of the current operator
over the system, and not at the contacts as in a mesoscopic context.
Notice that they have cited L. D. Landau and E. M. Lifshitz,
Statistical Physics, Third Edition, Part 1, Course of Theoretical
Physics, Sec. 126 (Butterworth Heinemann, Washington, DC, 1997)
for the operator form of the generalized susceptibility; see p. 395,
one sentence below Eq. (126.8) (which is the Kubo formula).
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