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Nematic order in the vicinity of a vortex in superconducting FeSe
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We present a phenomenological theory of the interplay between nematic order and superconductivity in the
vicinity of a vortex induced by an applied magnetic field. Nematic order can be strongly enhanced in the vortex
core. As a result, the vortex cores become elliptical in shape. For the case where there is weak bulk nematic order
at zero magnetic field, the field-induced eccentricity of the vortex core has a slow power-law decay away from
the core. Conversely, if the nematic order is field induced, then the eccentricity is confined to the vortex core. We
discuss the relevance of our results to recent scanning tunneling microscopy experiments on FeSe [Song et al.,
Science 332, 1410 (2011)].
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I. INTRODUCTION

The unconventional superconductors have a rich phase
diagram determined by the interplay of multiple competing,
or coexisting, types of order. Nematic order (which breaks the
C4 symmetry of the underlying square lattice down to C2) has
been shown to emerge in certain regimes of the phase diagrams
of the copper-oxide1–6 and the iron-based7–13 superconductors.
In the latter case, the nematic order accompanies (and, in some
cases, precedes) the magnetic order that occurs at a wave vector
that breaks the lattice rotational symmetry.

Recently, the structure of the vortex cores in the mixed state
of clean FeSe films was studied by means of scanning tunneling
microscopy (STM).14 Strong anisotropy was observed in the
zero bias conductance map around the cores, which have an
eccentricity of the order of unity. Although the lattice structure
of FeSe at low temperature is orthorhombic,15 it has been
claimed14 that the crystalline anisotropy (of the order of a few
tenths of a precent) is too small to explain the large anisotropy
of the vortex cores, which is likely to have an electronic origin.

This experiment raises several questions, some of which we
address in this article: Assuming there is an electronic nematic
order in superconducting FeSe, what is its microscopic origin?
What is its relation to superconductivity (e.g., are these two
types of order competing)? Is the nematic order localized in
the vortex cores (and, hence, stabilized by the application of
the magnetic field), or does it extend throughout the system
(and is it apparent only in the STM spectrum near the cores)?

Here, we study the structure of the vortex core using a
phenomenological Landau-Ginzburg (LG) theory in terms of
two competing order parameters. Using our LG analysis we
have calculated the structure of an isolated vortex in the
presence of the nematic order. Our main result is that by
looking at the profile of the gap near the vortex core, it is
possible to distinguish between two different configurations of
the nematic order, namely the presence of a localized nematic
order within the superconducting vortex as opposed to the
presence of a long range nematic order in the system. If the
nematic order is localized at the core, the superconducting gap
should be anisotropic only near the core and the anisotropy
decays exponentially as we move away from the core. On
the other hand, if the nematic order is long ranged, the
superconducting gap should exhibit an anisotropy that decays
as a power law. If the nematic order is near its critical point,

there is a large region in which the anisotropy of the gap
depends logarithmically on the distance, eventually crossing
over to a power law. Moreover, we find qualitative differences
in the shape of the contours of constant gap around the core in
the different cases. If the nematic order exists only in the cores,
the equal-gap contours tend to be elliptical; if the nematic
order is long ranged, we find that the gap function tends to
develop a “four-lobe” structure, with more pronounced higher
harmonics. These features can be sought in STM experiments
by mapping the magnitude of the gap around the core as a
function of position.

The article is organized as follows: In Sec. II we introduce
the LG functional with the two competing order parameters
and carry out a preliminary analysis in the absence of
the anisotropy. In Sec. III, we investigate the mean-field
phase diagram of a single vortex. In Sec. IV, we introduce
the anisotropy and perform a numerical minimization of the
functional, commenting on the interesting features. Finally, in
Sec. V, we present our analytical results explaining the various
interesting features observed by minimizing the free energy.

II. MODEL

We consider an LG-type free energy for two competing
order parameters: a complex field �, describing the supercon-
ducting order parameter, and a real field φ, which describes a
nematic order that competes with the superconducting order
parameter. The form of the free energy density is given by

F = Fs + Fφ + Fa + γ

2
|�|2φ2, (1)

Fs = κψ

2
|(−i∇ − e∗A)�|2 − ψ2

0

2
|�|2 + 1

4
|�|4, (2)

Fφ = κφ

2
(∇φ)2 − φ2

0

2
φ2 + 1

4
φ4, (3)

Fa = λ1

2
φ[|(−i∂x − e∗Ax)�|2 − |(−i∂y − e∗Ay)�|2]

+ λ2

2
φ[(∂xφ)2 − (∂yφ)2]. (4)

Apart from the standard free energy contributions arising due
to φ and �, we have a competition term, controlled by γ (> 0),
and a term that gives rise to different effective masses for �
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in the two directions, which is controlled by λ1. F is invariant
under a rotation by 90 degrees, represented by

x → y, y → −x, φ → −φ. (5)

We will be interested in the limit of 	 → ∞, where 	 is the
London penetration depth, so we can neglect the coupling to
the electromagnetic field. At the outset, we set λ2 = 0, since
the λ2 term is small compared to the λ1 term in the limit where
φ is small. It is convenient to define the coherence length of �

and the healing length of φ as

lψ =
√

κψ

ψ2
0

, lφ =
√

κφ

φ2
0

. (6)

Taking the unit of distance to be lφ , we can recast the above
free energy in a more transparent form as follows:

F = 1

2l2
(∇̃ψ̃∗)(∇̃ψ̃) − 1

2
|ψ̃ |2 + 1

4
|ψ̃ |4

+
(

γ

γs

)2[1

2
(∇̃φ̃)2 − 1

2
φ̃2 + 1

4
φ̃4

]
+ γ 2

2γs

|ψ̃ |2φ̃2

+ λφ̃[(∂x̃ψ̃
∗)(∂x̃ψ̃) − (∂ỹψ̃

∗)(∂ỹψ̃)], (7)

where l = lφ/ lψ , γs = γψ2
0 /φ2

0 , λ = λ1/2l2
φψ2

0 , x̃,ỹ =
x/lφ,y/ lφ , ψ̃ = �/ψ0, and φ̃ = φ/φ0. From now on, we will
drop the tilde symbols.

For λ �= 0, a short-distance cutoff has to be imposed on
Eq. (7). Otherwise, the system is unstable toward developing
modulations of ψ with sufficiently short wavelength. We
discuss the instability in Appendix A. In practice, we will
mostly ignore this issue, assuming that there is a short-distance
cutoff (which is provided by the finite grid used in our
numerical calculations).

Before we begin our analysis, let us comment about the
choice of parametrization in this problem. We think of this
problem in terms of a fixed γ � 1. Then, on choosing a
particular ratio of the length scales of φ and ψ , we still have one
degree of freedom left in terms of the masses or the stiffnesses
of the two order parameters, which is fixed by tuning γs .

If we assume that γs > 1, then the uniform ground state
is given by ψ = 1 and φ = 0. This also constrains φ to be
localized around the vortex cores by making the mass term
for φ positive deep inside the superconducting region. If we
further assume that the nematic order is small, such that γ

2 φ2 �
ψ2

0 , then we can essentially ignore the feedback of φ on ψ .
Therefore, we will first find the full profile of ψ = �0, the
isolated vortex solution, in the absence of the nematic order
and use that to find the form of the nematic order. Then �0

satisfies the following asymptotic relations:

�0(ρ) ≈
[

1 − 1

2

(
1

lρ

)2]
eiθ , ρ 	 l−1, (8)

�0(ρ) ∼ Clρeiθ , ρ � l−1, (9)

where ρ = r/ lφ , r being the radius in the original coordinate
system, and C is a dimensionless constant. In general, it is
difficult to find the solution of the full LG equation for �0

for all ρ analytically. Therefore, we obtain the vortex solution
�0 = f (lρ)eiθ for all ρ by minimizing the functional in Eq. (7)
numerically in the absence of φ.

The numerical solution conforms to the two asymptotic
expressions above. It is interesting to note that �0 does not
recover from the vortex core to its bulk value exponentially
but rather as a power law.16,17 The behavior of φ(ρ) in the
vicinity of a vortex with λ = 0 was studied by Ref. 16.

III. PHASE DIAGRAM

We will now describe the mean-field phase diagram of a
single vortex in the presence of a competing nematic order.
There are three possible phases: in phase I, φ = 0 everywhere;
in phase II, φ vanishes at large distance from the vortex core but
becomes nonzero near the vortex core due to the suppression
of the competing ψ field to zero at the core; and in phase III,
φ �= 0 even far away from the core. A nonzero solution for φ

is favored whenever the smallest eigenvalue ε of the following
eigenvalue problem:16

{ − ∇2
ρ − 1 + γs[f (lρ)]2

}
φ(x) = εφ(x), (10)

satisfies ε < 0. In order to find the phase diagram, we solve
this eigenvalue problem numerically on a discrete grid. The
boundary between phases I and II is the locus of points at
which the smallest eigenvalue satisfies ε = 0. For γs < 1, φ

becomes long ranged, corresponding to phase III. The resulting
phase diagram is shown in Fig. 1. This phase diagram is strictly
valid as long as γs > γ . If this is not the case, then the state
with uniform nematic background and no superconductivity is
energetically favorable over any other state.

The physics behind the phase diagram can be understood
as follows. When lφ 	 lψ we are forcing the nematic order
to coexist with superconductivity in a large region. This
is unfavorable energetically due to the competition term
γφ2|�|2. Therefore, when γs > 1, there is no φ �= 0 solution.
If γs < 1, φ becomes nonzero, even far away from the vortex
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FIG. 1. (Color online) The phase diagram in the (γs,l) plane,
obtained by solving Eq. (10) numerically on a grid with n = 100 and
x = 1. The regions with qualitatively different solutions for φ are
marked. Phase I has no nematic order with φ = 0 everywhere, phase
II has nematic order localized in the vortex core, and phase III has
long-range nematic order away from the core. The (blue) squares
correspond to points that we explore in more detail later. The dashed
line γs = 1 represents the boundary between phases II and III.
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core. In the opposite limit of lφ � lψ , the nematic order exists
deep within the superconducting vortex. Since there is very
little overlap between the two order parameters, the system
can afford to have a higher value of critical γs below which
there is a nontrivial nematic order. This explains the increasing
trend of the critical γs for decreasing l.

In the lφ � lψ case, it is possible to give an analytical
expression for the phase boundary between regions I and II.
The equation for this curve is given by

γs = 1

4(Cl)2
. (11)

where C is the constant which appears in Eq. (9). The details
of this computation are discussed in Sec. V A.

We are now in a position to include the effect of the
anisotropy and investigate the structure of the vortex cores
in different regions of the phase diagram described above.

IV. VORTEX PROFILE IN THE DIFFERENT REGIMES

We now turn to discuss the characteristics of the vortex
profile in the different regimes shown in Fig. 1. To solve
for the vortex profile, we minimize the free energy (7)
with respect to ψ and φ numerically on a disk geometry.
This is equivalent to solving the coupled Landau-Ginzburg

equations with Neumann boundary conditions, as we discuss
in Appendix B. Many of the features found in the numerical
solution can be understood analytically, as we discuss in the
next section.

We can expand both ψ and φ in terms of the different
angular-momentum channels (∼einθ ). The term proportional
to λ only couples angular-momentum channels that differ by
2 units of angular momentum in ψ . Therefore, in the presence
of φ, the bare vortex solution (∼eiθ ) gives rise to components
of the form e3iθ , e−iθ , and so on. Similarly, the feedback of
the superconducting order on φ gives rise to the generation of
the even harmonics, i.e., �0 gives rise to terms proportional to
e2iθ and e−2iθ . It is also possible to have a solution with only
the even harmonics of ψ , in which case, the vortex is absent.
These two solutions do not mix with each other and, therefore,
we shall focus on the solution in the presence of the vortex.

In light of this, we expand the order parameters as

ψ(ρ,θ ) =
∑

n

�n(ρ)ei(2n+1)θ ,

(12)
φ(ρ,θ ) =

∑
n

�n(ρ)ei2nθ , n ∈ integers.

In terms of the expansions in Eq. (12), the free energy density
can be written as

Fρ =
∫

dθF =
∑

n

1

2l2

[(
∂�n

∂ρ

)2

+ (2n + 1)2�2
n

ρ2

]
− �2

n

2
+ 1

4

∑
n,p,q

�n�n+p−q�p�q

+
(

γ

γs

)2{1

2

[ ∑
n

(
∂�n

∂ρ

)2

+ (2n)2

ρ2
�2

n − �2
n

]
+ 1

4

∑
n,p,q

�n�n+p−q�p�q

}

+ λ

2

∑
m,p

φp

([
∂�m

∂ρ
− (2m + 1)

�m

ρ

]{
∂�m+p+1

∂ρ
+ [2(m + p + 1) + 1]

�m+p+1

ρ

}

+
[
∂�m

∂ρ
+ (2m + 1)

�m

ρ

]{
∂�m+p−1

∂ρ
− [2(m + p − 1) + 1]

�m+p−1

ρ

})
+ γ 2

2γs

∑
n,p,q

�n�n+p−q�p�q, (13)

and we are interested in minimizing
∫

ρdρFρ . We shall
minimize the above free energy for a given system size and for
only a fixed number of harmonics at a time. We have kept n

harmonics for ψ and φ, where for any given n (odd) we take
all the harmonics �−i to �i , i = (n − 1)/2, and similarly for
φ. We have tried n = 3,5 and found no substantial qualitative
change in the results that we shall quote here, indicating that the
results converge even with only three harmonics. We consider
a system on a disk of radius ρ = 100.

Below, we describe the results in regions II and III of the
phase diagram and on the critical line dividing them (in re-
gion I, where there is no nematic order, we get the regular circu-
larly symmetric vortex). The specific values of γs,l which were
used are marked by blue squares in the phase diagram in Fig. 1.

A. Region II

In this region, we expect to obtain a solution with a nonzero
uniform |ψ | away from the vortex core and a nonzero φ

localized near the vortex core, decaying exponentially away
from the core (given that γ < γs and γs > 1). The contour
plot for |ψ |2 is shown in Fig. 2. The parameters used here are
γs = 2.0, l = 0.1, γ = 1.0, λ = 20.0.

As can be seen in the figure, the core has an elliptical shape
because of the interaction with the nematic order that coexists
with superconductivity in the core region. As we go away from
the core, the contours of equal |ψ |2 become more and more
isotropic, due to the rapid decay of the nematic order away
from the core.
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FIG. 2. (Color online) Nematic order in phase II. The profiles
for the different order parameters for γs = 2.0, l = 0.1, γ = 1.0,
λ = 20.0 for a system size of 100 (N = 100, x = 1). (a) Harmonics
of ψ (solid lines) and �0 (dashed line) (b) Contour plot of |ψ |2. The
superconducting coherence length lψ is 10, in units of lφ .

B. Region III

This region in the phase diagram corresponds to the case
where there is a uniform nematic background coexisting with
superconductivity, even away from the vortex core. In this
regime, as we move away from the core, φ goes to a constant
and ψ remains anisotropic. In Fig. 3, the harmonics �1 and
�−1 are almost constant for large ρ. Moreover, �1 = −�−1

for large ρ. The contour plot of |ψ |2 reveals a large anisotropic
“halo” around the core, with a nonelliptical shape.

Far away from the core, where φ is constant, the Landau-
Ginzburg equations can be solved analytically, showing that
the anisotropy in |ψ |2 decays as a power law in this case. We
discuss this solution in the next section.

C. Critical case

Finally, we discuss the critical line separating regions II
and III in Fig. 1, in which the φ field is critical far away
from the core. Naively, one would expect φ to go as 1/ρ

x
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FIG. 3. (Color online) Nematic order in phase III. The profiles
for the different order parameters for γs = 0.5, l = 0.5, γ = 0.4,
λ = 0.5 for a system size of 100 (N = 100, x = 1). (a) Harmonics
of ψ (solid lines) and �0 (dashed line). (b) Contour plot of |ψ |2. The
superconducting coherence length is 2, in units of lφ .

asymptotically in this regime. However, depending on the
details of the solution at small ρ, there may be an intermediate
regime in which φ ∼ ln ρ, eventually crossing over to 1/ρ

at a larger distance. This feature is discussed in more detail
in the next section. Figure 4(a) shows ψ and φ in the
critical regime, with γs = 1.0, l = 3.0, γ = 0.9, and λ = 0.07.
Indeed, we observe that φ decays slowly away from the core.
�±1 also have long tails. The contour plot for |ψ |2 shares
features that are similar to the behavior in region III, namely
a long-range, nonelliptical anisotropic halo. It is shown in
Fig. 4(b).

In the next section, we analyze the asymptotic behavior of
the solution in the critical case, showing that the anisotropic
component of |ψ |2 falls off as ∼(λ ln ρ/ρ2) cos(2θ ) at inter-
mediate ρ, crossing over to ∼(λ/ρ3) cos(2θ ) at sufficiently
large ρ.

V. ANALYTICAL TREATMENT

In this section, we propose various analytical arguments
to explain the different features that were observed above by
carrying out the minimization numerically. In subsection V A,
we discuss the solution for the nematic order in the presence
of superconductivity. Then in subsection V B, we analyze
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FIG. 4. (Color online) Nematic order at the critical point between
phase III and phase I. The profiles for the different order parameters
for γs = 1.0, l = 3.0, γ = 0.9, λ = 0.07 for a system size of 100
(N = 100, x = 1). (a) Harmonics of ψ (solid lines) and �0 (dashed
line). (b) Contour plot of |ψ |2. The superconducting coherence length
is 1/3, in units of lφ .

region III of the phase diagram (Fig. 1). Finally, in subsec-
tion V C, we study the linearized GL equations in order to ex-
plain some of the other interesting features that were observed
earlier.

A. Phases of the nematic order

Here we will briefly review the solution for φ and
supplement it with some further details. The LG equation for
φ(ρ), assuming that λ = 0, is given by

{ − ∇2
ρ − 1 + γs[f (lρ)]2 + φ2

}
φ = 0. (14)

We shall now be interested in solving the linearized version of
the above equation, which is justified for γs > 1. For ρ � l−1,
this becomes equivalent to solving the problem

[ − ∇2
ρ − 1 + γs(Clρ)2

]
φ = 0. (15)
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0.85
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φ

s Cl 2 2.0

s Cl 2 1.0

s Cl 2 0.1

s Cl 2 0.01

ρ

FIG. 5. (Color online) The profiles of φ as a function of ρ for
different values of γsC

2l2 over a distance of one correlation length of
φ, lφ .

This is identical to solving the Schrödinger equation for the
2D quantum harmonic oscillator. We know that φ′(ρ = 0) = 0.
The solution for this equation is given by

φ(ρ) = e−
√

γsC2l2ρ2/2 La(
√

γsC2l2ρ2)

La(0)
, a = 1 − 2

√
γsC2l2

4
√

γsC2l2
,

(16)

where Ln(x) are the Laguerre polynomials. The profiles of
φ(ρ) for a few different values of γsC

2l2 are shown in
Fig. 5.

At this point, we can also describe how we obtained the
equation for the phase boundary between regions I and II in
the phase diagram (Fig. 1). In this case, φ is nonzero only very
close to the center of the core. We can, therefore, expand ψ

around ρ = 0 and keep only the leading-order term [Eq. (9)].
Equation (15) can be rewritten as[

− ∇2
ρ

2
+ γsC

2l2

2
ρ2

]
φ =

(
1

2
+ ε

)
φ. (17)

Nontrivial solutions exist for ε � 0. The above equation is
the Schrödinger equation for a quantum harmonic oscillator
in two dimensions with m = 1, ω2 = γs(Cl)2. Then the
smallest eigenvalue which corresponds to the zero-point
energy of the oscillator leads to the following equation for the
curve

γs = 1

4(Cl)2
(18)

in the limit of small l.
On the other hand, for ρ 	 l−1, we have to solve{

− ∇2
ρ − 1 + γs

[
1 − 1

(ρl)2

]}
φ = 0, (19)

from which we see that φ(ρ) ∼ ρ−1/2 exp(−√
γs − 1ρ) .

However, there is a fine-tuned point at γs = 1, at which the field
φ is critical far away from the vortex core. The full equation
for φ becomes [

− ∇2
ρ − 1

(ρl)2
+ φ2

]
φ = 0, (20)

φ(ρ) = √
1 + l2/(lρ). Note that the 1/ρ solution can be

obtained only for specific boundary conditions. For generic
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boundary conditions, with φ → 0 as ρ → ∞, the solution is,
nevertheless, asymptotic to

√
1 + l2/(lρ) at large ρ. If φ(1) �

1, for instance, then φ(ρ) ∼ A ln(ρ0/ρ) at intermediate values
of ρ, where A and ρ0 are constants. φ(ρ) crosses over to φ(ρ) ∼
1/ρ at radii of the order of ρ� ∼ 1/A (see Appendix C).
This behavior reflects itself in the asymptotic decay of the
anisotropy of the field ψ away from the vortex core, as we
discussed in Sec. IV.

B. Coexistence of superconductivity and nematic order

In this subsection, we are interested in analyzing region III
of the phase diagram, in which superconductivity and nematic-
ity coexist even far away from the core. Let us assume, for
simplicity, that far away from the core φ can be replaced by a
constant. The effect of a constant φ is to render the effective
masses in the two directions different. Therefore, if we rescale
the coordinates as

x ′ = x√
1 + α

, y ′ = y√
1 − α

, (21)

where α = 2λφl2, then this problem now becomes identical
to the isotropic problem we had solved in the beginning of
Sec. II. The solution for �0 can then be written in terms of the
new coordinates as

�0 = f (r ′)
r ′ (x ′ + iy ′),

(22)

f (r ′) = c

(
1 − 1

2l2c2r ′2

)
, c =

√
1 − γ 2φ2

γs

.

Note that due to the presence of the background ne-
matic order, �0 does not tend to 1 asymptotically. We
now go back to our original coordinate system x,y by

expanding the above result to linear order in α. We then
get

ψ = c

(
1 − 1

2l2c2r2

)
eiθ − αc

4

(
1 + 1

2l2c2r2

)
e−iθ

+αc

4

(
1 − 3

2l2c2r2

)
e3iθ . (23)

In the above expression, the first bracket corresponds to �0, the
second bracket corresponds to �−1, and the last one represents
�1. It is interesting to observe that, asymptotically, �1 and
−�−1 approach the same constant value. We observe this
feature in Fig. 3(a). However, the harmonics do not recover to
their asymptotic value as a power law, which is a result of the
boundary conditions that were imposed while minimizing the
free energy in the disk geometry (see Appendix B).

From Eq. (23), we can evaluate the form of |ψ |2 and find
that

|ψ |2 = c2

(
1 − 1

l2c2r2

)
− α

l2r2
cos(2θ ) + O(α2). (24)

Therefore, asymptotically, |ψ |2 is isotropic and the anisotropy
decays as ∼α cos(2θ )/r2.

C. Linearized GL analysis

In this section, we shall carry out an analysis of the
linearized LG equations to give an analytical explanation for
some of the features that we have observed by carrying out
the full minimization. For the sake of simplicity, let us ignore
the feedback on φ resulting in the generation of the higher
harmonics and assume that φ is isotropic [i.e., φ(ρ,θ ) = φ(ρ)].
The linearized LG equations for the harmonics of ψ can then
be written as

1

l2

[
∂2
ρ + ∂ρ

ρ
− (2n + 1)2

ρ2

]
�n(ρ) +

(
1 − γ 2

γs

φ2

)
�n(ρ) − 2�2

0 (ρ)�n(ρ) − �2
0 (ρ)�−n(ρ)

= −λφ(ρ)

{[
∂2
ρ − (4n − 1)

∂ρ

ρ
+ (4n2 − 1)

ρ2

]
�n−1(ρ) +

[
∂2
ρ + (4n + 5)

∂ρ

ρ
+ (2n + 3)(2n + 1)

ρ2

]
�n+1(ρ)

}

+λ∂ρφ(ρ)

[(
∂ρ − 2n − 1

ρ

)
�n−1(ρ) +

(
∂ρ + 2n + 3

ρ

)
�n+1(ρ)

]
. (25)

There are some features of the problem that cannot be deduced
from a study of the linearized version of the problem, which
include the overall scale and sign of � and the signs of the
different harmonics of ψ .

In the limit of ρ � l−1, i.e., inside the vortex core, at leading
order �n(ρ) ∼ ρa , where a = |2n + 1|. This is a necessary
condition for the harmonics to be well behaved in the limit of
ρ → 0.

On the other hand, in the limit of ρ 	 l−1, i.e., deep
inside the superconducting region, the homogenous solution
for the above equation gives exponentially damped solutions
for all the �n�=0, i.e., the anisotropy is short ranged. Moreover,

the source term, which is proportional to λφ and is itself
exponentially damped (region II), is also not strong enough
to give rise to any long-ranged solution.

However, when φ is critical (i.e., γs = 1), the source term
leads to the presence of long tails in the harmonics. In
the regime where φ falls off logarithmically while �0 is a
constant, at leading order �±1 just follow φ, i.e., they also fall
off logarithmically (with prefactors of equal magnitude but
opposite sign) and have a correction of the form ln ρ/ρ2. On
the other hand, when φ crosses over to the power-law form, at
leading order �±1 also fall off as ±1/ρ with a correction of
order 1/ρ3.
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VI. CONCLUSION

We have studied the interplay between nematic order and
superconductivity in the presence of a vortex. If the nematic
order coexists with superconductivity in the vicinity of a
vortex core, the coupling between the two order parameters
leads to an elongated shape of the core. We discuss two
distinct scenarios: In one the nematic order coexists with
superconductivity everywhere (i.e., even far away from the
vortex core), whereas in the other the competition between
the two order parameters suppresses the nematic order in
the bulk, and nematicity exists only close to the core where
the superconducting order parameter is diminished. Both
scenarios lead to an anisotropic core. However, we show
that they can, in principle, be distinguished by the way the
anisotropy of the superconducting gap decays away from the
core. If the nematicity exists only near the core, the anisotropy
in the superconducting gap decays exponentially; if it exists
throughout the sample, we expect the gap anisotropy to decay
as 1/r2, where r is the distance from the core. Moreover,
there are qualitative differences in the shape of the core in
the two cases. In the former case, in which only the core
region is nematic, the contours of equal gap tend to be more
or less elliptical. In the latter case, the contours of equal
gap tend to develop nonelliptical shapes with a four-petal
pattern. Therefore, analyzing the gap profiles measured by
STM around a vortex could reveal the nature of the nematic
ordering, whether it is localized at the vortex core or coexists
with superconductivity in the bulk.

So far, we have discussed the structure of an isolated vortex
at the mean-field level. However, if the nematic ordering is
favored only within a vortex core, an isolated vortex cannot
have static nematic order, since either thermal or quantum
fluctuations would destroy such order. Static nematic order
is possible only when the density of vortices is finite. The
coupling between the nematic halos of different vortices
scales as Jeff ∼ exp[−d/(

√
1 − γslφ)], where d ∼ 1/

√
B is

the intervortex distance (B is the applied magnetic field).
The system can be described by an effective two-dimensional
transverse field Ising model with a spin-spin interaction
Jeff and a B-independent transverse field. (Note that, unlike
Ref. 16, we are considering a thin film rather than a three-
dimensional system.) This model has a nematic transition at a
certain critical B, which should be seen, e.g., by measuring the
anisotropy of the vortex cores as a function of B. If an external
rotational symmetry breaking field exists, as is presumably the
case in FeSe due to the small orthorhombic lattice distortion,15

the electronic nematic transition is smoothed out. However,
one still expects a sharp crossover as a function of magnetic
field if the orthorhombic distortion is sufficiently weak.

The microscopic origin of the anisotropic vortex cores
observed in FeSe14 remains to be understood. It is likely that it
originates from electronic nematicity rather than from the lat-
tice distortion, since the experimentally reported orthorhombic
distortion seems too small to produce such a large effect. The
electronic nematic order could have an orbital character.11,18–20

Alternatively, it could arise from a field-induced magnetic
ordering21 at a wave vector (π,0) or (0,π ) in the one iron
unit cell, which is necessarily accompanied by a nematic
component (similar to the ordering in the iron arsenides).

Although static ordering of this type has not been observed
in the iron selenides,22 it remains to be seen if they develop
a static ordering in the presence of an applied magnetic field.
Neutron scattering experiments revealed a magnetic resonance
at this wave vector in the superconducting state of FeTeSe.23

Moreover, ordering at such wave vectors nearly nests the
electron and hole pockets, and, therefore, it is expected to
couple strongly to superconductivity, explaining why the
resulting anisotropy of the vortex cores is so large.

Note added. After this work was submitted for publication,
another manuscript24 that studied the experimental features
observed in FeSe14 came to our attention. In this paper, the
authors study the effect of orbital ordering on the vortex
structure in a two-band model by solving the Bogoliubov-
de Gennes equations. This study is complementary to our
phenomenological Ginzburg-Landau approach.
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APPENDIX A : INSTABILITIES OF THE FREE ENERGY

An interesting feature associated with the LG functional
introduced in Sec. II is that there is an instability to a state
with modulated ψ . This arises due to a competition between
two terms in the free energy, namely the φ and φ2 terms. Let us
suppose that φ does not vary spatially and ψ = βeiqx . Then,
at leading order, the contribution to the free energy from φ is
of the form

Fφ =
(

γ 2β2

2γs

− γ 2

2γ 2
s

)
φ2 + λq2β2φ. (A1)

From the above expression, we see that for a sufficiently large
λq2, it becomes energetically favorable to gain energy from
the second term by condensing a large negative value of φ.
By extremizing the above with respect to φ, we obtain φm =
−λβ2q2/( γ 2β2

γs
− γ 2

γ 2
s

). Hence, the contribution to free energy

from φm is ∝ −β2λ2q4. This energy gain from a nonzero
q always dominates over the energy cost of order q2 for a
sufficiently large q. In order to prevent this instability, we
have to add a term of the form ζ |∇2ψ |2/2l4 to the free energy,
which is an allowed term from the underlying symmetry of the
problem. We now want to obtain some restrictions on ζ .

First, ζ should be such that it prevents the instability. This
gives us a lower bound on the value of ζ . At the same time,
ζ should be small enough so it should not change the physics
significantly. This gives us an upper bound on the value of ζ .
Therefore, we obtain

λ2γ 2
s l4

γ 2(γs − 1)
< ζ � 1. (A2)

The above expression is not valid when φ becomes critical,
i.e., when γs = 1,β = 1. In this case, we have to compare φ

with φ4.
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However, when we minimized the free energy in Sec. IV,
we did not have to include the above term with a finite ζ as for
a sufficiently small λ, the cutoff in q arising from the discrete
lattice prevented this instability from showing up.

APPENDIX B : EFFECT OF BOUNDARY TERMS

In general, when we derive the GL equations from the free
energy, there is a surface term arising from the gradient terms
in the energy that can be ignored in the limit of an infinite
system size. However, for a finite-sized system, the boundary
term does play an important role. Let us consider only the
contribution of the gradient term of the superconducting order
parameter in the free energy in the absence of any nematic
order. We then have

Fgrad =
∫

d2r|∇ψ |2, (B1)

Ftot = Fgrad + Flocal, (B2)

where Flocal contains the usual |ψ |2,|ψ |4 terms. On varying
ψ∗ by δψ∗ in Ftot, we obtain, for a finite system (up to other
variations due to Flocal denoted by . . .),

−
∫

d2rδψ∗∇2ψ +
∫

surface
δψ∗(∇ψ)n̂ds + · · · = 0, (B3)

where n̂ds is the area element, normal to the boundary. When
we solve for ψ in the interior of the region, only the first term
contributes and the boundary term can be ignored. However,
when we solve for ψ on the boundary, only the surface term
plays a role, since it can be thought of as appearing with an
infinite weight of the form

∫
drδ(r − R), where R is the radius

of the disk on which we are minimizing the free energy and
δ(· · ·) is the Dirac δ function. Therefore, in order to solve for
ψ , we have to solve for −∇2ψ + · · · = 0 in the interior of
the region subject to the boundary condition ∇ψn̂|r=R = 0
(Neumann boundary conditions).

Now, in the presence of a constant nematic background
(φ0), the gradient term in the free energy is

Fgrad =
∫

dxdy[(1 + α)|∂xψ |2 + (1 − α)|∂yψ |2], (B4)

where α = 2λφ0l
2. As we did earlier, on carrying out the

variation over ψ∗ this amounts to solving for −(1 + α)∂2
xψ −

(1 − α)∂2
yψ + · · · = 0 subject to the boundary condition,

D̃ψn̂ = 0, where

D̃ψ = [(1 + α)∂xψ,(1 − α)∂yψ], n̂ = (cos θ, sin θ ). (B5)

In polar coordinates, this condition can be written as

∂rψ + α

(
cos 2θ∂rψ − sin 2θ

r
∂θψ

)
= 0. (B6)

These boundary conditions mean, in particular, that the
current perpendicular to the boundary is zero. In our numerical
calculations, we have used a disk geometry; therefore, the
boundaries are found to have a significant effect whenever
we are considering a noncircularly symmetric solution, in
particular, in the regime where the nematic order is nonzero
even far away from the core. We circumvent this problem,
however, by taking a sufficiently large system and considering
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FIG. 6. (Color online) Numerical solutions of Eq. (C1). (a)
Solutions with boundary conditions φ(1000) = 0 and with various
values of φ(1) on a log-log scale. (b) Solution with boundary condition
φ(1) = 0.125, φ(1000) = 0, on a semilog scale. The dashed line is a
fit to the form A + B log(ρ) for small ρ.

the solution only close to the vortex core, where the boundary
effects are small.

APPENDIX C : ASYMPTOTICS OF φ IN THE
CRITICAL CASE

In this appendix, we analyze the asymptotics of the field
φ far away from the vortex core in the case γs = 1, in which
the nematic order is critical. In this case, and for ρ 	 1, the
Landau-Ginzburg equation for φ [Eq. (14)] becomes[ − ∇2

ρ + φ2
]
φ = 0. (C1)

This nonlinear equation admits the solution φ(ρ) = 1/ρ.16

This solution is valid, however, for specific initial conditions,
e.g., φ(1) = 1, φ′(1) = −1. Physically, the initial conditions
for Eq. (C1) are determined by the details of the vortex profile
at short distances, determined by Eq. (14). Nevertheless,
one can make some general statements about the asymptotic
behavior of the solution. If, for some arbitrary ρ0 such that
ρ0 	 1/l (far from the core), φ satisfies φ(ρ0) � 1/ρ0, then
it is justified to neglect the φ2 term in Eq. (C1). The solution
close to ρ0 then behaves as φ(ρ) ≈ A − B ln(ρ/ρ0), where A,
B are determined by the initial conditions. This can be valid,
however, only up to a point ρ∗ at which φ(ρ∗) ≈ 1/ρ∗, i.e.,
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at distances which are much smaller than the length scale set
by the initial condition of Eq. (C1). At longer distances, we
expect a crossover to φ(ρ) ≈ 1/ρ.

In Fig. 6, we present a numerical solution of Eq. (C1) with
boundary conditions φ(1000) = 0 and various values for φ(1).
When φ(1) = 1, we get φ(ρ) ≈ 1/ρ (where the deviations are
due to the boundary condition at ρ = 1000). For smaller φ(1),
there is an intermediate region where φ does not follow a

power law, eventually crossing over to 1/ρ at larger ρ. φ(ρ)
is approximately logarithmic in the intermediate region, as
shown in Fig. 6(b).

Physically, we expect that φ < 1 (since φ = 1 corresponds
to the equilibrium value of φ in the absence of supercon-
ductivity). Therefore, there is an intermediate logarithmic
region, which becomes parametrically large in the limit of
small φ.
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