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Variational Monte Carlo study of Anderson localization in the Hubbard model
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We have studied the effects of interactions on persistent currents in half-filled and quarter-filled Hubbard
models with weak and intermediate strength disorder. Calculations are performed using a variational Gutzwiller
ansatz that describes short-range correlations near the Mott transition. We apply an Aharonov-Bohm magnetic
flux, which generates a persistent current that can be related to the Thouless conductance. The magnitude of
the current depends on both the strength of the screened disorder potential and the strength of electron-electron
correlations, and the Anderson localization length can be extracted from the scaling of the current with system
size. At half-filling, the persistent current is reduced by strong correlations when the interaction strength is large.
Surprisingly, we find that the disorder potential is strongly screened in the large interaction limit, so that the
localization length grows with increasing interaction strength even as the magnitude of the current is suppressed.
This supports earlier dynamical mean-field-theory predictions that the elastic scattering rate is suppressed near
the Mott transition.
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I. INTRODUCTION

The Hubbard model is the standard model for strongly
correlated particles in a tight-binding lattice and has been
widely useful as a minimal model to describe a variety
of transition-metal oxides,1 quantum-dot arrays,2 and, more
recently, trapped atomic gases.3 Real materials are disordered
and extensions of the Hubbard model, most notably the
Anderson-Hubbard model (AHM), have been introduced to
study the subtle interplay between disorder and interactions.
Like the Hubbard model, the AHM has not been solved exactly,
except in special cases, and appears to have a rich phase
diagram.

Over the past decade, there has been considerable interest
in Anderson localization in strongly correlated metals near
half-filling. At half-filling, Coulomb interactions can induce
a gapped “Mott insulating” state, and the question is how
states near the Mott state are affected by strong interactions.
This is particularly relevant to the cuprate high-temperature
superconductors, where the electronic properties are tuned by
chemical doping. Chemical doping, in addition to changing
the carrier density (and therefore proximity to the Mott state),
disorders the materials. Experiments have generically found
states exhibiting characteristics of Anderson localization that
lie between the metallic and Mott insulating phases.4–6 The
location of the metal-insulator transition (MIT) appears to be
a function of both the itinerant hole density and the level of
disorder, but not the residual (T → 0) resistivity,4 which hints
at a possible failure of the conventional one-parameter scaling
theory.7 More generally, these experiments raise the possibility
that the Anderson MIT in strongly correlated materials may
differ qualitatively from that in conventional weakly correlated
metals.

In this work, we use the AHM to study the effects of strong
correlations on Anderson localization. The Anderson-Hubbard
Hamiltonian is

Ĥ =
∑

〈i,j〉,σ
tij c

†
iσ cjσ +

∑
i

(Un̂i↑n̂i↓ + Vin̂i), (1)

where the indices i and j refer to sites on a d-dimensional
lattice, where ciσ annihilates a spin-σ electron from site i,
n̂iσ = c

†
iσ ciσ is the number operator for site i, and where n̂i =∑

σ n̂iσ . We restrict ourselves to nearest-neighbor hopping, so
that tij = −t if i and j are nearest neighbors and tij = 0 oth-
erwise. Disorder is introduced via the site energies Vi , which
are chosen randomly from a uniform distribution of width W

(so −W/2 � Vi � W/2). The AHM is therefore characterized
by three energy scales: the kinetic energy t , the short-range
Coulomb interaction U , and the disorder strength W .

A rough schematic phase diagram for the half-filled AHM
in three dimensions is shown in Fig. 1 (the phase diagram in
lower dimensions has not, to our knowledge, been established).
This phase diagram is based on a number of published
calculations,8–11 which, while they disagree on details, agree
on general features. Note that we have chosen to show the
simplest nonmagnetic phase diagram (in which magnetic
phases are suppressed) and have omitted phases that are not
universally seen.

There appears to be consensus on the strong disorder limit
of the phase diagram: as a function of increasing U , there
is a continuous transition from a gapless Anderson insulator
to a gapped Mott insulating state at U = Uc(W ) ∼ W .8–13

An interesting, recently discovered wrinkle in this picture is
the existence of a kinetic-energy-driven zero bias anomaly in
the density of states,14–18 which was found in the one- and
two-dimensional AHM and should presumably be present in
higher dimensions.

There is less consensus on the phase diagram at weak and in-
termediate disorder. Some calculations have predicted that the
density of states vanishes continuously at the MIT in two10 and
three10,19 dimensions, while dynamical mean-field theory9,20,21

(DMFT) finds that the density of states is discontinuous across
the MIT, and variational Monte Carlo22,23 calculations predict
a first-order Mott transition. Although experiments are often
complicated by the occurrence of broken-symmetry phases,
paramagnetic Mott transitions in real materials are generally
found to be consistent with DMFT.24 The details of the
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FIG. 1. (Color online) Schematic phase diagram for the
Anderson-Hubbard model in three dimensions at half-filling. Thin
lines indicate continuous transitions between metallic, Anderson
insulating, and Mott insulating phases; the thick solid line indicates a
region of the phase boundary where DMFT predicts a discontinuity
in the density of states.

T = 0 MIT are important since they affect the electronic
properties of the metal adjacent to the Mott transition.

To illustrate this point, we consider a simple weak-coupling
expression for the screened random potential Ṽi . Within mean-
field theory, Ṽi = Vi + 1

2U (ni − n0), where n0 is the spatially
averaged charge density and ni = 〈n̂i〉. For weak disorder,
ni = n0 + ∑

j Ṽj ∂ni/∂Ṽj . A rough estimate for the charge
susceptibility is ∂ni/∂Ṽj ∼ −2ρ0δi,j , where ρ0 is the single-
spin density of states at the Fermi energy. Then,

Ṽi ∼ Vi

1 + ρ0U
. (2)

In a weak-coupling metal, ρ0 depends only weakly on U

and the overall effect of increasing U is to screen the
disorder potential. On the other hand, in a gapped insulator,
ρ0 = 0 and the impurity potential is unscreened. While
Eq. (2) applies to weakly correlated insulators, we also expect
screening to vanish in (strongly correlated) Mott insulators
because the charge is unable to rearrange itself in response to
the disorder potential. The screened potential should therefore
be a nonmonotonic function of U , obtaining a maximum value
somewhere between small U [where Eq. (2) holds] and the
critical value Uc(W ). Indeed, several calculations have found
that the impurity potential becomes unscreened as U → Uc

for strong disorder.10,13,25

On the other hand, DMFT predicts that, for weak disorder,
a narrow quasiparticle band develops at the Fermi energy near
Uc, such that the density of states remains finite up to Uc.
It has been shown that because this band tends to be pinned
to the Fermi energy, impurity scattering within the band is
reduced.26,27 In fact, for a particle-hole symmetric band, a
weak impurity potential is predicted to be perfectly screened
as U → Uc. This remarkable result has, to our knowledge, only
been found in DMFT calculations and has not been confirmed
by other theoretical techniques.

In this work, we study persistent currents in an Anderson-
Hubbard lattice threaded by an Aharonov-Bohm flux and focus

on the region of strong correlations near the Mott transition.
These currents are affected by both the disorder potential
(which tends to localize the quasiparticles) and by strong
correlations (which reduce the quasiparticle spectral weight).
One of the main objectives of our analysis is to separate these
two competing effects, and we find the paradoxical result that
the localization length may grow with increasing U , even as
the magnitude of the current is suppressed.

In Sec. II, we describe how we calculate the persistent
current for a ring or torus threaded by an Aharonov-Bohm
flux. In Sec. III, we compare clean and disordered systems
with and without strong correlations, from which we develop a
qualitative sense of the relative importance of disorder screen-
ing and strong correlations. We then show how these affect
the localization length, which is extracted from the scaling
of the persistent current with system size. We present results
for two cases: quarter-filling, where correlations are relatively
weak, and half-filling, where correlations are strongest. We
find that, while the quarter-filling results are consistent with
one-parameter scaling, there is evidence for a breakdown
of one-parameter scaling at half-filling when the interaction
strength U is greater than the disorder strength W . These
results are discussed in Sec. IV.

II. CALCULATIONS

The Hamiltonian is given by Eq. (1). An Aharonov-Bohm
flux � is introduced through a complex phase in the hopping
matrix elements

tij = −t exp

(
i2παxij

L

)
, (3)

where 0 < α < 1, L is the circumference of the ring (in one
dimension) or torus (in two dimensions), and xij = ±1 is
the electron displacement in the x direction during the hop
from site j to site i. The parameter α is the magnitude
of the Aharonov-Bohm flux in units of the flux quantum
�0 = hc/e. The magnitude t of the hopping matrix element
between nearest-neighbor sites is taken to be the unit of energy
throughout this work (i.e., t = 1).

The variational ground-state wave function has the
Gutzwiller form

|	GWF〉 = PG|ψps〉, (4)

where |ψps〉 is a Slater product state wave function and PG =∏
i[1 − (1 − g)n̂i↑n̂i↓] is the Gutzwiller projection operator.

The parameter g is a variational parameter that introduces
correlations into the wave function; the limit g = 0 corre-
sponds to a state with no double occupancies, while g = 1
gives an uncorrelated wave function |	GWF〉 = |ψps〉. This
simple Gutzwiller wave function can not, without additional
Jastrow factors, describe the Mott transition;28,29 nonetheless,
the Gutzwiller projection is useful as a qualitative tool
for understanding strong correlation physics near the Mott
transition.

It is usual to take |ψps〉 to be the many-body ground state of
some effectively noninteracting Hamiltonian, and we consider
here two cases: (i) |ψps〉 is the self-consistent paramagnetic
Hartree-Fock ground state of Ĥ , and (ii) |ψps〉 is the ground
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state of a noninteracting Hamiltonian with a screened disorder
potential

Ĥε = −
∑

〈i,j〉,σ
tij c

†
iσ cjσ +

∑
i

Vi

ε
n̂i . (5)

The parameter ε is treated as a variational parameter, on
the same footing as g. We call the projected wave functions
obtained from (i) and (ii) the paramagnetic Gutzwiller wave
function (PMGW) and the disordered filled sea Gutzwiller
wave function (DFSGW), respectively.

While it is possible to include more variational parameters,
for example, by taking g and ε to be site dependent,22,23

we found previously30 that it is sufficient to include spatial
inhomogeneity only in |ψps〉 when the disorder is not too
strong; it is only for strong disorder (relative to the bandwidth)
that a spatially varying g and ε are essential. This represents a
large computational savings.

The parameters g and ε are determined by minimizing the
energy functional

E = 〈	GWF|Ĥ |	GWF〉
〈	GWF|	GWF〉 . (6)

For large systems, E can not be evaluated exactly, and a
variational Monte Carlo (VMC) method is used. The idea is to
expand |ψps〉 in terms of Fock states |n〉 (states with a definite
number of electrons on each site), such that |ψps〉 = ∑

n αn|n〉.
It is then simple to apply the Gutzwiller projection: PG|ψps〉 =∑

n α̃n|n〉 where α̃m = gDmαm, with Dm the number of doubly
occupied sites in the ket |m〉. Then, the variational energy can
be written as

E =
∑

m |α̃m|2 ∑
n(Hmnα̃n/α̃m)∑

p |α̃p|2 .

The double sum in the numerator is computationally pro-
hibitive to calculate and, in the simplest approach, the
sums over m and p are performed approximately using the
Metropolis algorithm with weighting factors |αm|2 and |αp|2,
respectively. More sophisticated VMC algorithms exist, and
in this work, we used the modified Metropolis algorithm
described in Ref. 31.

The results of the energy minimization are shown in
Fig. 2 and suggest that there is little difference between
the PMGW and DFSGW states. We shall see in the next
section that although these two product states produce almost
identical results for small L, they make quantitatively different
(although qualitatively similar) predictions for the persistent
current when L is large. This difference stems from how
screening is handled: in the PMGW approximation, the self-
consistent charge densities are obtained from a Hartree-Fock
calculation before E is minimized with respect to g; in the
DFSGW approximation, E is minimized with respect to the
projection g and screening ε simultaneously. We expect,
therefore, that the PMGW state provides an upper bound on
the screening, and, where we have been able to compare with
published results, the DFSGW gives a more accurate estimate
of the persistent current.
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FIG. 2. (Color online) Variational energies of the PMGW and
DFSGW states for a one-dimensional chain with L = 50 and W =
4t . Results are at half-filling and are for a single configuration of
disorder. The energy per electron is shown. Inset: Energy difference
�E = EDFSGW − EPMGW between the two variational states.

The Aharonov-Bohm flux in the Hamiltonian generates a
persistent current

J = 〈	GWF|Ĵ |	GWF〉
〈	GWF|	GWF〉 , (7)

with

Ĵ = itea

h̄

∑
〈i,j〉,σ

xij exp

(
i2παxij

L

)
c
†
iσ cjσ . (8)

We note that the persistent current is approximately related to
the Thouless conductance via gTh ∼ J/α.

The persistent current depends on the length L of the chain
or torus, on the interaction strength, and on disorder. In the
next section, much of the discussion involves a comparison
of J for systems with and without disorder. However, for
one-dimensional rings, it is also possible to perform a finite-
size scaling analysis from which the localization length can
be extracted. For localized electrons, the persistent current
satisfies J = J0 exp(−L/ξ ) in the limit L � ξ , where ξ is
the localization length, and it is thus possible to extract the
localization length from logarithmic plots of the persistent
current as a function of system size.

The current J depends on the details of the disorder
configuration and, in the noninteracting case, the distribution
is log-normal when the system size is much larger than the
localization length.32 Examples of the distribution of the
current values are given in Fig. 3. Because of the approximate
log-normal current distribution, we calculate the localization
length from the typical value of the current

Jtyp = exp(ln J ), (9)

where the overbar denotes an average over disorder configu-
rations.
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FIG. 3. (Color online) Distribution of the persistent currents for
an ensemble of one-dimensional chains with L = 50, W = 4t , and
U = 8t . Here and throughout this work, the Aharanov-Bohm flux
is α = 0.25. Results are shown for (a) paramagnetic Gutzwiller and
(b) paramagnetic Hartree Fock approximations. Smooth curves are
Gaussian fits to the data for comparison.

III. RESULTS

A. Persistent current

We begin by showing results for a single configuration of
disorder as a function of U . Figures 4 and 5 show the persistent
current at half-filling as a function of the interaction strength
in two and one dimensions, respectively. The disorder strength
is chosen to be equal to the bandwidth of the disorder-free
lattice, namely, W = 8t in two dimensions and W = 4t in
one dimension. Results are shown for both the PMGW and
DFSGW ground states. In the two-dimensional case, the two
approximations produce nearly identical currents, while in
one dimension, they are quantitatively different, although
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FIG. 4. (Color online) Persistent current as a function of U for
PMGW and DFSGW ground states for both a clean (W = 0) and
disordered (W = 8t) two-dimensional plane. Results are shown at
half-filling (n = 1) for a single disorder configuration with linear
dimension L = 8. Results with g set to 1 by hand include screening
but not strong correlations; these are labeled PMHF (paramagnetic
Hartree-Fock, obtained from PMGW) and DFS (disordered Fermi
sea, obtained from DFSGW). The DFS curves have the same value
of ε as the DFSGW curves. The inset shows the dependence of the
variational parameters on U .
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FIG. 5. (Color online) As in Fig. 4, but for a one-dimensional
chain with L = 50 and W = 4t . The inset shows PMGW and DFSGW
results for a short (L = 8) chain.

qualitatively similar. The distinction appears to be that L 	 ξ

in Fig. 4 while L � ξ in Fig. 5; in support of this, we
have found that the DFSGW and PMGW currents in one
dimension are nearly the same when L is small (inset of
Fig. 5).

The main point of Figs. 4 and 5 is that they allow us to
distinguish the effects of screening and strong correlations on
the persistent current. To separate these effects, we show, in
addition to JPMGW and JDFSGW, results for calculations without
disorder (W = 0), without strong correlations, and with neither
disorder nor strong correlations.

To suppress strong correlations, the Gutzwiller projection is
explicitly turned off. These calculations are labeled “paramag-
netic Hartree-Fock” (PMHF) and “disordered filled sea” (DFS)
and are obtained by setting g = 1 in the PMGW and DFSGW
calculations, respectively. (In the case of the DFS calculations,
the screening ε is the same as in the corresponding DFSGW
calculations.) Figures 4 and 5 show that, as U increases, both
JPMHF and JDFS increase monotonically and approach J of the
disorder-free system (PMHF with W = 0). This indicates that,
in the absence of strong correlations, disorder is progressively
screened with increasing U . In Fig. 5, the PMHF curves
approach the disorder-free limit faster than the DFS curves,
indicating that screening is stronger in the PMHF calcula-
tions; however, the qualitative trends are the same in both
cases.

When the Gutzwiller projections are included, the current
is nearly identical to the unprojected current for small U and
begins to differ from the unprojected current when U ≈ W .
We have checked several different values of W and found that
this is generally the case: for intermediate disorder strengths,
W is the crossover scale beyond which strong correlations
begin to play a significant role. When U � W , the persistent
current is progressively suppressed as U increases. Within
the Gutzwiller approximation, this suppression is interpreted
in terms of a quasiparticle spectral weight that is reduced as
the Mott transition is approached. This mechanism is well
known and has been proposed, for example, to explain the
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anomalously low superfluid screening currents in underdoped
cuprate superconductors.33

The most remarkable feature of Figs. 4 and 5 is that,
although the Gutzwiller projected currents JPMGW and JDFSGW

are suppressed by strong correlations at large U , they ap-
proach the value of the current in the (strongly correlated)
disorder-free system. This indicates that, in spite of the strong
correlations, the disorder potential continues to be screened by
the interactions.

We thus have the paradoxical result that the disorder
screening increases with increasing U , even though the overall
current decreases. In contrast, the usual expectation is that
disorder screening should become worse as the Mott transition
is approached, as occurs for strong disorder. However, our
result is consistent with earlier DMFT estimates that suggest
that the elastic scattering rate due to weak disorder vanishes
at the Mott transition.26 Our result is also consistent with
variational Monte Carlo calculations by Pezzoli et al.,23 who
used a similar variational approach to study the AHM. In
particular, they introduced a variational renormalized site
energy, similar to the parameter ε used here, and found a
monotonic reduction of the effective disorder potential with
increasing U .

We note that the Gutzwiller calculations shown in Figs. 4
and 5 break down above some critical interaction strength
Uc(W ) at which the Mott MIT occurs. Where this happens
depends on the level of disorder and on the dimension of the
lattice. For two-dimensional clusters with W = 8t , variational
calculations23 find a first-order Mott transition at Uc ∼ 12t ,
which is well into the regime where both strong correlations
and disorder screening are significant. For one-dimensional
systems, the MIT happens at a smaller value; we have
performed exact diagonalization calculations for small clusters
with W = 4t that suggest that Uc ≈ 6t . It thus appears that
the regime of strong screening and suppressed quasiparticle
weight should be most easily observed in two and higher
dimensions.

For comparison, we show results for the persistent current at
quarter-filling in Fig. 6. In this case, there is no Mott transition
to worry about, and the Gutzwiller approximation is expected
to be meaningful over a large range of U values.30 The most
striking feature of this figure is the diminished role of strong
correlations at large U , meaning that J is not suppressed
significantly at large U .

As with the half-filled case, the figure shows that the
PMGW current approaches the disorder-free current in the
large-U limit. The DFSGW current, on the other hand, is
more weakly screened and never approaches the clean limit
value, but instead decays slowly from a maximum at U ∼ W

with increasing U . At quarter-filling, then, the PMGW and
DFSGW approximations are qualitatively different. In order
to determine which result is correct, we have compared the two
Gutzwiller results with published exact diagonalization results
for the Drude weight at quarter-filling in one dimension.34 We
find that the U dependence of the DFSGW current in Fig. 6(b)
is surprisingly close to the exact diagonalization results, and in
the remainder of this work, we therefore show only DFSGW
results at quarter filling.

In summary, Figs. 4 and 5 illustrate one of the main results
of this paper, namely, that within the Gutzwiller variational
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FIG. 6. (Color online) As above, but at quarter-filling (n = 0.5).
Results are for clean (W = 0) and disordered (W = D) systems for
(a) a two-dimensional lattice with L = 8 and D = 8t and (b) a one-
dimensional lattice with L = 50 and D = 4t .

ansatz, strong correlations do not inhibit the screening of
moderate disorder at half-filling.

B. Anderson localization

As discussed above, we can extract the localization length
ξ from the finite-size scaling of J . In two dimensions, ξ

tends to be exponentially large35 for weak disorder, and
we can not reach the scaling limit L > ξ . We therefore
illustrate our point by looking at the one-dimensional case,
where it is possible to obtain L � ξ , at least for U not
too large. We showed in the previous section that the
qualitative roles of screening and correlations are the same
in one and two dimensions, and we therefore expect that
the main lessons learned about localization in one dimension
will also apply to higher dimensions. To explore the full
range of behavior, from weak to strong correlations, we
include results for large U where one-dimensional systems
are actually Mott insulating, but which are accessible in higher
dimensions.

Logarithmic plots of the typical current for PMGW calcu-
lations at half-filling are shown in Fig. 7. Lines are fits to the
data of the form

ln Jtyp = ln J0 − L

ξ
+ A

Ly
, (10)

where J0, ξ , A, and y are fitting parameters. The last term
is a finite-size correction, meant to account for leading-order
corrections when L is of order ξ . Clearly, the form of the
correction can not hold for small L, but it improves the quality
of the fit significantly over the range of system sizes studied
here.

Two distinct trends can be seen in Fig. 7: for U �
W , the magnitude of Jtyp increases with U , but the slope
decreases; for U � W , the magnitude of Jtyp decreases
with increasing U , and the slope continues to decrease.
Since the slope is the inverse of the localization length, a
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FIG. 7. (Color online) Scaling of ln Jtyp with system size in one
dimension. Typical currents are shown for half-filling with (a) U � W

and (b) U > W . Data are for the PMGW approximation, solid lines
are fits to the data from Eq. (10). Data are calculated for 10 000/L

disorder configurations, and error bars give the statistical uncertainty
in the typical current. Where error bars are not shown, they are smaller
than the symbol size. (c) The scaling function β for PMGW at half-
filling (left) and DFSGW at quarter-filling (right).

decreasing slope corresponds to an increasing localization
length.

The localization length is shown in Fig. 8. At half-filling,
the PMGW and DFSGW results are qualitatively consistent;
in both cases, the localization length grows monotonically
with U . [Note that where ξ exceeds the largest system
sizes, namely, L = 150, the scaling ansatz Eq. (10) ceases
to give quantitatively accurate values for ξ , and the results are
qualitative only.] There is thus a region of the phase diagram
where the overall magnitude of the current is suppressed by
strong correlations, but the localization length grows with U .
In contrast, at quarter-filling, the localization length saturates
at large U .

In Fig. 7(c), we plot the scaling function

β ≡ d ln Jtyp

d ln L
(11)

as a function of ln Jtyp for both half-filling and quarter-filling.
Note that the derivative in Eq. (11) is obtained from the fitted
curves in Figs. 7(a) and 7(b). When one-parameter scaling
holds, β is a single-valued function of Jtyp. The main branch
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FIG. 8. (Color online) Localization length as a function of U for
(a) PMGW and DFSGW at half-filling and (b) DFSGW at quarter-
filling. PMHF results are shown for comparison.

of the data shown in Fig. 7(c) corresponds to U < W and
is, within the accuracy of our data, a function of Jtyp alone.
There is also a small hook-shaped feature in the upper-right-
hand corner of the figure that corresponds to a second branch,
which comes from U > W . This branch bends back toward
the left, making β a multivalued function of Jtyp. At half-
filling, it appears that one-parameter scaling breaks down when
U > W . In contrast, the quarter-filling data lie entirely on the
main branch, and therefore appear to satisfy one-parameter
scaling.

This breakdown of one-parameter scaling at half-filling
follows directly from the two competing tendencies illustrated
in Figs. 4 and 5. The main branch of the β function comes from
U < W , where J depends on U primarily through disorder
screening, while the second branch comes from U > W , where
strong correlations are significant. While this breakdown may
be hard to observe in one dimension because of the relatively
low value of Uc, it should be observable in two and higher
dimensions.

We note that our DFSGW results for ξ at quarter-filling
are entirely consistent with published DMRG calculations by
Nishimoto et al.36 It is difficult to compare results at half-
filling, however, because the authors perform their DMRG
calculations for U > Uc(W ) and calculate ξ as a function of
filling, while enhanced disorder screening is predicted to occur
at half-filling as U → Uc.

IV. CONCLUSIONS

In summary, we have studied the effects of disorder and
strong correlations on transport in the Anderson Hubbard
model. We have focused on the interaction-driven Mott
transition at half -filling with weak and intermediate strength
disorder. We used a Gutzwiller variational ansatz to describe
the strongly correlated state near the Mott transition, and
studied persistent currents induced by an Aharonov-Bohm
flux.

We found that the persistent current is a nonmonotonic
function of U . For small U , the Coulomb interactions screen
the disorder potential and the current is an increasing function
of U . For large U , strong correlations suppress the current,
which becomes a decreasing function of U . The crossover
between these two limits occurs at U ≈ W . The main surprise
in our calculations is that disorder screening persists when
U is large. One consequence of this is that, in the strongly
correlated regime (U > W ), the localization length is an
increasing function of U , even though the current itself is
a decreasing function of U . We expect that this apparently
paradoxical behavior should be observable in two and higher
dimensions.
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M. Potthoff, Europhys. Lett. 85, 17002 (2009).

22M. E. Pezzoli, F. Becca, M. Fabrizio, and G. Santoro, Phys. Rev. B
79, 033111 (2009).

23M. E. Pezzoli and F. Becca, Phys. Rev. B 81, 075106 (2010).
24G. Kotliar, S. Y. Savrasov, K. Haule, V. S. Oudovenko, O. Parcollet,

and C. A. Marianetti, Rev. Mod. Phys. 78, 865 (2006).
25P. Henseler, J. Kroha, and B. Shapiro, Phys. Rev. B 77, 075101

(2008).
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