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Fluctuation-exchange approximation theory of the nonequilibrium singlet-triplet transition
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As a continuation of a previous work [B. Horváth et al., Phys. Rev. B 82, 165129 (2010)], here we extend
the so-called fluctuation exchange approximation (FLEX) to study the nonequilibrium singlet-triplet transition.
We show that, while being relatively fast and a conserving approximation, FLEX is able to recover all important
features of the transition, including the evolution of the linear conductance throughout the transition, the two-stage
Kondo effect on the triplet side, and the gradual opening of the singlet-triplet gap on the triplet side of the transition.
A comparison with numerical renormalization-group calculations also shows that FLEX captures rather well the
width of the Kondo resonance. FLEX thus offers a viable route to describe correlated multilevel systems under
nonequilibrium conditions, and in its rather general form, as formulated here, it could find a broad application in
molecular electronics calculations.
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I. INTRODUCTION

In the past decades, fast and surprising development has
taken place in the field of molecular electronics. Experimen-
talists have succeeded in contacting and gating a variety of
molecules1–6 and gained more and more control over them.
They have also managed to fabricate “artificial atoms” and
molecules from quantum dots, to isolate single electrons on
them and manipulate their spin.8–10

At the same time, theory seems to be lagging behind,
and describing correlated atomic and mesoscopic structures
under nonequilibrium conditions continues to be a challenge
for present-day theoretical solid state physics. Tremendous
effort has been devoted to the development of theoretical
tools to capture appropriately the transport properties and
dynamics of these systems,7,11–21 however, with little success.
Most methods are uncontrolled or work only for rather
special models. Under these conditions, perturbative methods
can be of great value: Although they are restricted to the
regime of weak interactions, they provide precious theoretical
benchmarks for more sophisticated though less controlled
approximations. Furthermore, many experiments are carried
out in a regime accessible by perturbation theory.

Theorists typically use the simplest possible models such
as the (single-level) Anderson model or the Kondo model
to describe correlated behavior in these systems. For these
simple models it is well known that perturbative approaches
can work rather well in the appropriate parameter range. In
particular, perturbation theory in the interaction strength U

of the Anderson model is known to reproduce the generic
structure of the spectral functions,22–25 although the value
of the Kondo temperature is known to be incorrect.26 Atoms
and experimental systems are, however, far more complicated
than the single-level Anderson model.27,28 Typically, magnetic
impurities contain many electrons on their d or f shells, and
the orbital structure of these states and the hybridization matrix
elements as well as the Hund’s rule coupling influence quanti-
tatively the corresponding magnetic and physical properties. It
is thus important to understand the limitations of perturbative
nonequilibrium approaches in multiorbital systems. Quantum
dots, in which orbital structure can become important under

certain conditions, offer ideal test grounds in this regard. A
particular and interesting example is provided by the so-called
singlet-triplet (ST) transition.29,30,32 There the occupation of
two nearby levels (and thereby the spin) of a quantum dot
with an even number of electrons changes due to the presence
of Hund’s rule coupling. This transition has been observed in
a number of different systems such as vertical33 and lateral
quantum dots,34,35 carbon nanotubes,36 and C60 molecules.3

A lot of theoretical effort has also been devoted to this
transition. In equilibrium, the transition can be understood
using numerical renormalization-group (NRG) methods.31,32

However, our understanding of the nonequilibrium situation
is rather poor: the regime far from the transition could be
described through a functional renormalization-group (RG)
approach,14 which is, however, not appropriate to describe
the small bias limit on the triplet side. A slave boson
approach has also been applied relatively successfully to
describe the somewhat special underscreened case, but this
approach is rather uncontrolled and is limited to certain
models.37

In a previous publication,38 we studied the ST tran-
sition using a simple, perturbative approach and showed
that this approach works surprisingly well: It is able to
capture the physics on both sides of the transition, i.e.,
the two-stage Kondo effect on the triplet side30 as well
as the local singlet formation on the singlet side, and the
formation of the corresponding dips in the nonequilibrium
differential conductance, dI/dV . The simple perturbative
approach is, however, not conserving in general,39,40 and
furthermore, as mentioned above, it fails to reproduce the
Kondo temperature.26 Therefore, in the present work, which
should be considered an extension of our previous study,38 we
go beyond simple perturbation theory and study whether the
simplest nontrivial conserving approximation, the so-called
fluctuation exchange approximation (FLEX), is able to capture
the ST transition. This method has been extensively applied
in connection to high-temperature superconductivity,41,42 and
as an impurity solver,43 it has also been successfully used to
combine dynamical mean-field theory (DMFT) and ab initio
techniques.44–46 It is computationally relatively cheap, can be
extended easily to more than two orbitals, and is also able to go
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beyond perturbation theory and give a more precise estimate
of the Kondo temperature.

As we demonstrate, the performance of FLEX is good,
and it is also able to capture the ST transition. However,
while it automatically guarantees current conservation, its
convergence properties seem to be worse than those of simple
iterated perturbation theory, and it is computationally also
more demanding. Nevertheless, despite these weaknesses,
FLEX provides a very good option for study of correlated
behavior in nanoscale structures and seems to provide a more
accurate estimate for the Kondo temperature.

The paper is organized as follows. In Secs. II A and II B, we
introduce the nonequilibrium two-level Anderson model and
describe the FLEX used to solve the nonequilibrium Anderson
model. In Sec. II C we show the details of the iteration of the
full Green’s function within the FLEX. In Sec. III A, we present
the results obtained for completely symmetrical quantum dots
with equal level widths, while in Sec. III B results for dots with
more generic parameters are discussed. Our conclusions are
summarized in Sec. IV, and some technical details are given
in the Appendix.

II. THEORETICAL FRAMEWORK

A. Model

Let us start by defining the Hamiltonian we use to
describe the quantum dot. We divide the Hamiltonian into
a noninteracting part, H0, and an interacting part, Hint, and
write H0 as

H0 = Hcond + Hhyb + H0,dot. (1)

Here the term

H0,dot =
∑
i,σ

εid
†
iσ diσ , (2)

describes the individual levels of an isolated quantum dot, and
correspondingly, d†

iσ is the creation operator of a dot electron of
spin σ on level i = ±, with energy εi . The other two terms, the
conduction electron part, Hcond, and the hybridization, Hhyb,
depend slightly on the geometry of the dot. For lateral dots,

H lat
cond =

∑
ξ,α,σ

ξαc
†
ξασ cξασ , (3)

H lat
hyb =

∑
α,i,ξ,σ

tαi(c
†
ξασ diσ + h.c.). (4)

Here ξ denotes the energy of a conduction electron measured
from the (equilibrium) chemical potential of the leads, and
correspondingly, c

†
ξασ creates a conduction electron of spin

σ in lead α = L,R. In the presence of a bias voltage, this
energy shifts to ξα = ξ + eVα , with Vα being the electrical
potential of lead α. [Notice, however, that the occupation
continues to depend on ξ , 〈c†ξασ cξ ′ασ 〉 = δξ,ξ ′ f (ξ ), with f

the Fermi function]. The hybridization term H lat
hyb describes

tunneling between the dot level and the noninteracting
leads, and the parameters tαi characterize the tunneling
amplitude.

The terms Hcond and Hhyb are slightly different for vertical
quantum dots or carbon nanotubes. In the latter cases, each
dot state is associated with a separate electron channel in each
lead, cξασ → cξiασ ,

H vert
cond =

∑
ξ,i,α,σ

ξαc
†
ξiασ cξiασ , (5)

H vert
hyb =

∑
ξ,i,α,σ

tαi(c
†
ξiασ diσ + h.c.). (6)

In this paper, we assume that the occupation of the two
levels involved in the transition is around 〈∑i,σ d

†
iσ diσ 〉 ≈

2. Therefore, we write the interaction in an electron-hole
symmetrical form,38

Hint = U

2

(∑
iσ

niσ − 2

)2

− J �S2, (7)

with U and J denoting the Hubbard interaction and the Hund’s
rule coupling, respectively, and �S = 1

2

∑
i,σ,σ ′ d

†
iσ �σσσ ′diσ be-

ing the spin of the dot. To carry out a systematic perturbation
theory, we split the interaction above into a normal ordered
term and a level shift,

Hint =: Hint : −
(

3U

2
+ 3J

4

) ∑
iσ

niσ . (8)

We then incorporate the second term in H0,

H0 −
(

3U

2
+ 3J

4

)∑
iσ

niσ ⇒ H̃0, (9)

εi −
(

3U

2
+ 3J

4

)
⇒ ε̃i , (10)

while we treat the normal ordered part,

: Hint :=
∑

i,j,m,n,
σ,σ ′,σ̃ ,σ̃ ′

1

4
�

jσ ′ mσ̃ ′
iσ nσ̃ d

†
jσ ′d

†
mσ̃ ′dnσ̃ diσ , (11)

as a perturbation. Here the bare interaction vertices �
jσ ′ mσ̃ ′
iσ nσ̃ can

be expressed in terms of U and J , with the explicit expressions
derived in Ref. 38. The above procedure must be contrasted
with the one we followed in Ref. 38, where the second
term in Eq. (8) has been treated through the application of a
counterterm procedure. This counterterm procedure becomes
unnecessary in FLEX, which is formulated in terms of the full
(dressed) Green’s functions.

B. Out-of-equilibrium fluctuation exchange approximation

To describe the spectral and transport properties of the dot,
we use a Green’s function method. We thereby consider the
Keldysh Green’s functions of the dot electrons,

G
jσ ′κ ′
iσκ (t − t ′) ≡ −i 〈TKdjσ ′κ ′(t)d†

iσκ (t ′)〉, (12)

with 〈. . .〉 denoting the average with respect to the stationary
density matrix, TK the time ordering along the Keldysh
contour, and κ and κ ′ = 1,2 the Keldysh indices, labeling
the upper and lower Keldysh contours. Throughout this paper
we consider the simplest case, where the Hamiltonian is spin
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rotation invariant. In this case, the Green’s function is spin
diagonal,

G
jσ ′κ ′
iσκ (t − t ′) = δσ ′

σ G
jκ ′
iκ (t − t ′) . (13)

The noninteracting Green’s functions, gjκ ′
iκ are associated with

H̃0, and can be determined analytically (see the Appendix
for their explicit form). They are related to the full Green’s
functions through the Dyson equation,

G−1(ω) = g−1(ω) − 
(ω), (14)

where we used a matrix notation, m
jκ ′
iκ → m, and introduced

the Keldysh self-energy, �.
Just as in Ref. 38, the knowledge of G enables us to compute

the current through the dot by using the Meir-Wingreen
formula,

I = ie

h

∑
i,j

∞∫
−∞

dω
[(

�L
ij − �R

ij

)
(G<)ji (ω)

+ (
fL(ω)�L

ij − fR(ω)�R
ij

)(
(G>)ji (ω) − (G<)ji (ω)

)]
,

(15)

with the lesser and greater Green’s functions defined in the
usual way in terms of the Keldysh Green’s function in Eq. (13):

(G>)ji = G
j2
i1 , (16)

(G<)ji = G
j1
i2 . (17)

The functions fα(ω) = f (ω − eVα) in Eq. (15) denote the
shifted Fermi functions in lead α, and the matrices �α

ij describe
the decay of the dot levels. They are defined as(

�α
ij

)
lat = 2πNαtαi t

∗
αj (18)

for lateral quantum dots, while they read as(
�α

ij

)
vert = δij 2πNαi |tαi |2 (19)

for vertical dots, with Nα and Nαi standing for the density of
states in the leads. We note that the factor Nα can be eliminated
by incorporating it in the tunneling parameters tαiN

1/2
α → t̃αi

and the fields cξασ N
1/2
α → ψξασ .

Our primary purpose is to determine � (and thus G) and use
that to compute the nonequilibrium differential conductance
through the dot. We use the so-called FLEX for this purpose.
FLEX is constructed in terms of a generating functional,
 = [G], defined as a functional of the full many-body
Green’s function G.40 The self-energy and the particle-hole
irreducible vertex functions are obtained from  through
functional differentiation. Although  is usually not known,
one can approximate it by a subset of diagrams and then obtain
approximations for the self-energy and the vertex functions.
As shown by Kadanoff and Baym,39,40 this construction is
conserving; i.e., it guarantees that conservation laws are
respected. Although this approach is mostly used in imaginary
time, one can quite naturally generalize it to the nonequilibrium
case discussed here by simply replacing the imaginary time
Green’s function in  by the Keldysh Green’s functions.

 +  ... +

FLEX
Φ         =  +

FIG. 1. The  functional generating the FLEX diagrams. The
first diagram just generates the Hartree-Fock approximation. Thick
lines denote full Green’s functions. Squares denote the particle-hole
vertex, defined in Eq. (20).

In this language, Hartree-Fock theory is just the simplest
conserving approximation, while the next level of approxima-
tion is provided by FLEX, corresponding to the summation of
an infinite series of ladder diagrams (see Fig. 1). In Fig. 1 we
introduce the Keldysh particle-hole vertex,

�̃
l3,σ3,κ3l4,σ4,κ4

l1,σ1,κ1l2,σ2,κ2
≡ s(κ1) δκ1κ2κ3κ4 �̃

l3,σ3l4,σ4
l1,σ1l2,σ2

,

�̃
l3,σ3l4,σ4

l1,σ1l2,σ2
≡ �

l3,σ3l2,σ2
l1,σ1l4,σ4

, (20)

with s(κ) keeping track of the sign change of the interaction on
the Keldysh contour: s(1) = +1 for the upper and s(2) = −1
for the lower contour. The structure of this particle-hole vertex,
�̃, is shown in Fig. 2 for the particular case of Hund’s rule
coupling and Hubbard interactions.

Differentiating the functional  in Fig. 1, one obtains the
self-energy diagrams shown in Fig. 3(a). We then observe that
all higher order diagrams contain the ladder series, shown in
Fig. 3(b). Let us therefore introduce the composite label,

(li ,σi,κi) → αi, (21)

and define the particle-hole propagator �(0) as

�(0)α2β2

α1β1
(t − t ′) ≡ i2Gα2

α1
(t − t ′)Gβ1

β2
(t ′ − t). (22)

Then the full particle-hole propagator, �, defined by the ladder
series in Fig. 3(b) satisfies the following Dyson equation:

�
α′β ′
αβ (t − t ′) = �(0)α

′β ′

αβ (t − t ′)

− i
∑
α1,β1
α2 ,β2

∞∫
−∞

dt̃ �(0)α1β1

αβ (t − t̃)�̃α2,β2
α1,β1

�
α′β ′
α2β2

(t̃ − t ′). (23)

α β

γ
δ

α

γ

β

δ

α

γ β

δ

= − +

+

U
U

J J−
α β

δγ

α

γ

δ

β

FIG. 2. Structure of the particle-hole vertex, �̃βδ
αγ . Here α, β, γ ,

and δ denote composite indices as introduced in Eq. (21).
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FLEX
 +Σ         =

 +  ... +

(a)

Π =  +

 +  +  ...
(b)

FIG. 3. (a) Series of self-energy diagrams generated from FLEX.
(b) Diagrammatic definition of the full particle-hole propagator, �.

The integral being just a convolution, this equation can be
solved in Fourier space. Then defining


β
α ladder(t − t ′) ≡
−

∑
α̃,β̃

∑
α1,β1
α2 ,β2

�̃
α1β1
αα̃ �

α2β2
α1β1

(t − t ′)�̃ββ̃

α2β2
G

β̃
α̃(t − t ′), (24)

we can sum up all n � 3 order self-energy diagrams. The
self-energy 
ladder also contains the second-order self-energy
contribution, but with double weight. Therefore, the total self-
energy can be written as


 = 
ladder + 
(1) − 
(2), (25)

with the first- and second-order diagrams 
(1) and 
(2) defined
as


(1)β
α = i δκακβ

sκ

∫ ∞

−∞

dω1

2π

∑
α̃β̃

�̃
α̃β̃

αβ G
β̃
α̃

<

(ω1), (26)


(2)β
α(t − t ′)

= −1

2

∑
α̃,β̃

∑
α1,β1
α2 ,β2

�̃
α1β1
αα̃ �(0)α2β2

α1β1
(t − t ′)�̃ββ̃

α2β2
G

β̃
α̃(t − t ′).

(27)

Solving the equations above turns out to be numerically
rather demanding for two reasons. First, to get a good enough
time resolution, we have to keep a large number of time
(frequency) points in the calculations. Second, the propagator
� has too many indices. In fact, even in our simple case, �

has 84 components. This number can be substantially reduced,
however, if we exploit the SU(2) spin symmetry of the problem.
Using simple group-theoretical arguments, we can show that
the vertex �̃ assumes a simple form in spin space and can be

expressed in terms of a singlet and a triplet component,

�̃
σ3σ4

σ1σ2
=

⎡
⎢⎢⎢⎣

1
2 (�̃

s
+ �̃

t
) 0 0 1

2 (�̃
s
− �̃

t
)

0 �̃
t

0 0

0 0 �̃
t

0
1
2 (�̃

s
− �̃

t
) 0 0 1

2 (�̃
s
+ �̃

t
)

⎤
⎥⎥⎥⎦, (28)

with the four indices ordered as {↑↑ , ↑↓ , ↓↑ , ↓↓}, and the
matrices �̃

s,t
defined as

�̃
t
= �̃

↑↑
↑↑ − �̃

↑↑
↓↓, (29)

�̃
s
= �̃

↑↑
↑↑ + �̃

↑↑
↓↓. (30)

Here each entry is a matrix in the remaining orbital (l)
and Keldysh (κ) labels: (�̃t,s)

l3κ3;l4κ4
l1κ1;l2κ2

→ �̃
t,s

. By the same

symmetry argument, we can show that the propagators �(0)

and � take on a similar form. Furthermore, it is easy to see
that this structure is maintained under multiplication, where
the lower indices of a tensor are contracted with the upper
indices of another tensor. Therefore the singlet and the triplet
components of � can be summed up independently:

�
s,t

(ω) = �(0)
s,t

(ω)
[
1 + i �̃

s,t
�(0)

s,t
(ω)

]−1
, (31)

with the unit matrix 1 defined as (1)l3κ3;l4κ4
l1κ1;l2κ2

= δ
l3
l1
δ

l4
l2
δκ3
κ1

δκ4
κ2

. We
can then simply express the spin-independent part of 
ladderin
terms of �

s,t
as

(
ladder)
q
p(t) = −

∑
p̃,q̃

3

2
(�̃

t
�

t
(t)�̃

t
)qq̃
pp̃G

q̃
p̃(t)

−
∑
p̃,q̃

1

2
(�̃

s
�

s
(t)�̃

s
)qq̃
pp̃G

q̃
p̃(t), (32)

with p and q denoting composite labels, including only the
orbital and the Keldysh indices, (l,κ) → p,q.

C. Details of the FLEX iteration

The previously defined equations provide a self-consistent
set of equations, which we then solve iteratively. In zeroth
order, we approximate the full Green’s function G by g,

G[0]β
α(ω) = gβ

α (ω), (33)


[0]β
α(ω) = 0. (34)

We then start iteration n � 1, by first computing G[n−1](t)
from the Green’s function G[n−1](ω) of the previous iteration,
by performing a fast Fourier transformation (FFT). Next, we
construct (�(0)

s,t
)[n−1](t), obtain from that (�(0)

s,t
)[n−1](ω), and

then solve the Dyson equation, Eq. (31), to get �[n−1]
s,t

(ω).

From that we obtain �[n−1]
s,t

(t) by FFT. We can then use

�[n−1]
s,t

(t), (�(0)
s,t

)[n−1](t), and G[n−1](t) to compute �
[n]
ladder,

(�(1))[n], (�(2))[n], and, finally, the total self-energy �[n](t)
through equations Eq. (24), (26), (27), and (25). Finally,
we obtain our next estimate, G[n](ω), by first computing the
Fourier transform, �[n](ω), and inverting the Dyson equation,
Eq. (14). This iteration procedure is repeated until convergence
is reached.
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In the numerical calculations we represented the Green’s
functions using a finite uniform mesh of N frequency points
in the range −�/2 < ω < �/2. As mentioned above, the
numerics was highly demanding; we had to use 216–218

frequency points and � ≈ 1000U to reach convergence. The
memory demand of the calculation was also much higher than
that of the IPT procedure in Ref. 38. With the symmetry-based
representation of �̃ and � propagators, however, we managed
to reduce the size of them substantially and were able to run
the calculation on simple PCs.

Although for small interaction parameters the convergence
was rather stable, FLEX showed instabilities for high interac-
tion parameters, similarly to IPT.38 These instabilities could
be partially cured with a gradual increase in the interaction
parameters. With this trick, the range of applicability was
found to be roughly the same as the one found with IPT.38

III. RESULTS AND DISCUSSION

Let us now turn to the presentation of the numerical results.
For simplicity, excepting Sec. III C, in this section we focus
on a completely symmetrical dot with an even (i = +) and an
odd (i = −) level. In this case, the tunneling matrix elements
satisfy

tL± = ±tR±, (35)

and the tunnelings can be characterized simply by the widths
of the levels,

�i ≡
∑

α=L,R

�α
ii , (36)

both for lateral and for vertical dots. Similar to Ref. 38, here we
focus on the vicinity of the electron-hole symmetrical point,
ε̃+ = ε̃− = 0, and assume that the two levels are symmetrically
positioned,

ε̃± = ±�/2. (37)

A. The case �+ = �−

1. Equilibrium spectral functions

In this case, for � = J = 0, the three singlet and the
triplet states of an isolated doubly occupied dot are completely
degenerate, and an unusual Kondo state is formed.38,47 Turning
on �, one separates the singlet state with both electrons on
state i = − from the rest of the states and destroys the Kondo
effect once � becomes larger than the Kondo temperature, T ∗

K ,
defined as the half-width of the central peak for � = J = 0.
This transition can be observed in the total equilibrium spectral
functions,

ρT (ω) = −
∑
i=±

1

2π
ImGR

i,i(ω), (38)

where the retarded Green’s function is defined as

GR
i,j ≡ Gi1

j1 − Gi1
j2 = GT

i,j − G<
i,j , (39)

with GT
i,j ≡ Gi1

j1 the time-ordered Green’s function.
In Fig. 4, we display ρT (ω) for J = 0 for various splittings

of the two levels, �, as computed by FLEX and by the IPT in

-2 -1 0 1 2
ω/U

0

0.2

0.4

0.6

0.8

U
ρ T

( ω
)

Δ/U=0.0
Δ/U=0.3
Δ/U=0.6
Δ/U=0.9
Δ/U=1.2

J=0, Γ
+
/U=Γ

-
/U=0.785

FLEX

-2 -1 0 1 2
ω/U

0

0.2

0.4

0.6

0.8

U
 ρ

T
(ω

)

Δ/U=0.0
Δ/U=0.3
Δ/U=0.6
Δ/U=0.9
Δ/U=1.2

IPT

J/U=0.0, Γ
+
/U=Γ

-
/U=0.785

FIG. 4. (Color online) Total spectral function, ρT (ω) = (ρ+(ω) +
ρ−(ω))/2 for J/U = 0 and �±/U = 0.785 for different values of
level splitting, �/U . Top: FLEX results. Bottom: IPT results for the
same parameters.

Ref. 38. The splitting of the Kondo resonance is remarkably
similar in the top and bottom panels, however, there are
important differences too. First, FLEX gives a lower Kondo
temperature and provides a more realistic shape for the Kondo
resonance both in the absence and in the presence of splitting.
However, while the Hubbard peaks at ω = ±U are still visible
within the simple perturbative calculation, FLEX is unable to
capture them correctly.

Similar conclusions are reached for J �= 0 with the ex-
ception that now the splitting of the Kondo resonance is
shifted to higher values of � (see Fig. 5). However, in this
case the central peak has a slightly different interpretation
than for J = 0, since for J > 0 the isolated dot would be
in a triplet state. As a result, the central Kondo resonance
at � = 0 can be interpreted as a result of a triplet Kondo
effect, where the spin S = 1 of the dot is screened by
the even and the odd conduction electron channels. In this
triplet state the ground-state degeneracy of the isolated dot
is reduced, and quantum fluctuations are therefore somewhat
suppressed. As a consequence, the Kondo temperature TK is
also reduced, and the central peak becomes slightly narrower
but, also, more stable against � �= 0; in this J > 0 case the
splitting of the triplet Kondo resonance occurs roughly when
� ∼ 2J + TK .
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FIG. 5. (Color online) Total equilibrium spectral function ρT (ω)
for J/U = 0.15 and �±/U = 0.785, for different values of
level splitting, �/U , as computed by FLEX (top) and by IPT
(bottom).

2. Comparison with numerical renormalization group

Before beginning the discussion of the nonequilibrium
results, it is worth comparing FLEX with other methods such
as IPT or NRG,48,49 the latter procedure giving us a benchmark
for the equilibrium calculations. Figure 6 compares the results
of these three methods for parameters � = 0, �±/U = 0.785,
and J/U = 0.15. For the NRG calculations we used the
open-access Budapest NRG code.50 To reduce computational
effort and achieve sufficient accuracy, we made use of the
spin SU(2) symmetry of the Hamiltonian, as well as the U(1)
symmetries corresponding to the conservation of the total
fermion numbers in channels i = ±. The computations were
performed with a discretization parameter, � = 2, and 2400
kept multiplets. The calibration of the NRG parameters re-
quires special care, since the NRG discretization and iteration
procedure renormalizes somewhat the bare parameters of the
Hamiltonian.48,51 We calibrated the level widths �± from the
height of the numerically calculated spectral functions. The
results obtained this way were in good agreement with the
analytical expressions in Ref. 51.

As shown in Fig. 6 the width of the Kondo resonance is
perfectly captured by FLEX for the above parameters, while
IPT slightly overestimates the size of the Kondo resonance.
(As a comparison, in Fig. 6 we also plot the shape of the
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FIG. 6. (Color online) Comparison of the spectral functions for
� = 0, �±/U = 0.785, and J/U = 0.15, as computed by FLEX,
IPT, and NRG. Clearly, FLEX seems to capture rather accurately the
width of the central Kondo resonance.

resonance for U = 0.) However, while FLEX seems to give a
better estimate for the Kondo temperature than IPT, IPT seems
to capture the high-energy features (Hubbard peaks) better—a
well-known shortcoming of FLEX.43

B. The asymmetric case, �+ �= �−

Let us now turn to the more generic situation, �+ �= �−,
and J > 0. In this case, for � ≈ 0, the triplet spin on the
dot is screened by a two-stage Kondo effect,30 and the central
resonances in the level-projected spectral functions, ρ±(ω),
become different due to the presence of two different Kondo
scales, T ±

K , corresponding to the screening in the even and in
the odd channels, respectively.

In Fig. 7 we show the level-projected as well as the full
spectral functions, ρT (ω), as computed by FLEX for a dot with
J/U = 0.15, �+/U = 1.1, and �−/U = 0.785 for different
level splittings, �/U . Unlike for �+ = �−, for � = 0 the
projected spectral functions of the two levels are different,
ρ+(ω) �= ρ−(ω). Nevertheless, they are all symmetrical as
a consequence of a discrete particle-hole symmetry (see
Ref. 38). However, this symmetry is violated for any � �= 0,
where electron-hole symmetry is destroyed even for the total
spectral function, ρT (ω). The difference in the Kondo tem-
peratures is clearly visible in the normalized level-projected
spectral functions, shown in the inset in Fig. 7.

Similarly to the symmetrical case, the Kondo resonances are
gradually split by a finite �. The splitting of the resonances
appears even more strikingly in the differential conductance,
G(V ) = dI/dV , as computed from Eq. (15) and shown in
Fig. 8. These differential conductance curves were obtained
by computing G and I (V ) for each bias voltage V separately
and then carrying out a numerical differentiation.

For a lateral dot at � = 0, i.e., in the two-stage Kondo effect
regime, the dI/dV curve shows very nicely the buildup of the
first Kondo resonance34,35 and then the appearance of a dip at
V = 0 bias. This dip is a result of the destructive interference
between the two Kondo effects, and it appears once the bias
voltage becomes so low that it cannot destroy even the narrower
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splittings, �/U , as obtained by FLEX. On the triplet side (� = 0), the
second Kondo scale emerges as a narrow dip/sharp resonance in G(V )
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splitting gives rise to a wide central dip in G(V ). The curves
reproduce very nicely all features observed experimentally, however,
the crossover regime is only qualitatively captured in the lateral case.
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FIG. 9. (Color online) Linear conductance, for lateral and ver-
tical dots, with J/U = 0.15, �+/U = 0.785, and �−/U = 1.1 for
different level splittings, �/U , as obtained by FLEX.

Kondo resonance of the spectral function. As shown in Fig. 9,
upon increasing �, the linear conductance (i.e., the zero-bias
differential conductance) exhibits a maximum in the crossover
regime, in agreement with the experiments. However, the bias
dependence of the differential conductance in the crossover
regime (dashed lines in Fig. 8) of maximal conductance is
not very reliable, and the G(V ) only shows the general trends
observed experimentally, i.e., the disappearance of the central
dip and the appearance of a state with a single Kondo resonance
and a perfect G = 2e2/h linear conductance. For even larger
�’s, however, the dI/dV curves show very nicely the linear
splitting of the Kondo resonance.

In contrast to the lateral case, in a vertical geometry,
the second Kondo effect manifests itself as an additional
contribution to the conductance and, thus, as a narrow peak
at zero bias for � = 0. In this vertical case, the differential
conductance curves reproduce the experimentally observed
features even in the crossover regime: the linear conductance is
suppressed with increasing � (see Fig. 9), [for our parameters
the two Kondo scales are very close to each other, and therefore
this decrease is rather featureless] and the central resonance
gets gradually broader, until it splits into two side peaks,
corresponding to the ST excitation energy.

Finally, for comparison, in Fig. 10 we show the dI/dV

curves at � = 0, as obtained by IPT, for the same parameters
as used to produce Fig. 8. The IPT curves are strikingly similar
in structure to those obtained by FLEX. The most important
difference is the width of the central dip/resonance structure,
which is somewhat narrower in the FLEX calculation and is
closer to the real value.

C. The fully asymmetrical case

So far, we have focused on the case of a completely
symmetrical quantum dot, and correspondingly, we have
assumed that one of the states is even while the other state
is odd. In general, however, quantum dots are not entirely
symmetrical. This asymmetry leads to the suppression of the
maximal conductance, and for lateral quantum dots it may also
lead to interference effects.52 It is out of the scope of the present
paper to study such interference effects in detail, however, to
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and � = 0, as obtained by IPT. The curves compare quite well with
those in Fig. 8.

demonstrate how FLEX works in this more general case, let
us present some results here.

In this general case, we can parametrize the tunneling to
the leads using the angles φ± ∈ [−π/2,π/2] as

(t±,L,t±,R) = t± (cos(φ±), sin(φ±)). (40)

For an even level, φ = π/4, while for an odd level, φ = −π/4.
In Fig. 11 we present the equilibrium spectral functions,

ρij (ω) ≡ i

2π

(
GR

ij (ω) − GA
ij (ω)

)
,

for the same level width, �+/U = 1.1, and �−/U = 0.785 as
before, but for a lateral dot with φ± = ±π/3. In this case left-
right symmetry is absent, and ρij has off-diagonal components
too. Interference between the states ± appears as a resonant
structure in ρ+−. However, in contrast to the components ρ++
and ρ−−, within numerical accuracy ρ+− and ρ−+ integrate to
0 according to the corresponding spectral sum rule. For � = 0
the dot is still electron-hole symmetrical, and the heights of
the spectral functions at ω = 0 are simply given by

ρij (0) = 2

π
(�−1)ij , (41)

with �ij = ∑
α=L,R �α

ij the full relaxation rates [see Eq. (36)],
as can be checked by an explicit calculation.

Figure 12 shows and compares the differential conductance
computed for asymmetric vertical and lateral dots in the triplet
regime (� = 0). The curves are very similar to those obtained
for symmetrical dots, except for two important differences: (a)
The conductance of a vertical dot does not reach the unitary
conductance but goes only up to the value 2e2/h(sin2(2φ+) +
sin2(2φ−)) = 3e2/h, and similarly, the overall conductance of
a lateral dot is also suppressed. (b) The width of the narrower
resonance is reduced for a lateral dot. This is due to the fact
that the smaller eigenvalues of the � matrix are reduced by the
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FIG. 11. (Color online) Equilibrium dimensionless spectral func-
tions for J/U = 0.15 �+/U = 1.1, �−/U = 0.785, and �/U = 0
for a symmetrical dot with φ± = ±π/4 and for an asymmetrical dot
with φ± = ±π/3, as computed by FLEX. Inset: The of-fdiagonal
component of the spectral function for φ± = ±π/3.

interference as

�̃− = �+ + �−
2

−
√

(�+ − �−)2

4
+ �+�− cos2(φ+ − φ−),

and accordingly, the dip corresponding to the narrow Kondo
resonance also becomes narrower. In contrast, the structure of
the dI/dV curve remains essentially unaltered for a vertical
dot, where only the amplitude of the signal is reduced.

IV. CONCLUSIONS

In the present paper, we developed a general nonequilibrium
FLEX formalism. We tested the performance of this approach
on the ST transition of a dot with two single-particle levels,
driven by a competition between the Hund’s rule coupling
and the Kondo screening. This transition exhibits several
correlation-induced features, which are typically rather dif-
ficult to capture. On the triplet side of the transition a Kondo
state develops with two different Kondo scales, while on
the other side of the transition the triplet excitation appears
as a pseudogap feature. Finally, in the crossover region an
exotic Kondo state appears, and for a lateral dot the linear
conductance shows a broad resonance.

Remarkably, within its range of convergence, FLEX was
able to capture all these features, excepting the Hubbard peaks,
which are rather poorly represented by FLEX. Nevertheless,
the low-energy features and the dI/dV curves show behaviors
remarkably close to the experimentally observed ones. In our
earlier studies, we applied simple IPT to describe the ST
transition. FLEX has some clear advantages, but also disad-
vantages, with respect to IPT. On the one hand, it produces
apparently more realistic curves in the low-bias region than
IPT does, and—as our comparison with NRG calculations
confirms—it captures the Kondo temperature as well as the
Kondo effect–related structures better there. In addition, it is
a generically conserving approximation, and it scales rather
well with the number of orbitals. All these properties make
FLEX a viable route to incorporate strong correlation effects in
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molecular electronics calculations. On the other hand, FLEX is
computationally much more demanding. In fact, in this work
we had to exploit symmetries to reduce the computational
effort. This is, of course, not a major obstacle if one has access
to supercomputers or efficient computer clusters, and we
believe that the numerical efficiency can most likely be further
improved.

Finally, let us comment on the version of FLEX we used
here. In the present paper, we used a generating  functional,
which only incorporates electron-hole bubble series. FLEX
can, however, be extended to include fluctuations in the Cooper
channel too. This may be important in cases where attractive

interactions appear in some scattering channels. In particular,
such an extension of FLEX may be necessary to describe
transport through superconducting grains. The generalization
is relatively straightforward, however, it is certainly beyond
the scope of the present work, which has focused solely on
the demonstration of FLEX as an efficient nonequilibrium
impurity solver.
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APPENDIX : THE HYBRIDIZED GREEN’S FUNCTION, g

For completeness, let us give here the elements of g−1(ω).

Restricting ourselves to the spin symmetrical case, g−1jσ ′κ ′
iσκ =

δσ ′
σ g−1jκ ′

iκ . The elements of g−1jκ ′
iκ differ for lateral and vertical

dots. For lateral dots, they are given by(
g−1

lat

)jκ ′

iκ
= δ

j

i s(κ) (ω − ε̃i) δκ ′
κ

−
∑

α∈L,R

Nα t∗αi tαj �κκ ′
α (ω), (A1)

with s(κ) the Keldysh sign defined in the main text, and
hybridization parameters �κκ ′

α (ω) defined as

�11
α (ω) = πi(2fα(ω) − 1), (A2)

�12
α (ω) = −2πifα(ω), (A3)

�21
α (ω) = −2πi(fα(ω) − 1), (A4)

�22
α (ω) = πi(2fα(ω) − 1), (A5)

with fα(ω) = f (ω − eVα) the shifted Fermi function. For
vertical dots, on the other hand, g−1jκ ′

iκ is diagonal in i and
j , (

g−1
vert

)jκ ′

iκ
= δ

j

i s(κ) (ω − ε̃i) δκ ′
κ

− δ
j

i

∑
α∈L,R

Nαı |tαi |2 �κκ ′
α (ω). (A6)
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