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Decay rates for topological memories encoded with Majorana fermions
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Recently there have been numerous proposals to create Majorana zero modes in solid state heterojunctions,
superconducting wires, and optical lattices. Putatively the information stored in qubits constructed from these
modes is protected from various forms of decoherence. Here we present a generic method to study the effect of
external perturbations on these modes. We focus on the case where there are no interactions between different
Majorana modes either directly or through intermediary fermions. To quantify the rate of loss of the information
stored in the Majorana modes we study the two-time correlators for qubits built from them. We analyze a
generic gapped fermionic environment (bath) interacting via tunneling with different components of the qubit
(different Majorana modes). We present examples with both static and dynamic perturbations (noise), and using
our formalism derive a rate of information loss, for Majorana memories, that depends on the spectral density of
both the noise and the fermionic bath.
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I. INTRODUCTION

Topological quantum computation requires the existence
of topologically ordered states whose low-energy excitations
follow non-Abelian statistics. The subspace of states cor-
responding to a fixed number of quasiparticles is degener-
ate, to an exponential precision, in the separation between
quasiparticles, and an exchange of the positions of these
anyonic excitations, also known as braiding, leads to a unitary
transformation within this low-energy subspace. These unitary
operations are insensitive to the exact path used to perform
the braiding operation and in many cases, for an appropriate
encoding, braiding operations correspond to “standard” one-
and two-qubit gates within the low-energy subspace. These
operations can be used as building blocks for fault-tolerant
quantum computation.

There are many candidate systems for experimental real-
izations of topological phases of matter with these properties.
There is preliminary evidence that the ν = 5/2 fractional
quantum Hall state may have non-Abelian excitations.1–3

Spin-triplet px + ipy pairing superfluidity occurs in the A
phase of 3He4 and in strontium ruthenates,5–10 in which
half quantum vortices would be non-Abelian.11,12 There are
also proposals to realize chiral p-wave superconductors in
ultracold atom systems.13–15 Furthermore there have been
many advances toward producing topological states of matter
in layered heterojunction systems.16–29

Virtually all current experimentally viable proposals for
platforms for topological quantum computation only support
Ising type anyons which are carried by Majorana fermion
modes. Colloquially speaking these fermions are half of a
regular fermion. More precisely they are self-adjoint operators
γi which can be written as a sum of an annihilation and creation
operator for one fermion mode and which satisfy the algebra:

{γi, γj } = 2δij , γ
†
i = γi. (1)

Any two Majorana fermion operators can be combined into a
regular fermion mode c and its adjoint c† via c = 1

2 (γ1 + iγ2)
and c† = 1

2 (γ1 − iγ2).

The topological qubit is made up of four spin-polarized
MBSs γ1, γ2, γ3, and γ4.30 These can be combined into two
sets of creation and annihilation operators:

c1 = 1
2 (γ1 + iγ2), c

†
1 = 1

2 (γ1 − iγ2),
(2)

c2 = 1
2 (γ3 + iγ4), c

†
2 = 1

2 (γ3 − iγ4).

For the logical basis it is convenient to work in the even
fermion parity subspace. The qubit basis can be chosen to
be |+L〉 ≡ |00〉 and |−L〉 ≡ |11〉 where the 0’s and 1’s refer
to the occupation numbers relative to the complex fermion
operators in Eq. (2). Because of fermion parity conservation,
any operation that does not entangle the states with the
environment cannot mix even and odd fermion parity states
for the qubits. As such, all gates acting on the topological
qubit should not take the system out of the logical subspace.
Furthermore all the operators of the single spin Clifford
group may be produced by braiding the four vortices of our
qubit leading to potentially topologically protected gates.31

In particular the various single-qubit operations in our logic
basis may be conveniently written in terms of the Majorana
operators. For future use we note that in this encoding

σ z = −iγ1γ2, σ x = −iγ2γ3, σ y = iγ1γ3. (3)

Here all the sigma matrices are with respect to the logic basis
|+L〉 and |−L〉. We will primarily be interested in correlators of
the form 〈σ z(0)σ z(T )〉 = −〈γ1(0)γ2(0)γ1(T )γ2(T )〉. We will
proceed to calculate these below.

The Majorana operators are zero modes of some mean-field
Hamiltonian [HMF, γi] = 0 so it can be argued that these
modes are protected from decoherence as the mean-field
Hamiltonian when restricted to the subspace generated by
these modes is zero. One of the open tasks of topological
quantum computation is associated with understanding the
extent of this protection. This is the subject of this paper.

II. SUMMARY OF MAIN IDEAS

In this section we outline the setup of the rest of the paper.
We present the relevant Hamiltonian and discuss its basic
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properties. We describe the type of qubit we will focus on
in the text, a localized Majorana mode, and give an overview
of some other encodings we shall not consider in this paper.
We describe the kinds of calculations of memory coherence
we are going to do in this paper. We also give a section by
section outline.

We begin our discussion with relevant Hamiltonians. The
Majorana fermions interact with the external environment via
tunneling type Hamiltonians. On symmetry grounds, for a
single Majorana mode, any such interaction may be written
as

Hint = γ

∫
ddr[u0(�r) �†(�r)�†(�r) − u∗

0(�r) �(�r)�(�r)].

(4)

Here u0(�r) is the localized mode function associated with
the Majorana bound state, �(�r) is any local bosonic field,
which in the simplest case is a tunneling amplitude (complex
number), and �(�r) is a regular (complex) fermion field. In this
paper we will analyze multiple Majorana fermions coupled
to different types of environments via Hamiltonians of the
form given in Eq. (4). Furthermore the fermions in the bath
will always be assumed to be gapped, for example, electrons
in an insulating or superconducting material (environments
composed of gapless fermions, instead, would obviously lead
to decoherence).

There are many examples of microscopic situations where
Hamiltonians of the form given in Eq. (4) arise; one is as
follows. If one writes the mode expansion of the electron
creation and annihilation operators in the (superconducting)
system of interest, one finds that(

ψ (�r, t)
ψ† (�r, t)

)
= γ

(
u0 (�r)

u∗
0 (�r)

)
+

∑
|E|>0

aE e−iEt

(
uE (�r)

vE (�r)

)
. (5)

Here aE stands for the eigenoperators of the BdG equations,
with nonzero energies, while uE and vE are the components
of the corresponding eigenmode of the BdG equations. γ is
the Majorana fermion corresponding to the zero-energy mode.
Now consider an insulating substrate below a system which
may be described by Eq. (5) above. A concrete example
is given by the bulk of a topological insulator in tunneling
contact with a superconductor as shown in Ref. 32. For a static
Hamiltonian the bulk and surface states are orthogonalized,
but dynamical effects such as phonons or two-level defect
systems can alter the original Hamiltonian and turn on a
hybridization. This perturbation takes the form of a tunneling
between the electrons: Hint = ∫

ddr �(�r) �†(�r) �(�r) + H. c.,
where �(�r) controls the amplitude of fluctuations of the
tunneling coupling. �(�r) can be due to phonons, two-level
systems, or even classical sources of noise. The electrons
�(�r) come from the insulating (gapped) system, which
comprise the fermionic component of our bath. This illustrates
one of the many ways to arrive at Hamiltonians of the
form Eq. (4).

The coupling Hamiltonian that is derived in the paragraph
above is local. The terms in Eq. (4) are local and couple to only
one Majorana mode, with no long-distance coupling between
the modes of any form. In this paper we shall focus on sets of
baths that couple to each Majorana individually. We would like
to stress now and henceforth that even by coupling to individual
modes, one at a time (with no cross-mode coupling), the bath
can be very damaging, in many cases leading to zero coherence
for long times.

Below, we look at decoherence by analyzing qubit cor-
relations such as 〈σ z(0)σ z(T )〉 = −〈γ1(0)γ2(0)γ1(T )γ2(T )〉,
which, as we show in this paper, factorizes when the baths
that couple to each Majorana are uncorrelated with one
another:

〈σ z(0)σ z(T )〉 = 〈γ1(0)γ1(T )〉 〈γ2(0)γ2(T )〉 . (6)

Thus, even though the qubit is defined nonlocally using
spatially separated Majorana fermions, below we will show
that the decay of the memory is controlled by the product
of the two-time correlations of the separate Majorana modes.
It then suffices to understand the effect of the bath on each
Majorana fermion separately.

At this point its worthwhile to stress that the qubit encoding
given above is not unique. A particularly interesting example of
a different encoding, given by Akhmerov,36 is a fermion parity
protected encoding. There, the qubit is made from fermion
parity preserving operators,

γ̃ = γ
∏

i

(1 − 2 c
†
i ci), (7)

that commute with both the tunneling Hamiltonian and the
Hamiltonian for the environment. Here the ci are the operators
in the mode expansion of the fermionic �(�r) field in the bath (i
here labels the mode, which can be momentum, for example).
For a finite system, such as midgap Carroli–Matricon–de
Gennes states in vortex cores, this compound qubit is very
efficient. However we stress that, in the presence of a bath (say
made by continuum states), the construction of an operator
that is protected because of parity conservation requires a
product of infinitely many operators, which is not practical or
easily experimentally measurable. One could also truncate the
product so as to account for a system, and the terms omitted
are those assigned to the bath, as depicted in Fig. 1. In this
case, however, because the operator lacks degrees of freedom
assigned to the bath, parity can leak to the environment
decohering the qubit. As such we will ignore all “compound”
encodings for the rest of the paper.

Finally, we would also like to mention that the above
scheme, with simple, noncompound, Majorana encoding,
generalizes to multiple qubits. One possible encoding (though
not the most economical) is to use four vortices and as
such four Majorana modes per qubit. For this and any other
encoding all possible correlators for the quantum memory
may be expressed as expectation values of various products of
Majorana operators.37 All quantum coherences for our qubits
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Environment

System

Environment

FIG. 1. (Color online) Depiction of the separation between
system and bath degrees of freedom. For infinite baths, one cannot
construct a local operator of the form Eq. (7), one that is a product of
a finite number of terms. If the product is truncated, parity leaks into
the bath.

may then be computed by studying Majorana mode correlators
which we study below.

In carrying out this program, we will analyze two distinct
types of environments: The first is when couplings �(�r)
change suddenly but remain static thereafter, and the second
when the environment changes dynamically. We show that
that in the static environment case the tunneling Hamiltonian
merely leads to a finite depletion of the Majorana two-time
correlations. In this case, much of the information stored in
these modes survives for arbitrarily long times.

More generally, for dynamic environments we obtain an
expression for the rate of loss of information stored in the
Majorana operators that depends on the spectral density of
the noise and the fermionic bath. We present several examples
of noise that can be studied essentially exactly for instance
classical telegraphic noise, as well as both classical and
quantum Gaussian fluctuations.

The results in the paper are presented as follows:
(1) In Sec. III we present general considerations involving

the coherence properties of Majorana modes. We show that
under reasonably generic initial conditions the coherence
of the Majorana modes does not depend on their initial
states. Furthermore we show that the two-time correlation
functions, coherences, factorize as a product over coherences
for individual Majorana modes, that make up the quantum
memory, interacting with their individual environments. As
such we may reduce the problem of the coherence of the
quantum memory to the problem of the coherence of one
Majorana mode in tunneling contact with a (gapped) fermionic
reservoir.

(2) In Sec. IV we take a first step toward a calculation of the
coherence of a single Majorana mode. We begin by describing
the Keldysh technique relevant to Majorana modes. We present
combinatorial tricks that make is possible to efficiently convert
Keldysh computations using a mixture of Majorana and regular
fermionic modes into a more familiar computation which uses
only regular fermion modes. We then present an example
where, for simplicity, we treat the fermions in the bath as
free (nonrelaxing approximation). We also present a general
formula for the coherence of a Majorana qubit that is used
several times in the remaining analysis.

(3) In Sec. V we present several related classical models for
the fluctuations of the bath. We solve these models essentially
exactly, by mapping the problem of the coherence of a single
Majorana mode to the problem of a particle undergoing
classical diffusion. We use this technique to study classical
fluctuations of the tunneling amplitudes and energy levels of
the reservoir (we primarily focus on Gaussian fluctuations). In
all cases we find decoherence with a rate that depends on the
spectral density of the fluctuations in the reservoir. In many
cases the decoherence due to an individual fermion mode has
a power-law time dependence but it will turn out that a bath
made of many weakly interacting modes leads to exponential
decay of coherence for intermediate times.

(4) In Sec. VI we conclude. In light of the results we
obtain in this paper, we critically examine the degree in which
quantum memories can be encoded using Majorana fermions
when these are in contact with a dynamical environment. We
show that the coherence of the Majorana mode is controlled
by the coherence of the bath it interacts with.

(5) In Appendix A we compute exact dressed zero modes
for static quadratic Hamiltonians, which we use to verify the
validity of our results in Sec. IV. In Appendix B we present
a rather technical calculation of a Majorana mode interacting
with a fermionic bath with fully quantum mechanical Gaussian
fluctuations. To leading order we find a decay similar to
classical computations. In Appendix C we present various
technical calculations, used throughout the rest of the text.
In particular, in Appendix C1 we show that our results
are independent of coding subspace, and in Appendix C3
we present some technical arguments (which are used in
Sec. V) in favor of weak (negligible) coupling of the fluctuation
for the various fermionic modes. In the rest of the Appendix
we derive formulas used in the main text.

III. DYNAMICS

We begin with a study of the general properties of the
dynamics of a system of Majorana modes. We will focus on
a computation of correlators involving Majorana operators.
This will allow us to study the coherence properties of a
topological quantum memory which is based on qubits made
up of localized zero-energy modes. In this section we will
adhere to very general Hamiltonians and we will study only
properties that are essentially independent of the form of this
Hamiltonian. This will set us up for studies of specific types
of Hamiltonians in Sec. IV. From the outset, we would like
to specify the initial conditions or equivalently the density
matrix when the system is initialized at t = 0. We will assume
that initially the density matrix factorizes into a product of the
form

ρtot = ρMaj ⊗
∏

i

ρenvi . (8)

Here ρtot is the density matrix for the entire system, while ρMaj

represents and arbitrary nonequilibrium density matrix for the
Majorana modes. The ρenvi are arbitrary, not-necessarily equi-
librium, density matrices for the environments of the individual
Majorana modes. No specific “ensemble” is assumed. This
form is a reasonable, consistent assumption for the initial states
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of system plus bath, particularly so, as many experimental
methods of initialization produce such states.

For our qubit memory persistence between times t1 and t2
is captured by the two-time correlators such as 〈σ z(t1)σ z(t2)〉.
We note that, because the initial, t = 0, state breaks time-
translation invariance, generically these correlators are func-
tions of both t1 and t2. Here we shall focus specifically on
correlations, such as 〈σ z(0)σ z(T )〉, between the state prepared
at t = 0 and the state at a later time time t = T which
characterize the degree to which the information encoded in
the qubit at the initial time survives interaction with the bath
when it is retrieved at a later time T .

The key results of this section, which are used repeatedly
later in the text, may be summarized by saying that even
though the factorization form given in Eq. (8) does not survive
Hamiltonian evolution the expectation values of various
correlators such as 〈σ z(0)σ z(T )〉 or equivalently products of
Majorana fermions, to be defined precisely in Eqs. (12) and
(13) below, do factorize into products of expectation values
for individual Majorana modes. This factorization survives for
arbitrary times.

A. General ideas

We will consider a set of Majorana modes each interacting
with its own fermionic environment; see Eq. (8). We will
see that there is decoherence even without direct interactions
between different Majorana modes or between their respective
environments. One can show that, in the limit when the spatial
separation between the Majorana modes is large, the case when
multiple Majorana modes interact with a common fermionic
bath reduces to the case of uncorrelated noninteracting baths
(see Appendix C 2). The Hamiltonian pertinent to each mode
may be written as

Hα =
Nα∑
i=1

γα[(Bi,α ci,α − c
†
i,α B

†
i,α)

+H bath
α ({ci,α,c

†
i,α,Bi,α,B

†
i,α})]. (9)

Here Bi,α are some bosonic modes and α = {1,2, . . .}
labels the Majorana modes. The total Hamiltonian is given by
H = ∑

α Hα . We will be interested in correlators of the form
〈γα1 γα2 . . . γαk

γα1 (t1) γα2 (t2) . . . γαk (tk)〉. Here all operators
are in the Heisenberg picture, and γα(t) is given by

γα(t) = (T̃ ei
∫ t

0 Hα(τ )dτ )γα(T e−i
∫ t

0 Hα(τ )dτ ), (10)

where T and T̃ stand for time-ordered and anti-time-ordered
products, respectively. Notice that γα(t) = γ †

α (t) at all times.
Now, by Taylor-expanding the time-ordered and anti-time-

ordered exponentials in Eq. (10), taking various commutators,
grouping terms, and using the fact that γ 2

α = 1, we may write
that

γα(t) = γα Bα(t) + Fα(t), (11)

with Bα(t) and Fα(t) having no factors of γα . Because γα(t)
must be fermionic (this can be seen from the fact that the
Hamiltonian and all its powers are bosonic), we may deduce
that Bα(t) and Fα(t) are, respectively, bosonic and fermionic
operators. By the conservation of fermion parity we know that
the expectation value of any operator 〈Fα(t)〉 = 0. Finally,

because γα(t) is Hermitian, it also follows from the properties
above that Bα(t) and Fα(t) are Hermitian as well.

Now, it follows that

〈γα γα(t)〉 = 〈Bα(t)〉 + 〈γα Fα(t)〉
= 〈Bα(t)〉 + 〈γα〉 〈Fα(t)〉 = 〈Bα(t)〉 , (12)

where we used going from the first to the second line
of Eq. (12) that the environments and the Majorana states
are initially disentangled so expectation values factorize.
Note that this comes about because in the Heisenberg
picture the expectation values for operators are taken with
respect to the initial state, at t = 0. For the third line we
have used that the expectation value of any fermionic operator
〈Fα(t)〉 should be zero. Note that because Bα(t) is Hermitian
this implies that 〈γα γα(t)〉 ∈ R.

The following factorization formula can be similarly
shown:

〈
γα1 . . . γαkγα1 (t1) . . . γαk (tk)

〉 = (−1)k(k−1)/2
k∏

j=1

〈
Bαj (tj )

〉
= (−1)k(k−1)/2

k∏
j=1

〈
γαj

γαj
(tj )

〉
,

(13)

for distinct αj , j = 1, . . . ,k. To show this expression, one uses
Eq. (11) and again that the expectation values are computed
with respect to the initial density matrix given in Eq. (8) which
has the property that the environments are uncorrelated with
each other and with the initial Majorana states. We see that
this factorization formula is independent of the initial state of
the density matrix of the bath. As such our formalism captures
highly nonequilibrium initial conditions.

B. Qubit memory correlations

The degree of persistence of memories assembled using
Majorana fermions can be quantified by the correlation
between the qubit state, encoded as in Eq. (3), at two times
0, T :

〈σ z(0)σ z(T )〉 = − 〈γ1(0)γ2(0)γ1(T )γ2(T )〉
= 〈γ1(0)γ1(T )〉 × 〈γ2(0)γ2(T )〉 . (14)

Notice that the factorization implies that, even though
the qubit is defined nonlocally using two spatially separated
Majorana fermions, the decay of the memory is controlled
by the product of the two-time correlations of the two
separate Majorana modes. In particular, the decoherence rate
is independent of the initial state of the quantum memory (that
is, correlators of the form 〈γ1γ2〉 do not enter the result).

Thus in the case of uncoupled well-separated Majorana
modes each interacting with its own environment the task of
determining the persistence of topological quantum memories
based on Majorana fermions is reduced to the calculation of the
coherences 〈γα(0)γα(T )〉 in the presence of different fermionic
environments. We carry out this program henceforth.
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IV. KELDYSH CALCULATION OF COHERENCE

We now proceed to describe the technical details associated
with studying dynamics. For generality and later use we will
study both static and time-dependent Hamiltonians. Based on
the discussion given in Sec. III for the purposes of computing
coherences it will be sufficient to focus on a single Majorana
mode. As such we will drop the subscript α, see Eq. (9),
henceforth.

A. General observations

We will convert the computation of the Majorana correla-
tions into a Keldysh calculation carried out using only the
bosons and regular complex fermions inside the reservoir.
(For a review of standard Keldysh techniques see, e.g.,
Refs. 38–40.) We will calculate the following correlator:

〈γ (0)γ (t)〉 = 〈
γ
(
T̃ e+i

∫ T

0 H (τ ) dτ
)
γ
(
T e−i

∫ T

0 H (τ ) dτ
)〉
. (15)

Here the expectation value is taken relative to the density
matrix ρ0 at τ = 0 while T and T̃ stand for time ordering
and time antiordering, respectively. To make the computations
tractable we will assume that ρ0 = ρtherm ⊗ ρMaj. Here ρMaj

is any initial density matrix acting on the subspace of the
Majorana modes while ρtherm is the thermal density matrix for
the regular fermion modes.

To compute the correlator in Eq. (15), we will use Eq. (9)
and work in the interaction picture with respect to the rest
of the Hamiltonian H bath({ci ,c

†
i ,Bi ,B

†
i }). We will expand the

ordered exponentials in powers of H and collect and contract
all the γ ’s to eliminate them. In what follows will show that

〈γ (0)γ (T )〉 = 〈(
T̃ e− ∫ T

0 O(τ ) dτ
) (

T e− ∫ T

0 O(τ ) dτ
)〉

≡ 〈
Tc e−∑

a

∫ T

0 O(τ a )dτa 〉
, (16)

where O(τ ) = ∑N
i=1 (Bi(τ )ci(τ ) − B

†
i (τ )c†i (τ )), and Tc stands

for the Keldysh ordering that combines the forward and back-
ward propagation, and the index a = t,b labels the two pieces
(forward and backward) of the ordered product. [Notice though
that the operator O(τ ) in the exponential comes with the same
sign in the T and T̃ products.]

Below we give the essential arguments needed to derive
Eq. (16). To carry out this program, let us introduce a short-
hand notation H = γ

∑N
i=1(Bici − B

†
i c

†
i ) ≡ γ (Bc − B†c†).

Now expand Eq. (15) in powers of H , and focus on the term
with Nb + Nt insertions, with Nb from the expansion of the
T̃ -ordered exponential and Nt from that of the T -ordered
exponential. By fermion parity conservation and using our
assumption that the system-bath initial density matrix is
factorized we know that Nb + Nt = 2K is even. The insertions
of our interaction Hamiltonian are of the form

τ=0︷︸︸︷
{γ } [iγ (Bc − B†c†)

(
tb1
)] · · · [iγ (Bc − B†c†)

(
tbNb

)]︸ ︷︷ ︸
bottom insertions

τ=T︷︸︸︷
{γ } [−iγ (Bc − B†c†)

(
t t1
)] · · · [−iγ (Bc − B†c†)

(
t tNt

)]︸ ︷︷ ︸
top insertions

.

(17)

γ      =12K+2
0 Tτ τ τ τ τ τ

γ γ

γ

γ

γ γ
+
−2K1−K24321

γ
γ

FIG. 2. The Keldysh contour determining the coherence of the
Majorana zero mode. We consider 2K insertions of our interaction
Hamiltonian ±iγ

∑N

i=1(Bici − B
†
i c

†
i ) into the Keldysh contour with

± referring to the forward in time and backward in time branches.
Several interaction insertions are shown by dashed lines. To convert
this contour to a “regular” Keldysh calculation we commute the
Majorana modes (γ terms) including the one at τ = T till they are all
located at τ = 0 as shown. In the text we describe how to compute
commutators appropriately.

We show in curly brackets {γ } the modes at τ = T and at
τ = 0, to help single them out for constructing the argument
below. Our strategy to convert this calculation to a “regular”
Keldysh calculation will be to move the Majorana modes (γ
terms), including the {γ } at τ = T , by taking appropriate
commutators, till they are all at the left-hand side, adjacent
to the {γ } inserted at τ = 0. We will move along the contour
ordering direction (see Fig. 2). We will then use the relation
γ 2K+2 = 1 to eliminate these modes altogether. All that
remains is a computation of the commutators. Because of the
form of the Hamiltonian, computing commutators is equivalent
to computing an overall sign for the term in the expansion.
By noting that the Hamiltonian is bosonic we obtain that the
overall sign is only due to the anti-commutation of the γ ’s
with the ci and c

†
i inside the (Bc − B†c†) terms. We shall move

each γ mode to the very left in two steps: We first move the
mode at τ = T to the very left toward τ = 0; then we move
all the remaining modes there as well.

The first part of the procedure is to obtain the contribution
of the Majorana fermion inserted at τ = T . We note that the
number of −1 signs it picks up depends on its position along
the contour relative to the other modes; it picks up one −1 sign
for every mode it passes, so there is an overall sign of (−1)Nb .

Now for the rest working from left to right, the first
Majorana mode that needs to be moved picks up no −1 signs as
it does not pass over a (Bc − B†c†) term, but the second picks
up one −1 sign as it passes over one such term. Similarly, the
third picks up two (−1) signs, and so forth. Finally the 2Kth
Majorana mode (last to be moved, sitting all the way to the
right) picks up 2K − 1 factors of −1. The product of these
factors yields (−1)K(2K−1) = (−1)K = (−i)Nt+Nb .

Thus eliminating the γ ’s in Eq. (17) leads to an overall sign
(−i)Nb+Nt × (−1)Nb , which then allows us to replace terms of
the form Eq. (17) by[−(Bc − B†c†)

(
tb1
)] · · · [−(Bc − B†c†)

(
tbNb

)]︸ ︷︷ ︸
bottom insertions

(18)[−(Bc − B†c†)
(
t t1
)] · · · [−(Bc − B†c†)

(
t tNt

)]︸ ︷︷ ︸
top insertions

.

These are precisely the terms that appear in the series
expansion of Eq. (16), and therefore we can continue the
calculation utilizing this expression. We should point out that
for complex fermions coming from Majorana insertions the Tc

corresponds to literal ordering on the Keldysh contour, without
any fermionic minus signs, because the original Hamiltonian
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was bosonic [this can also be seen step-by-step in going from Eq. (17) to Eq. (18)]. This fact leads to the modified sign for the
fermionic Tc ordering:

Tc[c†i (t1)ci(t2)] ≡

⎧⎪⎪⎪⎨⎪⎪⎪⎩
θ (t1 − t2) c

†
i (t1)ci(t2) + θ (t2 − t1) ci(t2)c†i (t1), t1,t2 on top,

c
†
i (t1)ci(t2), t1 on bottom,t2 on top,

ci(t2)c†i (t1), t1 on top,t2 on bottom,

θ (t2 − t1) c
†
i (t1)ci(t2) + θ (t1 − t2) ci(t2)c†i (t1), t1,t2 on bottom.

(19)

Now, we turn our attention to the computation of
Eq. (16). We do so in steps, computing the expectation
values by first tracing the fermions (ci , c

†
i ) and then sub-

sequently tracing the bosonic degrees of freedom. Even
in the case where there are interactions for the fermions,
we can still treat the theory as quadratic in the fermions

and include the interactions (with photons or phonons)
as a coupling of the fermionic bilinears with the mediat-
ing bosons, which we label by φ. Alternatively, we may
think of the fields φ as Hubbard-Stratonovich decoupling
fields.41

We can thus write

〈
Tc e−∑

a

∫ T

0 (Bc−B†c†)(τ a ) dτa 〉 = Z−1
∫ (∏

a

DBa DB†
a

)
eiSB[Ba B†

a ]
∫ (∏

a

Dφa Dφ†
a

)
eiSφ [φa φ

†
a ]

× exp

(
1

2

∑
a,b

∫ T

0
dτa

1

∫ T

0
dτb

2

〈
Tc

[
(Bc − B†c†)

(
τ a

1

)
(Bc − B†c†)

(
τ b

2

)]〉
c,c†

)
. (20)

We remind the reader that all functional integrals are along the Keldysh contour. The action Sφ is that of the interaction mediator
field φ and contains the dressing from the integration of the fermions, which are integrated out first as explained above. The
normalization Z is

Z =
∫ (∏

a

DBa DB†
a

)
eiSB[Ba B†

a ]
∫ (∏

a

Dφa Dφ†
a

)
eiSφ [φa φ

†
a ]. (21)

This procedure works because it possible to calculate partition functions and Green’s functions, to integrate fields out, etc.,
along any contour, in particular along the Keldysh contour as used here. We then express the fermionic correlators in terms of
their Green’s function,〈

Tc
[
(Bc − B†c†)

(
τ a

1

)
(Bc − B†c†)

(
τ b

2

)]〉
c,c† = −Bi

(
τ a

1

)
Bj

† (τ b
2

) 〈
Tc
[
ci

(
τ a

1

)
cj

† (τ b
2

)]〉
−Bi

† (τ a
1

)
Bj

(
τ b

2

) 〈
Tc
[
ci

† (τ a
1

)
cj

(
τ b

2

)]〉 ≡ − B
(
τ a

1

)
G

φ

F,e

(
τ a

1 ,τ b
2

)
B† (τ b

2

) − B† (τ a
1

)
G

φ

F,h

(
τ a

1 ,τ b
2

)
B
(
τ b

2

)
, (22)

where the G
φ

F,e(τ a
1 ,τ b

2 ) and G
φ

F,h(τ a
1 ,τ b

2 ) are, respectively, the electron and hole fermionic Green’s function, and we have used the
fact that the bosonic fields B , B† can be treated as c numbers as they are inside the bosonic path integral. As stated previously
G

φ

F,e(τ a
1 ,τ b

2 ) and G
φ

F,h(τ a
1 ,τ b

2 ) are slightly unusual Green’s functions, with no fermionic minus signs (only plus signs), as shown

in Eq. (19). Let us define D
φ

F (τ a
1 ,τ b

2 ) = G
φ

F,h(τ a
1 ,τ b

2 ) + G
φ

F,e(τ b
2 ,τ a

1 ), so we can then write

〈γ (0)γ (T )〉 = Z−1
∫ (∏

a

DBa DB†
a

)
eiSB[Ba B†

a ]
∫ (∏

a

Dφa Dφ†
a

)
eiS[φa φ

†
a ]

× exp

(
−1

2

∑
a,b

∫ T

0
dτa

1

∫ T

0
dτb

2 B† (τ a
1

)
D

φ

F

(
τ a

1 ,τ b
2

)
B
(
τ b

2

))
. (23)

We remark that the expression in Eq. (23) was derived without
any approximations. It holds for interacting electrons as well,
as long as the interactions are included via an external bosonic
field denoted by φ above. Furthermore we would like to
note that though it is not used anywhere in this paper, a

similar path-integral formulation using Grassmann variables
may be done without any decoupling fields, for regular quartic
∼�†(�x)�†(�x)�(�x)�(�x) fermionic interactions. A systematic
Keldysh diagrammatic perturbation theory may be derived
from it.
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For future use we note that to compute the coherence of
a Majorana mode it is often enough to compute the four

diagrams shown in Fig. 3. Following Eq. (23), their sum may
be explicitly written as

V (T ) ≡
∑
a,b

∫ T

0
dτa

1

∫ T

0
dτb

2 B†(τ a
1

)
D

φ

F

(
τ a

1 ,τ b
2

)
B
(
τ b

2

)
= 2

∑
i

{∫ T

0
dt1

∫ T

0
dt2

[
T
(
Bi

†(τ t
1

)
Bi

(
τ t

2

))
(θ (τ1 − τ2)〈c†i (τ1)ci(τ2)〉 + θ (τ2 − τ1)〈ci(τ2)c†i (τ1)〉)

+ T̃
(
Bi

†(τ b
1

)
Bi

(
τ b

2

))
(θ (τ2 − τ1)〈c†i (τ1)ci(τ2)〉 + θ (τ1 − τ2)〈ci(τ2)c†i (τ1)〉)

+ (
Bi

†(τ t
1

)
Bi

(
τ b

2

)〈c†i (τ1)ci(τ2)〉 + Bi

(
τ t

1

)
B

†
i

(
τ b

2

)〈ci(τ1)c†i (τ2)〉)]}. (24)

Here T , T̃ refer to time ordering and time antiordering
operators. This form places the time ordering or antiordering
terms [T (Bi

†(τ t
1)Bi(τ t

2))] with the appropriate fermion corre-
lators so it can be used directly in calculations without having
to use a path integral. The factor of two going from the first
to the second line comes from a symmetry τ1 ↔ τ2 [which
also allowed us to simplify Eq. (24) above to contain six rather
then twelve terms]. Because of exponentiation of disconnected
diagrams, if we can safely ignore higher order correlations
among the Bi’s, we may write that

〈γ (0)γ (T )〉 = exp
[ − 1

2 〈V (T )〉 ]. (25)

A quick way to derive the extra factor of 1
2 in Eq. (25)

above is by noting that it is a symmetry factor associated with
the ability to permute the two Majorana insertions without
changing the diagram [alternatively we can do a combinatorial
check, or use Eq. (23)].

Let us illustrate with a few simple examples how one can
use the expression for the Majorana correlations 〈γ (0)γ (T )〉
in Eq. (23) to calculate the the decay rates of topological
memories. We then deploy this expression in detailed studies
for fluctuating Hamiltonians in Sec. V.

B. Simple examples

Let us consider simple cases where the Bi are simply
constants �i , switched on at τ = 0. In this case the expression

γ

γ

γ

+

−

− −

γ

γ

+ +

−

++

+

+

=

+

FIG. 3. The four diagrams relevant to calculating V (t) in the main
text. We need to sum over four possible orderings of the Majorana
insertions on the Keldysh contour. The value is given by a sum of
terms like Bi

†(τ t
1)Bi(τ b

2 )〈c†i (τ1)ci(τ2)〉.

in Eq. (23) simplifies to

〈γ (0)γ (T )〉 = Z−1
∫ (∏

a

Dφa Dφ†
a

)
eiS[φa φ

†
a ]

× exp

(
−1

2

∑
a,b

∫ T

0
dτa

1

∫ T

0
dτb

2 �† D
φ

F

(
τ a

1 ,τ b
2

)
�

)

= exp

(
−1

2

∑
a,b

∫ T

0
dτa

1

∫ T

0
dτb

2 �†D
(2)
F

(
τ a

1 ,τ b
2

)
�+· · ·

)
,

(26)

where D
(2)
F (τ a

1 ,τ b
2 ) = G

(2)
F,h(τ a

1 ,τ b
2 ) + G

(2)
F,e(τ b

2 ,τ a
1 ), with G

(2)
F,h

and G
(2)
F,e exact 2-point electron and hole Keldysh propagators,

including the effects of interactions. To be explicit at this level
of approximation our formalism handles all the dynamics of
the φa fields but treats fermionic interactions to quadratic order.
The · · · stand for terms of order O(�4) that involve the 4-point

Green’s functions G
(4)

. We shall not do so in this paper, but by
including these O(�4) and higher terms it is possible to handle
all fermionic interactions as well.

Taking into account all four cases in the sum over top and
bottom insertions

∑
a,b, one can write

1

2

∑
a,b

∫ T

0
dτa

1

∫ T

0
dτb

2 �† D
(2)
F

(
τ a

1 ,τ b
2

)
�

=
∑
i,j

∫ T

0
dτ1

∫ T

0
dτ2 �∗

i (〈{c†i (τ1),cj (τ2)}〉)�j . (27)

We now consider an example where this formula will be
particularly useful. We consider a bath which may be described
by the Hamiltonian

HMain = γ

N∑
i=1

(�ici − �∗
i c

†
i ) +

N∑
i=1

εic
†
i ci (28)

In this case we have

〈{c†i (τ1),cj (τ2)}〉 = δij e−iεi(τ1−τ2) (29)
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with εi the energy of mode i. It follows by substitution in
Eq. (27) and then in Eq. (23) that

〈γ (0)γ (T )〉 = exp

(
−2

∑
i

|�i |2
∣∣∣∣∫ T

0
dτ e−iεi τ

∣∣∣∣2
)

, (30)

or

〈γ (0)γ (T )〉 = exp

{
−4

∑
i

|�i |2
ε2
i

[1 − cos(εiT )]

}
. (31)

If the bath has energy eigenenergies εi away from zero energy
(i.e., there is a gap ε̃ < |εi |), we may drop the oscillating terms
in the limit of T � 1/ε̃, so we can write

〈γ (0)γ (T )〉 ≈ exp

(
−4

∑
i

|�i |2
ε2
i

)
, T � 1/ε̃. (32)

In this case, the Majorana memory decays to T independent
plateaus at large times. Thus, as long as the sum

∑ |�i |2
ε2
i

converges, the memory is retained to a finite extent. This result
is confirmed by a time-independent rediagonalization in the
presence of the �i , which is shown explicitly in Appendix A
where a new exact zero mode is calculated. Here we simply
note that the finite depletion found in this case is a simple
consequence of the fact that the modes change once the
coupling is switched on. Also, we compute the sum

∑ |�i |2
ε2
i

,

and find it to be finite, for a specific tunneling model given in
Appendix C 4d.

V. FLUCTUATING HAMILTONIANS

So far we have studied static Hamiltonians. To gain further
insight it is interesting to extend our results to fluctuating
couplings (which may come from time-dependent classical
fluctuations or from quantum dynamics). We shall focus on
three cases; in all three the fermionic action is quadratic. In
the first case we study we consider the situation when the Bi

are simply replaced by classical variables �i , like we did in
Sec. IV B, but now they depend on time. The second case
is that in which the energies εi of the electrons in the bath
fluctuate in time, because of environmental fluctuations. The
third case is a generalization of the first one, where we treat
the Bi quantum mechanically with their fluctuations governed
by a quadratic action. We treat the first two cases here, and the
third, more technical one, in Appendix B.

In the first two cases, one can generalize the expression in
Eq. (30) simply by taking �i → �i(τ ) or εi → εi(τ ):

〈γ (0)γ (T )〉 = exp

(
−2

∑
i

∣∣∣∣∫ T

0
dτ �i(τ ) e−i

∫ τ

0 dt εi (t)

∣∣∣∣2
)

=
∏

i

exp

(
−2

∣∣∣∣∫ T

0
dτ �i(τ ) e−i

∫ τ

0 dt εi (t)

∣∣∣∣2
)

,

(33)

and then average over statistical fluctuations of the �i(τ ) and
εi(τ ).

The computation of the Majorana correlations can be
greatly simplified as follows. Notice that, for each mode i,
the argument in the exponential in Eq. (33) can be viewed as

the magnitude square of the position �Zi of a particle moving
in two dimensions, or alternatively, the modulus square of a
complex number Zi moving on the plane:

Zi(T ) =
√

2
∫ T

0
dτ�i(τ ) e−i

∫ τ

0 dt εi (t), (34)

with

〈γ (0)γ (T )〉 =
∏

i

e−| �Zi |2 . (35)

Below we will argue both in the cases of fluctuating amplitudes
�i(τ ) and energies εi(τ ) that the probability distribution for the
“position” �Zi is Gaussian:

P ( �Zi) = 1

2πσ 2
i (T )

exp

(
− 1

2

| �Zi |2
σ 2

i (T )

)
, (36)

with σi(T ) the time-dependent width of the distribution, which
we will compute below for each case. With this Gaussian
distribution for the �Zi , we can compute the average Majorana
correlation,

〈γ (0)γ (T )〉=
∏

i

∫
d2ZiP ( �Zi) e−| �Zi |2 =

∏
i

[1 + 2 σ 2
i (T )]−1.

(37)

In the last step we assumed that there are many modes in the
fermionic bath, each making a small contribution (of order
inverse volume say) so we may re-exponentiate the product.
The examples below are studied using this expression.

A. Fluctuating amplitudes

The fluctuations of the �i are assumed to be Gaussian
distributed according to

P ({�i(τ ),�∗
i (τ )})

= N−1 exp

[
−1

2

∫ ∞

−∞
dτ1

∫ ∞

−∞
dτ2 �∗

i (τ1) G−1
� (τ1,τ2) �i(τ2)

]
.

(38)

Let us show that the distribution of the P ( �Zi) is Gaussian, and
relate σi(T ) to the fluctuations of the �i . That the distribution
P ( �Zi) should be Gaussian is not surprising since at long
times the particle is diffusing. We can Fourier transform
the probability distribution P ( �Zi) to obtain the characteristic
function P̃ (�k). It satisfies the equation:
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P̃ (�k) =
∫

d2 �Zi P ( �Zi) e−i�k· �Zi = N−1
∫

D�i D�∗
i exp

[
−1

2

∫ ∞

−∞
dτ1

∫ ∞

−∞
dτ2 �∗

i (τ1) G−1
� (τ1,τ2) �i(τ2)

]
× exp

[
−i

1

2
k∗√2

∫ T

0
dτ �i(τ ) e−iεi τ

]
exp

[
−i

1

2
k
√

2
∫ T

0
dτ �∗

i (τ ) e+iεi τ

]
= exp

(
−1

2
|k|2 2

∫ T

0
dτ1

∫ T

0
dτ2 e−iεi τ1 G�(τ1,τ2) e+iεi τ2

)
. (39)

Therefore, the distribution P ( �Zi) is Gaussian, with a variance
given by

σ 2
i (T ) = 2

∫ T

0
dτ1

∫ T

0
dτ2 e−iεi τ1 G�(τ1,τ2) e+iεi τ2 . (40)

If the noise correlations are invariant under time-
translation, then G�i

(τ1,τ2) = G�i
(τ1 − τ2). We can expand

these correlations in frequency domain, G�i
(τ1 − τ2) =∫∞

−∞ dωG̃�i
(ω)e−iω(τ1−τ2).

We proceed to compute σ 2
i (T ) in Eq. (37) for two distinct

cases of low and of high frequency noise.
Case I: Low-frequency noise. In this case, we shall assume that
all frequencies ω for which G̃�i

(ω) has significative weight fall
below the fermionic energies εi . It the follows that

σ 2
i (T ) = 2

∫
|ω|�ε̃

dω
∑

i

1 − cos[(εi + ω)T ]

(εi + ω)2
G̃�i

(ω)

≈ 2
∑

i

1

ε2
i

∫
|ω|�ε̃

dω G̃�i
(ω). (41)

We thus arrive at a correlation decay, for the Majorana
modes, of the form

〈γ (0)γ (T )〉 ≈ exp

[
−4

∑
i

1

ε2
i

∫
|ω|�ε̃

dω G̃�i
(ω)

]
. (42)

The coefficient in the exponent depends on the spectral weight
of the noise. From Parceval’s theorem,

∫∞
−∞ dωG̃�i

(ω) =
|�i(t)|2, so the prefactor depends on the intensity of fluctu-
ations of the couplings �i(t) in time. When these fluctuations
are large, for example when �i(t) is tied to thermally
induced vibrations in two-dimensional systems, there is large
decoherence.

We remark that even in the cases when σ 2
i (T → ∞) is

bounded, the value may be rather large, and the Majorana
correlation is exponential in this value. Therefore keeping the
error to within reasonable bounds for quantum error correction
to be applicable can be a tall order. In this sense, the Majorana
qubit is not necessarily any more robust than other proposed
qubit platforms.
Case II: High-frequency noise. In this case we compute σ 2

i (T )
assuming that the correlations G�i

(τ1 − τ2) decay in time, so
one can break the τ1,2 integrals into center of mass: (τ1 + τ2)/2
and relative coordinates τ1 − τ2 integrals, and in the limit of
large T one has

σ 2
i (T ) −→

T large
2T G̃�(εi), (43)

where G̃�(εi) is the Fourier transform of G�(τ ) at frequency
εi . We further clarify this in Fig. 4.

We thus arrive at a correlation decay, for the Majorana
modes, of the form

〈γ (0)γ (T )〉 ≈ exp

[
−4 T

∑
i

G̃�(εi)

]
. (44)

Notice that this expression has meaning only if the G̃�(ω) has
spectral weight above the gap ε̃. If not, one has to treat the
problem in the low frequency limit discussed above.

1. Nonzero expectation values

One can generalize this result for when the �i fluctuations
are centered around a nonzero value �0

i . In this case,

P ( �Zi) = 1

2πσ 2
i (T )

exp

(
− 1

2

| �Zi − �Z0
i (T )|2

σ 2
i (T )

)
, (45)

τ1 τ2G(    ,    )

0

T

T

T
im

e

Time

(a)

T

T

T
im

e

Time

(b)

0

FIG. 4. (Color online) The two-time correlators of the tunneling
amplitude G�(τ1,τ2) = 〈�∗(τ1)�(τ2)〉. (a) The shaded region repre-
sents the actual area of integration for Eq. (40). The darker stripe
represents the area of large values for the correlator. This represents
strong correlations in the tunneling amplitudes. From this we see
that the majority of the integrals appearing in Eq. (40) come from
times when τ1

∼= τ2. (b) A simplified integration area. The darkly
shaded area of large correlators does not change significantly. As
such geometrically we see that this should not change the values
of the various correlation functions we are studying. From this it is
particularly easy to derive the estimates used in Eq. (43); in particular
the linear in T scaling can now be derived by simply changing
coordinates in the integral in Eq. (40).
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where

Z0
i (T ) =

√
2�0

i

∫ T

0
dτ e−iεi τ =

√
2i �0

i

e−iεiT − 1

εi

, (46)

which leads to

〈γ (0)γ (T)〉 =
∏

i

exp
( − |Z0

i (T )|2
1+4 T G̃� (εi )

)
1 + 4 T G̃�(εi)

. (47)

Notice that we recover the static result Eq. (31) of the previous
section if there is no disorder [G�(εi) = 0 ]. Indeed we see that
〈γ (0)γ (T )〉 = ∏

i e
−|Z0

i (T )|2 . On the other hand for nonzero
G�(εi) in the large-T limit one obtains

〈γ (0)γ (T)〉 −→
T large

∏
i

[1 + 4 T G̃�(εi)]
−1, (48)

which agrees with the case where the fluctuations are centered
around zero shown in Eq. (44).

2. Cross correlations of fluctuations

We would now like to extend our model to include cross
correlations of fluctuations between the modes. Once again we
focus on a Hamiltonian of the form HMean = γ

∑N
i=1(�ici −

�∗
i c

†
i ) + ∑N

i=1 εic
†
i ci . Here γ is a single Majorana mode

and ci , c
†
i are regular fermion creation and annihilation

operators. In our model we will allow for Gaussian classical
dynamics for the coupling constants �i with possible cross
correlations between the couplings. More precisely, we will
assume that the probability distribution of couplings may be
written as

P ({�i(τ ),�∗
i (τ )}) = Z−1

∫ ∫
D{�∗

i (τ ),�i(τ )} exp

(
−1

2

∫ ∞

−∞

∫ ∞

−∞
dτ1dτ2

∑
i,j

G−1
i,j (τ1,τ2) �∗

i (τ1) �j (τ2)

)
. (49)

Next we introduce the �Z ≡ (Z1, . . . ,ZN ) ∈ CN with Zi(T ) = √
2
∫ T

0 dτ �i(τ ) e−i
∫ τ

0 dt εi (t). With this notation we may write
that

〈γ (0)γ (T )〉 = e− �Z† �Z , (50)

which is just a rewriting of Eq. (35). Next following Eq. (39) we may write that

P̃ ( �K) =
∫

d2Z1

∫
d2Z2

∫
d2Z3....

∫
d2ZN P ( �Z) exp

[−i

2
( �Z† �K + �K† �Z)

]
= N−1

∫
D�i D�∗

i exp

[
−1

2

∫ ∞

−∞
dτ1

∫ ∞

−∞
dτ2 �∗

i (τ1) G−1
ij (τ1,τ2) �j (τ2)

]

× exp

[
−i

1

2

√
2
∑

i

K∗
i

∫ T

0
dτ �i(τ ) e−iεi τ

]
exp

[
−i

1

2

√
2
∑

i

Ki

∫ T

0

∫ T

0
dτ �∗

i (τ ) e+iεi τ

]

= exp

(
− 1

2
× 2 ×

∑
i,j

K∗
i Kj

∫ T

0
dτ1

∫ T

0
dτ2 e−iεi τ1 Gij (τ1,τ2) e+iεj τ2

)
. (51)

From this equation we see that the distribution P ( �Z) is a
Gaussian with a covariance matrix σ (T ) given by

σ ij (T ) ≡ 2
∫ T

0
dτ1

∫ T

0
dτ2 e−iεi τ1 Gij (τ1,τ2) e+iεj τ2 . (52)

Combining and simplifying we may write that

〈γ (0)γ (T )〉 = 1

det[I + 2σ (T )]
. (53)

Here I is the identity matrix (Iij = δij ). We can also generalize
to the case where the couplings have a nonzero expectation

value, �i = �0
i + δ�i , with the δ�i having a probability

distribution given by Eq. (49). In this case, we obtain

〈γ (0)γ (T )〉 = exp(− �Z†
0(T ) [I + 2σ (T )]−1 �Z0(T ))

det[I + 2σ (T )]
. (54)

Here, similarly to Sec. V A 1, we have introduced the
vector �Z0 whose ith component is given by Z0,i(T ) =√

2i �0
i [(e−iεiT − 1)/εi].
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B. Fluctuating energies

Let us consider the case where the energies undergo
Gaussian fluctuations in time, around some average value:
εi(τ ) = εi + δεi(τ ) with 〈δεi(τ1)δεi(τ2)〉 = Gi(τ1, τ2). Let
ϕ(τ ) ≡ ∫ τ

0 dt δεi(T ). If the δεi(τ ) are short-time correlated the

quantity [ϕ(τ1) − ϕ(τ2)]2 ≡ G2
ϕ(τ1 − τ2) will grow linearly in

|τ1 − τ2|. We note that the phases ϕi(τ ) execute random walks
in this case.

The magnitude square of the “position” of the Zi has
average

|Zi(T )|2 = 2|�i |2
∫ T

0
dτ+

∫ T

0
dτ− e+iεi τ+ e+i[ϕ(τ+)−ϕ(τ−)] e−iεi τ−

= 2|�i |2
∫ T

0
dτ+

∫ T

0
dτ− e+iεi τ+ e−(1/2)G2

ϕ (τ+−τ−) e−iεi τ− .

(55)

The calculation of higher moments is quite similar if the
term eGϕ (τ+−τ−) confines the two times to be close to each other.

|Zi(T )|2n = 2n|�i |2n

∫ T

0
dτ+

1 . . .

∫ T

0
dτ+

n

∫ T

0
dτ−

1 . . .

∫ T

0
dτ−

n eiεi

∑
j τ+

j ei
∑

j ϕ(τ+
j )−i

∑
j ϕ(τ−

j ) e−iεi

∑
j τ−

j

= 2n|�i |2n

∫ T

0
dτ+

1 . . .

∫ T

0
dτ+

n

∫ T

0
dτ−

1 . . .

∫ T

0
dτ−

n eiεi

∑
j τ+

j e−iεi

∑
j τ−

j

× exp

[
−1

2

∫ τ+
1

0
du1 . . .

∫ τ+
n

0
dun

∫ τ−
1

0
dv1 . . .

∫ τ−
n

0
dvn

n∑
i=1

{G(ui, uj ) + G(vi, vj ) − G(ui, vj ) − G(vi, uj )}
]

∼= 2n |�i |2n n!

(∫ T

0
dτ+

∫ T

0
dτ− e+iεi τ+ e− 1

2 G2
ϕ (τ+−τ−) e−iεi τ−

)n

= n! (|Zi(T )|2)n. (56)

For the second equality we have used the fact that the
process is Gaussian. In this way we mapped the problem to
the partition function of a two species Coulomb like gas. Then
in the fourth line we have used a dipole approximation for the
partition function. We note that this form is consistent with the
confinement assumption as

∫ τ2

τ1

∫ τ2

τ1
du dvG(u,v) ∝ |τ1 − τ2|,

so that we have a linear confining potential between oppositely
charged particles of our Coulomb gas.

We now claim that Zi will execute diffusion because of
the random phases. Indeed, these correlation functions are the
moments of a Gaussian distribution with variance |Zi(T )|2.
This variance can often be computed in the highfrequency case
(similarly to Sec. V A, and for large T one can approximate

|Zi(T )|2 −→
T large

2T |�i |2
∫ ∞

−∞
dτ e+iεi τ e− 1

2 G2
ϕ (τ ) ≡ T �i. (57)

and the probability distribution is given by P (Zi(T )) ∼=
1

2π�2
i (T )

exp(− 1
2

|Zi (T )|2
T �2

i (T )
). Repeating the analysis of Sec. V A,

we get a power-law decay (for each mode i) for the coherence
of Majorana qubit, with a coefficient that is dependent on the
Fourier transform of the exponential of the G2

ϕ(τ ) correlation
function:

〈γ (0)γ (T )〉 =
∏

i

[
1 + 4 T |�i |2

∫ ∞

−∞
dτ e+iεi τ e−(1/2)G2

ϕ (τ )

]−1

≈ exp

[
−4 T

∑
i

|�i |2
∫ ∞

−∞
dτ e+iεi τ e−(1/2)G2

ϕ (τ )

]
.

(58)

For G2
ϕ(τ ) ∝ |τ |, the Fourier transform of e−(1/2)G2

ϕ (τ ) will
decay as a power law in frequency. We would like to point
out that if the εi(τ ) have a correlation time τ� = �−1,
the short-time behavior of G2

ϕ(τ ) is smoothened, and the
kink singularity at τ = 0 disappears, while the long-time
behavior |τ | remains the same. Using general results on
Fourier transforms42 we know that the Fourier transform of
e−(1/2)G2

ϕ (τ ) will decay faster than any power of frequency ω

when ω � �. This indicates a good level of protection for
systems with large gaps compared to the bandwidth of the noise
source.

C. Telegraph noise fluctuations of coupling amplitudes

Here we shall study classical telegraphic noise. Our
model for telegraphic noise will be a �i(τ ) that switches
between ±�i with time intervals between events that are
distributed randomly with characteristic frequency �−1

i . The
complex number Zi(T ) will again perform a random walk
at long times, which we will confirm by computing the
moments of |Zi(T )|2. Let us start by computing the second
moment:

|Zi(T )|2 = 2
∫ T

0
dτ+

∫ T

0
dτ− e+iεi τ+ �i(τ+) �i(τ−) e−iεi τ− .

(59)

Now, |Zi(T )|2 = 2�2
i (−1)Nflips(τ−,τ+), where Nflips(τ−,τ+) is

the number of switches between the two times τ±. The
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average

(−1)Nflips(τ−,τ+) =
∞∑

N=0

(−1)N
1

N !
(�i |τ+ − τ−|)N e−�i |τ+−τ−|

= e−2 �i |τ+−τ−| , (60)

so we obtain

|Zi(T )|2 −→
T large

2T �2
i

4 �i

(2 �i)2 + ε2
i

. (61)

In the appendix we compute the higher moments and
show that the distribution of Zi(T ) approaches a Gaussian,
as intuitively expected from the fact that the telegraph noise
causes the fictitious particle position to diffuse at times large
compared to the switching time. We obtain, similarly to the
previous cases discussed above, that

〈γ (0)γ (T )〉 =
∏

i

[
1 + 2T �2

i

4 �i

(2 �i)2 + ε2
i

]−1

≈ exp

[
−2T

∑
i

�2
i

4 �i

(2 �i)2 + ε2
i

]
. (62)

In the last line we assumed that there are many relevant
fluctuating levels each making a small contribution so that
we are able to re-exponentiate. From this we see that due
to the effects of telegraph noise the information stored in
the Majorana qubit is lost on a time scale ∼ τtyp/

∑
i

|�i |2
ε2
i

.

Here τtyp ∼ �−1 is the typical switching rate for the regular
fermion modes. This is an exponential decay of Majorana
coherence with the rate given by a rational function of the
the coupling strengths and frequencies of the switching.
This leads to short lifetimes of Majorana modes. We would
like to note that the power-law term comes from the in-
stantaneous switching process. For a finite switching speed
and as such a smooth 〈�(τ )� (v)〉 the Fourier transform
in Eq. (62) would decay faster then any rational function
of εi for large εi (as compared to the inverse switching
time).42

VI. CONCLUSIONS

In this work we have studied the stability of qubits
constructed from Majorana zero modes, for example us-
ing an encoding such as σ z = iγ1γ2. The persistence of
memory can be measured from two-time correlations such
as 〈σ z(0)σ z(T )〉, which we have shown is independent
of the particular state of the qubit. We have shown that
if the environments coupling to each Majorana mode are
uncorrelated, then the qubit overlap function factorizes
〈σ z(0)σ z(T )〉 = 〈γ1(0)γ1(T )〉〈γ2(0)γ2(T )〉. We then analyzed,
in detail, the decay of the Majorana two-point function
〈γ (0)γ (T )〉, when the Majoranas couple via tunneling to
fermions in a bath. We considered only baths where the
fermions had a gapped single-particle spectrum (gapless
baths would trivially destroy coherence). We considered
both cases where the tunneling amplitudes were static and
cases where they were dynamical, fluctuating either clas-

sically or quantum mechanically, say mediated by a boson
bath.

Static tunnelings are, as expected, not consequential leading
to finite decay, although this serves as a way to check our
generic formalism. More precisely if the fermions in the bath
are noninteracting and if the tunnelings are just switched
on but then kept constant thereafter, then the Majorana
qubits only experience a finite depletion which we checked
by explicitly rediagonalizing the noninteracting fermionic
Hamiltonian with the new couplings. This result can be
easily interpreted as a finite adjustment in the overlap of the
qubit before and after the basis changes upon switching the
tunnelings.

However, dynamic fluctuations of the tunneling amplitudes
can have very serious consequences. Our analysis makes it
clear that the dephasing of the Majorana correlations is tied
hand-in-hand to fluctuations (spectral functions) of both the
fermionic bath and the noise. In some instances, for example
in the case of athermal telegraphic noise, fluctuations can
destroy the Majorana memories, leading to complete decay of
coherence at long times. We presented analysis of several types
of noise in the bath, both classical and quantum, and computed
decoherence rates. In the future, for a realistic analysis
of the rate of information loss in experimentally relevant
systems, it is important to study various materials, relevant
sources of noise and in general realistic spectral functions.
The formalism presented here forms the basis of such an
analysis.
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APPENDIX A: NONINTERACTING SYSTEMS
(QUANTUM DEPLETION)

To have yet another independent check of the results
presented in the paper we would like to derive results similar
to Eq. (32) in a different way. More precisely we will
consider a model consisting of a Majorana mode interacting
via tunneling with noninteracting complex fermionic modes.
The Hamiltonian of our system will be

HMean = γ

N∑
i=1

(�ici − �∗
i c

†
i ) +

N∑
i=1

εic
†
i ci . (A1)

We will first proceed by exactly rediagonalizing the
Hamiltonian. By taking commutators of the form [HMean, γ ],
[HMean, ci], and [HMean, c

†
i ], we may rewrite this Hamiltonian

as a matrix acting on the space spanned by { γ√
2
, ci, c

†
i } (the

factor of
√

2 is a normalization constant that insures that the
matrix representing the Hamiltonian is Hermitian in this basis).
With respect to this basis we may write that
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HMean =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
√

2�1 · · · · · · √
2�N −√

2�∗
1 · · · · · · −√

2�∗
N√

2�∗
1 ε1 0 · · · 0 0 · · · · · · 0

... 0 ε2
. . .

...
...

...
...

...
. . .

. . . 0
...

...√
2�∗

N 0 · · · 0 εN 0 · · · · · · 0
−√

2�1 0 · · · · · · 0 −ε1 0 · · · 0
...

...
... 0 −ε2

. . .
...

...
...

...
...

. . .
. . . 0

−√
2�N 0 · · · · · · 0 0 · · · 0 −εN

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A2)

We may now diagonalize this matrix by solving for the
eigenvalues of the system {λκ} with corresponding eigenvec-
tors {Vκ ≡ Uκγ + ∑N

i=1 Uκ,ici + ∑N
i=1 Uκ,N+ic

†
i }. By direct

substitution into the equation HVκ = λκVκ we see that

Uκ,i =
√

2�∗
i

λκ − εi

Uκ, Uκ,N+i = −
√

2�i

λκ + εi

Uκ . (A3)

Here we have ignored the “top line” of HMean in Eq. (A2).
Substituting Eq. (A3) into the “top line” of HMean we get that

λκUκ =
∑

i

√
2�iUκ,i −

∑
i

√
2�∗

i Uκ,N+i (A4)

=
∑

i

4λκ |�i |2
(λκ )2 − (εi)2 Uκ. (A5)

We can now obtain eigenvalue equations

λκ = 0, or 1 = 4
∑

i

|�i |2
(λκ )2 − (εi)2 . (A6)

Now substituting λ0 = 0 into Eq. (A4) we get that

1 = |U0|2 +
N∑

i=1

|U0,i |2 +
N∑

i=1

|U0,N+i |2

= |U0|2
(

1 + 4
N∑

i=1

|�i |2
ε2
i

)
. (A7)

From this we see that the overlap of the new zero mode with
the original mode stays finite (which would lead to nonzero
coherence for arbitrarily long times) whenever

N∑
i=1

|�i |2
ε2
i

< ∞. (A8)

This result is similar to Eq. (32) in the main text. This condition
is true for any finite system. However the overlap of this mode
with the original zero-energy mode is depleted by a factor of(

1 +
N∑

i=1

|U0,i |2 +
N∑

i=1

|U0,N+i |2
)−1/2

=
(

1 + 4
∑

i

|�i |2
ε2
i

)−1/2

. (A9)

Below in Appendix C4d we will show that this will remain so
for mean-field-like infinite systems.

APPENDIX B: QUANTUM FLUCTUATIONS

We would like to extend the previous results, see Sec. V, to
the case where the couplings �i are allowed to have quantum
fluctuations. That is, we will allow for different fluctuations
for the backward and forward time paths. Once again we will
focus on a single Majorana mode which may be well described
by a Hamiltonian of the form HMean(�i, �∗

i ) = γ
∑N

i=1(�ici −
�∗

i c
†
i ) + ∑N

i=1 εic
†
i ci . Here γ is a single Majorana mode and ci ,

c
†
i are regular fermion creation and annihilation operators. In

our model we will allow for Gaussian quantum dynamics for
the coupling constants �i . We will not be able to emulate the
diffusion equation derivation given in Sec. IV B 2but we will
provide a brute-force resummation of the leading-order terms
contributing to coherence. The key difficulty in modifying the
approach of Sec. IV B 2to the case of quantum noise is that
because of the various theta functions, see, e.g., Eqs. (24) and
(B3), the fermionic part of the correlation function cannot be
written in a factorizable form GF (τ1, τ2) �= G̃1F (τ1) G̃2F (τ2)
(or a sum of such terms). As such we cannot simply study the
diffusion of one or several modes, see, e.g., Eq. (33), but we
have to study the diffusion of an infinite number of degrees of
freedom (which is more difficult). We now proceed with the
computation. By using Eq. (24) we may write that

〈γ (0)γ (T )〉 = N
∫ ∫

D{�†,�} exp

(
−1

2

∑
a,b

∫ T

0
dτa

1

∫ T

0
dτb

2 �† (G(2)
F

(
τ a

1 ,τ b
2

))−1
�

)

×γ exp

(
iT̃

∫ T

0
{HMean(�†(τ ),�(τ ))}dτ

)
γ exp

(
−iT

∫ T

0
{HMean(�†(τ ),�(τ ))}dτ2

)
205109-13



G. GOLDSTEIN AND C. CHAMON PHYSICAL REVIEW B 84, 205109 (2011)

= N
∫ ∫

D{�†,�} exp

(
−1

2

∑
a,b

∫ T

0
dτa

1

∫ T

0
dτb

2 �† (G(2)
F

(
τ a

1 ,τ b
2

) )−1
�

)

× exp

(
−1

2

∑
a,b

∫ T

0
dτa

1

∫ T

0
dτb

2 �† D
(2)
F

(
τ a

1 ,τ b
2

)
�

)
. (B1)

Here G
(2)
F = ⊗i(

Gi
11(τ1,τ2) Gi

12(τ1,τ2)
Gi

21(τ1,τ2) Gi
22(τ1,τ2) ), N = det G(2)

F , and D
(2)
F (τ a

1 ,τ b
2 ) was defined in Eq. (26). We note that Eq. (25) does not

apply as there are correlations between the �’s. As such we must compute a functional determinant as shown in Eq. (B1) above.
We now use the equation ∫ ∫

dz1...dzndz∗
1...dz∗

n exp

(
−1

2
�z†G−1�z

)
= (2π )n det (G) , (B2)

which is true even for an arbitrary (not necessarily Hermitian) matrix G. We will provide an independent proof of this result in

Appendix C. Now noting that the determinant of a block diagonal matrix factorizes and writing out the form of D
(2)
F (τ a

1 ,τ b
2 ) say

by using Eq. (24) we can show that

〈γ (0)γ (T )〉−1 =
∏

i

det

⎧⎨⎩I + 2

(
Gi

11 (τ1,τ2) Gi
12 (τ1,τ2)

Gi
21 (τ1,τ2) Gi

22 (τ1,τ2)

)⎛⎝ θ(t1−t2)〈c†i (t1)ci (t2)〉
+θ(t2−t1)〈ci (t2)c†i (t1)〉 〈c†i (t1)ci(t2)〉

〈ci(t2)c†i (t1)〉 θ(t2−t1)〈c†i (t1)ci (t2)〉
+θ(t1−t2)〈ci (t2)c†i (t1)〉

⎞⎠⎫⎬⎭ . (B3)

We have inserted the forms of the various matrices explicitly. What remains is to evaluate the functional determinant in Eq. (B3)
above. First by conjugating all matrices above with the matrix 1√

2
( I I
I −I ) (here I stands for the identity matrix on [0,T ] × [0,T ])

we may write that

〈γ (0)γ (T )〉−1 =
∏

i

det

⎧⎨⎩I + 2

(
0 GR

i

GA
i GK

i

)⎛⎝ 0
θ(t1−t2){〈c†i (t1)ci (t2)〉

−〈ci (t2)c†i (t1)〉}
θ(t2−t1){〈ci (t2)c†i (t1)〉

−〈c†i (t1)ci (t2)〉} 〈ci(t2)c†i (t1)〉 + 〈c†i (t1)ci(t2)〉

⎞⎠⎫⎬⎭
≡
∏

i

det

{
I + 2

(
0 GR

i

GA
i GK

i

)(
0 G̃R

i

G̃A
i G̃K

i

)}
. (B4)

We would like to note the unusual bosonic minus signs in G̃R
i and G̃A

i in Eq. (B4) above. The rest of this section is an
evaluation of the determinant in Eq. (B4) above. Using the identity det(I + M) = exp[

∑ −1n

n
Tr(Mn)] we may write that

〈γ (0)γ (T )〉 = exp

⎛⎝∑ −2n

n
Tr

⎛⎝ ∑
i1,i2,...i2n

∏
G

i2k−1,i2k

i

˜
G

i2k ,i2k+1
i

⎞⎠⎞⎠ . (B5)

Here ij = 1 or 2 and (ik, ik+1) �= (1, 1). To proceed further we will now evaluate each of the traces (to leading order for large
T ). As such we need to evaluate integrals of the form∫ T

0
dτ1

∫ T

0
dτ2 . . .

∫ T

0
dτ2n

{([
G

A/R/K

i (τ1 − τ2) [θ (τ2 − τ1) /θ (τ1 − τ2) /1]
]

×[
G

A/R/K

i (τ3 − τ4) [θ (τ2 − τ1) /θ (τ1 − τ2) /1]
]

× · · · × [
G

A/R/K

i (τ2n−1 − τ2n) [θ (τ2n−1 − τ2n) /θ (τ2n − τ2n−1) /1]
])

×([e−iεi (τ2−τ3)−κi |τ2−τ3| [(1 − 2ni) θ (τ2n−1 − τ2n) / (2ni − 1) θ (τ2n − τ2n−1) /1]]

× · · · × [e−iεi (τ2n−τ1)−κi |τ2n−τ1| [(1 − 2ni) θ (τ1 − τ2n) / (2ni − 1) θ (τ2n − τ1) /1]])}. (B6)

Here for future convenience we have written out the various theta functions involved and for simplicity assumed relaxation
time approximation for the fermion Green’s functions. The terms A/R/K refer to advanced/retarded/Keldysh Green’s functions
while the various options for the theta functions shown in the brackets correspond to the respective Green’s functions (A/R/K).
We now need to evaluate these integrals. As a first step we take advantage of the short range of our correlation functions (see
Fig. 4) to change the range of integration limits for the variables τ1,τ3,...,τ2n−1 from (0,T ) to (−∞,∞). We also shift the variables
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of integration calling ui ≡ τ2i−1 − τ2i , vi ≡ τ2i . Combining all these changes we get that any term in expansion in Eq. (B5), e.g.,
Eq. (B6), may be written as∫ ∞

−∞
du1

∫ ∞

−∞
du2 · · ·

∫ ∞

−∞
dun × (

G
A/R/K

i (u1) e−iεiu1−κi |u1| [θ (−u1) /θ (u1) /1]
)

× · · · × (
G

A/R/K

i (un) e−iεiun−κi |un| [θ (−un) /θ (un) /1]
)

×
∫ T

0
dv1

∫ T

0
dv2 · · ·

∫ T

0
dvn × [θ (v2 − v1 + u2) /θ (v1 − v2 − u2) /1] ... [θ (v1 − vn + u1) /θ (vn − v1 − u1) /1] . (B7)

We may further simplify this expression by noting that all the correlation functions G
A/R/K

i are dominated by small values
of u so that we may approximate θ (v2 − v1 + u2) ∼= θ (v2 − v1) and similarly for other θ functions. Substituting we get that the
integrals simplify:⎧⎨⎩

n∏
j=1

∫ ∞

−∞
G

A/R/K

i (uj )e−iεiuj −κi |uj | [θ (−ui) /θ (ui) /1]

⎫⎬⎭ ×
⎧⎨⎩
∫ T

0
dv1...

∫ T

0
dvn

n∏
j=1

[
θ (vj+1 − vj )/θ (vj − vj+1)/1

]⎫⎬⎭ . (B8)

In Appendix C we will further simplify the expression in
Eq. (B8) above. Here we will merely compute the leading-
order term for the semiclassical case where GK

i � GR
i ,GA

i . In
this case a single term (containing only GK

i contributions)
dominates at each order of integration and we may write
that

Tr

⎛⎝ ∑
i1,i2,...i2n

∏
G

i2k−1,i2k

i

˜
G

i2k ,i2k+1
i

⎞⎠ ∼= (
ĜK

i (εi − iκi) T
)n

.

(B9)

Here ĜK
i (εi − iκi) is the “Fourier transform” of the

Keldysh Green’s function evaluated at energy εi and decay
term κi . Combining these results we recover the semiclassical
result that

〈γ (0)γ (T)〉 =
∏

i

1

1 + 2T ĜK
i (εi − iκi)

=
∏

i

1

1 + 2T (Ĝi(εi − iκi) + Ĝi(−εi + iκi))

∼= exp

(
−2T

∑
i

(Ĝi (εi −iκi)+Ĝi (−εi +iκi))

)
.

(B10)

In the second step we have used a relation between Keldysh
and time ordered correlation functions and in the last step
we have assumed that there are many relevant fermionic
modes in the bath so that we can safely exponentiate
each term. Further corrections to this result are given in
Appendix C.

APPENDIX C: VARIOUS TEDIOUS CALCULATIONS
AND PROOFS

1. Parity eigenvalues (coding subspace)

In the main text (see Sec. I) we presented a specific
encoding of the Majorana qubit that used the even Majorana
fermion parity subspace for its coding space. Throughout
the main text we computed expectation values of the form

〈γ1(0)γ2(0)γ1(T )γ2(T )〉 = − 〈σ z(0)σ z(T )〉. We claimed that
this is a good representation of the fidelity of our quantum
memory. There could be further concern that we are over- or
underestimating the fidelity by including in the expectation
value 〈γ (0)γ...γ (T )〉 processes that included final states that
do not have an even fermion parity.44 Here we show that for
two-time correlation functions such processes never contribute
to this expectation value so no further measurements or
corrections are needed to adjust for such processes. Even
though we do not focus on this case in the main text we
will show that the above statement is not correct for multitime
correlators. We will also show what modifications must be
made in the multitime case.

a. Two-time correlators

We start by showing that no modifications are necessary
in the two-time correlators case (again focusing on the
four Majorana fermion qubit). Indeed consider

∏
+ and∏

− projectors into even and odd Majorana fermion parity
subspaces (

∏
+ +∏

− = 1,
∏2

± = ∏
±, and

∏
+
∏

− = 0).
Since the initial state of the Majorana qubit has even fermion
parity, we may write that

〈σ z(0)σ z(T )〉 =
〈∏

+
σ z(0)σ z(T )

∏
+

〉

=
〈∏

+
σ z(0)

(∏
+

+
∏
−

)
σ z(T )

∏
+

〉

=
〈∏

+
σ z(0)

∏
+

σ z(T )
∏
+

〉

=
〈
σ z(0)

∏
+

σ z(T )
∏
+

〉
. (C1)

In the third step we have used the fact that [σ z(0),
∏

±] = 0
to get rid of the term

∏
+ σ z(0)

∏
− = 0. From this we see that

we may as well project out the odd fermion parity subspace,
e.g., σ z(T ) → ∏

+ σ z(T )
∏

+, and not worry about errors
involving noncoding subspaces (these errors do not contribute
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to expectation values). The same sort of argument may be
made for any two-time correlator of the fermion modes and
any encoding subspace. Indeed based on the form of the
previous proof to ensure that the noncoding subspace does
not contribute to the expectation values all we need is a coding
system such that the logic operators do not take us out of
the encoding space (which is always the case). So no further
corrections are needed in this case.

b. Multitime correlators

In the multitime case in order to only consider terms
within the even fermion parity subspace it is necessary to
project out the odd fermion parity states explicitly, that
is, convert Oi(T ) → ∏

+ Oi(T )
∏

+. There are still many
simplifications in the case of three-time correlations. In this
case similarly to what we did above one can check that it is only
necessary to project out once just before the last operator. For
example,

〈σ z(0)σ z (τ1) σ z (τ2)〉
→

〈
σ z(0)σ z (τ1)

∏
+

σ z (τ2)
〉

= −i

2
〈γ1γ2γ1 (τ1) γ2 (τ1) (1 + γ1γ2γ3γ4) γ1 (τ2) γ2 (τ2)〉 ,

(C2)

which we can calculate using the methods derived in this paper.

2. Cross correlations between Majorana baths

In the bulk of the text we have discussed the case when
the different baths surrounding the Majorana fermions are
uncorrelated, or equivalently, that interactions between modes
that couple to different Majorana fermions are negligible. In
this section we shall discuss the effects of such interactions,
and indeed argue that they may well be neglected in the case
of well-separated Majorana modes: modes whose separation
is much greater then the scattering length in the bath medium.

First we begin by arguing that the initial conditions which
we have selected in this paper, of uncorrelated distant baths,
are likely to be highly favorable for the coherence of a
qubit composed of Majorana fermions. Indeed, focusing on
two Majorana modes, we note that the coherence of the
qubit may be expressed as 〈γ1γ2 eiHT γ1γ2 e−iHT 〉. We now
consider two Majorana modes each interacting with the same
fermionic environment; in particular we will focus on a shared
mode fε with energy ε coupling to both γ1 and γ2 through
a Hamiltonian of the form H = γ1

∑
ε(�ε

1 fε − �ε
1
∗ f †

ε ) +
γ2
∑

ε(�ε
2 fε − �ε

2
∗ f †

ε ). Here �ε
1,2 are just complex tunneling

amplitudes, for simplicity. Taylor-expanding the exponentials
in the equation above, we obtain nonzero contributions to the
coherence (the expectation value given above) that contain
cross terms involving both �ε

1 and �ε
2:

−2 〈γ1γ2〉
∫ T

0
dt1

∫ T

0
dt2

∑
ε

〈[ (
�ε

1 fε(t1) − �ε
1
∗
f †

ε (t1)
)
,

× (
�ε

2 fε(t2) − �ε
2
∗
f †

ε (t2)
) ]〉

= 2 〈γ1γ2〉
∫ T

0
dt1

∫ T

0
dt2

∑
ε

�ε
1
∗
�ε

2 (〈fε(t2)f †
ε (t1)〉

− 〈f †
ε (t1)fε(t2)〉) + H.c. (C3)

These are the interference terms that do not appear for
Majorana fermions interacting with separate baths, but appear
due to a common bath. For short times any nonzero terms like
these lead to decoherence. Indeed, since it is impossible to
have higher then unity coherence, these terms must contribute
negatively to the performance of a qubit composed of Majorana
fermions.

However we would like to now argue that this effect
can easily be avoided in realistic experimental situations by
simply keeping the Majorana fermions far apart. First note
that individual f modes that are localized cannot have large
tunneling overlaps with two distant Majoranas, so �1�

∗
2

∼= 0.
Therefore only extended modes can contribute to the interfer-
ence terms. Now, each such mode contains a normalization
factor proportional to inverse square root of volume, so
individually they contribute zero in the thermodynamic limit.
As such, in order to get a nonzero value for the term shown
in Eq. (C3) we need to integrate over the contributions of all
the extended states. To do so first recall Eq. (4) or Eq. (C6)
below which state that �ε

1,2 ∼ ∫
dr u1,2(r)vε(r). Here u1,2 is

the wave function of the Majorana mode while vε is the wave
function of the mode fε . Assuming a pointlike u1,2 or dividing
the integral into portions of negligible extent we may write
that �ε

1,2 ∝ vε(r1,2), where r1,2 are the locations of the two
Majorana modes. In this case, we can relate terms entering
Eq. (C3) to single-particle Green’s functions for the bath
electrons:∑

ε

�ε
1
∗
�ε

2 〈fε(t2)f †
ε (t1)〉

∝
∑

ε

v∗
ε (r1) vε (r2) 〈fε(t2)f †

ε (t1)〉 = G (r1 , t1 ; r2 , t2) .

(C4)

In a realistic material there are always sources of decorrelation,
in particular lattice disorder and phonons. It is not too difficult
to show that33–35 these sources lead to an exponential decay
of G (r1 , t1 ; r2 , t2) in space with a characteristic length
given by the mean-free path of the material. The mean-free
path is directly related to phonon and impurity scattering
strengths.33–35 Since this reasoning indicates an exponential
suppression of these interference effects with distance, and
since it is not possible to use these interference effects to
enhance coherence anyway, we have ignored the possibility
of the Majorana modes sharing a common bath in the
text.

3. Partial justification of independently fluctuating modes

In Sec. V we presented some results for the coherence
of a single Majorana mode in the presence of a fluctuating
environment. While we covered both diagonal fluctuations
and cross correlations between different modes of our environ-
ment, we mostly focused on the case of diagonal fluctuations.
Furthermore our results on cross correlations are technical
and in practice difficult to apply. Here we shall present a
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partial justification indicating that diagonal fluctuations are
dominant over cross correlations. Weak correlations do exist
so no “theorem” indicating a lack of cross correlations can
be presented. We will however present arguments supporting
independent correlations in three key cases: when there is
a high degree of symmetry for the problem, when there
is “disorder averaging” of the continuum states and tunnel
couplings have short correlation length, or to leading order in
perturbation when the fluctuations are weak.

a. High degree of symmetry

Many Hamiltonians have a high degree of symmetry. For
example for a p-wave superconductor with a single vortex
supporting a single Majorana mode, the vortex core states
have rotational symmetry. Most external Hamiltonians causing
fluctuations in the vortex core are invariant under this rotational

symmetry and as such they may be written in block diagonal
form with each block corresponding to a different eigenstate
of the rotation operator. As such fluctuations corresponding
to different angular momentum eigenstates are decoupled
from each other (uncorrelated), justifying this assumption in
this case. More generally fermionic modes corresponding to
different irreducible representations (diagonal blocks) of some
fluctuation Hamiltonian have uncorrelated fluctuations. This in
part justifies the assumptions used in Sec. V.

b. Short correlation length and disorder averaging

We shall now focus on a particularly simple, but realistic,
model of tunnel couplings between the Majorana mode and
the regular fermion modes in the superconductor. We shall
assume pointlike tunneling with an effective coupling that may
be written as

Htun = γ
∑

i

{
ci

(∫
d2r{� (r, τ ) u0(r)ui(r) − �∗ (r, τ ) v0(r)vi(r)}

)
+ c

†
i

(∫
d2r{� (r, τ ) u0(r)v∗

i (r) − �∗ (r, τ ) v0(r)u∗
i (r)}

)}
. (C5)

Here ui(r) and vi(r) are the creation and annihilation components of the modes ci while u0(r) and v0(r) are the creation and
annihilation components of the Majorana mode and � is a tunneling amplitude. For a similar coupling form see, e.g., Eqs. (C25)
and (4). From this we see that within our model the coupling function in Eq. (28) is given by:

�i(τ ) =
∫

d2r{� (r, τ ) u0(r)ui(r) − �∗ (r, τ ) v0(r)vi(r)}. (C6)

The correlation function is given by

〈�∗
i (τ1) �j (τ2)〉 = −

∫
d2r1

∫
d2r2〈� (r1, τ1) �∗ (r2, τ2) u0 (r1) v0 (r2) ui (r1) u∗

j (r2)

+ � (r1, τ1) �∗ (r2, τ2) u0 (r1) v0 (r2) vi (r1) v∗
j (r2)〉

∼= −
∫

d2r{F (τ1, τ2) 〈|u0(r)|2 ui(r)u∗
j (r)〉 + F ∗ (τ1, τ2) 〈|u0(r)|2 vi(r)v∗

j (r)〉}

∼= −
∫

d2r{F (τ1, τ2) 〈|u0(r)|2 Ui(r)δij 〉 + F ∗ (τ1, τ2) 〈|u0(r)|2 Vi(r)δij 〉}. (C7)

Here we are able to simplify our expressions by assuming
that 〈� (�r1, τ1) �∗ (�r2, τ2)〉 ∼= F (τ1, τ2) δ (�r1 − �r2) for some
F (τ1, τ2) and that 〈� (�r1, τ1) �∗ (�r2, τ2)〉 ∼= 0. We have also
performed a disorder average over the bath states ui(r)uj (r) ∼
δij . This averaging works well for continuum states.

c. Weak fluctuations

In many situations there are many fermionic modes re-
sponsible for the decoherence of the Majorana mode and the
coupling to any one mode is quite weak. In this case even
if the fluctuations between the different fermion modes are
strongly cross correlated the diagonal correlations dominate
decoherence. Indeed, to show this we first recall the formula
for the coherence of a Majorana correlator given in Sec. V A 2:
〈γ (0)γ (T )〉 = det−1 [I + 2σ (T )]. We now simplify this for-

mula. First, letting the eigenvalues of σ be {λi}, we obtain
that

〈γ (0)γ (T )〉 =
∏

i

1

1 + 2λi

∼= exp
(
−2

∑
λi

)
= exp [−2Tr (σ )] . (C8)

In the second step we have assumed that many eigenvalues
contribute to the product so we can exponentiate. From this we
see explicitly that in many cases with weak fluctuations only
diagonal terms of the matrix σ matter. These are one-particle
terms σ i i(T ) ≡ 2

∫ T

0 dτ1
∫ T

0 dτ2 e−iεi τ1 Gi(τ1,τ2) e+iεi τ2 and
as such are much easier to handle.
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4. Proofs and clarifications of Eqs. (B2), (B8), and (62)

a. Eq. (B2)

Here we wish to prove Eq. (B2) for arbitrary (not necessarily
Hermitian) matrices. As a first step we wish to prove an anal-
ogous expression for real Gaussian integrals. More precisely
we wish to show that for an arbitrary possibly complex n × n

matrix M and an integral over Rn we may write that∫
dx1 . . . dxn exp

(
−1

2
�xT M �x

)
= (2π )n/2[

det
(

M+MT

2

)]1/2 .

(C9)

To prove this we first note that
∑

i,j xiMijxj =
1
2

∑
xi(Mij + Mji)xj . As such we may safely transform

M → 1
2 (M + MT ). Next we may use Takagi’s decomposition

for symmetric matrices43 to write that 1
2 (M + MT ) = UDUT ,

where U is a unitary matrix and D is a diagonal one. From
this we see that∫

dx1 . . . dxn exp

(
−1

2
�xT M �x

)
= (2π )n/2

[det (D)]1/2 det (U )
= (2π )n/2{

det
[

1
2

(
M + MT

)]}1/2 .

(C10)

The extra factor of det (U ) comes from the Jacobian of the
change of variables. To proceed to the complex case we begin
by writing �z = �x + i �y, �z∗ = �x − i �y. Then we may write that

�z†G−1�z = ( �xT �yT )

(
G−1 iG−1

−iG−1 G−1

)( �x
�y
)

. (C11)

As such we may write that

∫ ∫
dz1 · · · dzndz∗

1 · · · dz∗
n exp

(
−1

2
�z†G−1�z

)
=
∫ ∫

dx1 · · · dxndy1 · · · dyn exp

(
−1

2
( �xT �yT )

(
G−1 iG−1

−iG−1 G−1

)( �x
�y
))

= (2π )n
(

det

[
1

2

((
G−1 iG−1

−iG−1 G−1

)
+
(

G−1 iG−1

−iG−1 G−1

)T
)])−1/2

. (C12)

Next we note that

1

2

(
G−1 + G−1T i(G−1 − G−1T )

−i(G−1 − G−1T ) G−1 + G−1T

)
=
(

1 i

0 1

)(
G−1 0

−i
2 (G−1 − G−1T ) G−1T

)(
1 −i

0 1

)
. (C13)

Since

det

(
1 −i

0 1

)
= det

(
1 i

0 1

)
= 1, det

(
G−1 0

−i
2 (G−1 − G−1T ) G−1T

)
= det(G−1) det(G−1T ). (C14)

We get that ∫ ∫
dz1...dzndz∗

1...dz∗
n exp

(
−1

2
�z†G−1�z

)
= (2π )n [det(G−1) det(G−1T )]−1/2 = (2π )n det (G) . (C15)

This reproduces Eq. (B2).

b. Eq. (B8)

Here we would like to further simplify the sums in Eqs.
(B8) and (B5) as well as obtain more accurate estimates.
We begin with Eq. (B8) above. By considering the form of
the indices in the trace we see that we may represent any

term in the expansion for Tr{(( 0 GR
i

GA
i GK

i
)( 0 G̃R

i

G̃A
i G̃K

i

))n} as a set

of broken lines with periodic boundary conditions with each

line representing an appropriate Green’s function (see Fig. 5).
In the quasiclassical limit the biggest contribution comes
from the term Tr{(GK

i G̃K
i )n} � T n(GK

i (εi − iκi))n. The last
equality may be obtained by noting that the various terms in
Eq. (B8) factorize. By noting that most of Eq. (B8) factorizes
we may compute the subleading term including combinatorial
factors in the semiclassical expansion. It is n

4 T n(ĜK
i (ε −

iκi))n−1(ĜR
i (ε − iκi) + ĜA

i (ε + iκi)) (for n � 1). This term
would correspond to diagrams (c)–(f) in Fig. 5. As such we
obtain that

〈γ (0)γ (T )〉 ∼=
∏

i

exp

{ ∞∑
n=0

(−2)n

n
T n

(
ĜK

i (εi − iκi)
)n

+
∞∑

n=1

(−2)n

4
T n

(
ĜK

i (εi − iκi)
)n−1(

ĜR
i (εi − iκi) + ĜA

i (εi + iκi)
)}
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∼=
∏

i

1

1 + 2T ĜK
i (εi − iκi)

exp

(
−1

2
T
(
ĜR

i (εi − iκ1) + ĜA
i (εi + iκi)

) 1

1 + 2T ĜK
i (εi − iκi)

)

∼=
[∏

i

exp
( − 2T ĜK

i (εi − iκi)
)][∏

i

exp

(
−ĜR

i (εi − iκi) + ĜA
i (εi + iκi)

4ĜK
i (εi − iκi)

)]
. (C16)

In the final step we have taken the large-T limit. As such we recover the semiclassical approximation and the leading-order
quantum correction.

c. Eq. (62)

We would like to derive Eq. (62). As a first step we will
calculate the n-point correlation function for telegraphic noise.
We will find that it is short ranged and this will allow us to
calculate the distribution of the “displacement” field Zi(T )
[see Eq. (34)] within the dipole approximation. We will find
that the distribution is Gaussian at which point Eq. (62) will
follow. First we motivate the dipole approximation used in Sec.
V C. To do so we compute the n-point correlation function for
tunneling amplitudes acted on by telegraph noise and observe
that it is exponentially short ranged. That is, we extend Eqs.
(59) and (60) from the main text by showing that for the ith
mode, t1 < t2 < · · · < tN , and for N even:45

〈
N∏

j=1

�(tj )

〉
= �N

i exp

⎛⎝− 2

τi

N∑
j=1

(t2j − t2j−1)

⎞⎠ . (C17)

To do so we first we recall the result that for telegraph noise
the probability of having exactly K flips in some set of interval

whose total length in L is given by 1
K! (

L
τi

)K exp(− L
τi

).46 Now

we know that �N
i=1�(τi) = ±�N

i depending on whether an
odd or an even number of the � (τi) = −�. At this point it is
a straightforward combinatorial argument to show that

{#� (τi) = −�} =
⎧⎨⎩

N∑
j=1

# Flips in
[
t2j−1,t2j

]⎫⎬⎭ (mod 2).

(C18)

Combining these results we get that〈
N∏

j=1

�(tj )

〉
=

∞∑
n=0

(−1)n
1

n!

(
L

τi

)n

exp

(
−L

τi

)
=exp

(
−2

L

τi

)
.

(C19)

Here L = ∑N
j=1(t2j − t2j−1). As such we obtain the result

in Eq. (C17). Now we wish to calculate the 2n-point function
of the displacement field; see Eq. (34). It is given by

〈|Zi(T )|2n〉 = 22n

∫
D {�i (τ1)} P {�i(τ )}

∫ T

0
dτ1 . . .

∫ T

0
dτ2n

∏
i

exp (ϑkiεiτk)

〈∏
k

� (τk)

〉

= (2�)2n lim
δ→0

∑
P2n

⎧⎨⎩
2n∑
l=0

⎧⎨⎩(−1)2n−l exp

⎛⎝ l∑
j=1

{(ϑP2n(j )iεi + δ) + 2 (−1)j �i}T
⎞⎠⎫⎬⎭ (C20)

×
⎛⎝ l∏

j=1

1∑l
k=j

(
ϑP2n(k)iεi + δ + 2 (−1)k �i

)
⎞⎠⎛⎝ 2n∏

j=l+1

1∑j

k=l+1

(
ϑP2n(k)iεi + δ + 2 (−1)k �i

)
⎞⎠⎫⎬⎭ .

Here {�i(τ )} refers to the space of all paths alternating between
+�i and −�i , and P{�i(τ )} is the probability of such a path,
and we have introduced ϑk = { 1, k � n

−1, k > n . We will derive the
second part of this equation separately below. The limit limδ→0

comes from the fact that some of the denominators may turn
to zero without an extra factor of δ. Also we would like to
note that there is a sum over the permutation group acting
on 2n elements, P2n, which is there to count all the possible
orderings of the times {τ1, . . . ,τ2n}. Now consider the formula
in Eq. (C20) as a function of δ ∈ C. It is a meromorphic
function, and it is not too hard to see that it has poles of
order at most n (this comes directly from the structure of
the denominators). On the other hand we know that for δ

close to zero the value of 〈|Zi(T )|2n〉 � 22n�2nT 2n. This is
not obvious from Eq. (C20) but is obvious from the definition
of |Zi(T )|2n. As such all the poles in Eq. (C20) have to cancel.
Now, schematically a typical term in Eq. (C20) may be written
as α eAδT

δn (with A ∈ 0 ∪ N). As all the poles in δ must cancel

we may safely replace α eAδT

δn → α (AT )n

n! . From this we see that
for large T to leading order in T , 〈|Zi(T )|2n〉 ∼ T n. The only
terms which contribute to order T n from Eq. (C20) are those
∼ 1

δn , or ones where ϑP2n(2k) = −ϑP2n(2k−1) for k = 1, 2, . . . ,n.
From the fact that the correlation function e−2�i |τ1−τ2| is short
ranged and from the fact that the phase factors in Eq. (C20)
have to cancel pairwise we see that it is good enough to evaluate
〈|Zi(T )|2n〉 in the dipole approximation. From this we see that
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2
(1,2) (2,1) (1,2) (2,1) 1 G G G GR RA A

2
1(2,1) (1,2) (2,1) (1,2)
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FIG. 5. In this figure we consider the second-order term in
Eq. (B8) above. We picture the seven terms contributing to

Tr{(( 0 GR
i

GA
i GK

i

)( 0 G̃R
i

G̃A
i G̃K

i

))2} with lines connecting indices in the

Keldysh matrix; e.g., (1, 2) stands for G(1,2) = GR . Each entry
corresponds to a Green’s function. The biggest term contains four
Keldysh Green’s functions [pictured last (g)]. The six subleading
terms are also shown.

〈|Zi(T )|2n〉 ∼= n!〈|Zi(T )|2〉n. These are the moment functions
of a complex Gaussian. Repeating the analysis of Sec. V A,
we get a power-law decay (for each mode i) for the coherence
of Majorana qubit, and Eq. (62) follows.

Eq. (C20). We now wish to derive Eq. (C20). By considering
the form of Eq. (C17) and the fact that Eq. (C20) has a sum
over all permutations of 2n elements we see that it is enough
to derive that∫ T

0
dτ1e

α1τ1

∫ τ1

0
dτ2e

α2τ2 . . .

∫ τK−1

0
dτKeαKτK

=
K∑

l=0

⎧⎨⎩
⎧⎨⎩(−1)K−l exp

⎛⎝ l∑
j=1

αjT

⎞⎠⎫⎬⎭
×

⎛⎝ l∏
j=1

1∑l
k=j αk

⎞⎠⎛⎝ K∏
j=l+1

1∑j

k=l+1 αk

⎞⎠⎫⎬⎭ . (C21)

To make this formula easier to understand we write it out
explicitly in the case when K = 4:∫ T

0
dτ1e

α1τ1

∫ τ1

0
dτ2e

α2τ2

∫ τ2

0
dτ3e

α3τ3

∫ τ3

0
dτ4e

α4τ4

= 1

α1 (α1 + α2) (α1 + α2 + α3) (α1 + α2 + α3 + α4)

− eα1T

α1α2 (α2 + α3) (α2 + α3 + α4)

+ e(α1+α2)T

(α1 + α2) α2α3 (α3 + α4)

− e(α1+α2+α3)T

(α1 + α2 + α3) (α2 + α3) α3α4

+ e(α1+α2+α3+α4)T

(α1 + α2 + α3 + α4) (α2 + α3 + α4) (α3 + α4) α4
.

(C22)

We shall derive Eq. (C21) by induction:

∫ T

0
dτ1e

α1τ1 . . .

∫ τK−1

0
dτKeαKτK =

∫ T

0
dτ1e

α1τ1

K∑
l=1

⎧⎨⎩−1K−le
∑l

j=2 αj τ1

⎛⎝ l∏
j=2

1∑l
k=j αk

⎞⎠⎛⎝ K∏
j=l+1

1∑j

k=l+1 αk

⎞⎠⎫⎬⎭
=

K∑
l=1

⎧⎨⎩−1K−l
(
e
∑l

j=1 αj T − 1
)⎛⎝ l∏

j=1

1∑l
k=j αk

⎞⎠⎛⎝ K∏
j=l+1

1∑j

k=l+1 αk

⎞⎠⎫⎬⎭ . (C23)

All that remains now is to show that

−1K

K∏
i=1

1∑i
j=1 αj

+
K∑

l=1

⎛⎝−1K−l

⎛⎝ l∏
j=1

1∑l
k=j αk

⎞⎠⎛⎝ K∏
j=l+1

1∑j

k=l+1 αk

⎞⎠⎞⎠ = 0. (C24)

To see this equality consider the left-hand side of Eq. (C24) as a
function of α1 ∈ C. This expression is a meromorphic function
C → C which goes to zero at infinity. By inspection, as a
function of α1, it has at most simple poles. It is straightforward
to compute the residues at any of these poles and see that
they are all zero; that is, the expression is actually analytic.
We can now apply Lioville’s theorem42 to conclude that the

function on the left-hand side of Eq. (C24) is identically
zero.

d. Summation of Eq. (A7) for quadratic Hamiltonians

We will give an approximate calculation of the sum (A7)
for tunneling into a 2D superconductor. To consider a simple
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example we will focus on the case where a p-wave supercon-
ductor is in close proximity to a 2D s-wave superconductor
with the chemical potential of the p-wave superconductor
set inside the gap of the s-wave superconductor. This is
a reasonable simplified model for, say, the surface states
formed when an STI is placed in proximity to an s-wave
superconductor. Furthermore by taking the limit of a zero-
gap s-wave superconductor or by ignoring coherence factors
we may model insulators or metals in contact with p-wave
superconductors. We shall assume a constant point tunneling
contact so that the relevant tunneling Hamiltonian may be
written as∫

d2rT (�†
pw(r)�sw↑(r) + �

†
sw↑(r)�pw(r)). (C25)

This form comes from the fact that for a p-wave superconduc-
tor the vortex is in one spin species only, say, spin-up.

We begin with a review of the relevant wave functions for
zero modes of a p-wave superconductor. The eigenvalues of
our Hamiltonian correspond to solutions of the following BdG
equation:(

− ∇2

2m
− μ 1

2 {� (�r) ,px − ipy}
1
2 {�∗ (�r) ,px + ipy} ∇2

2m
+ μ

)(
u

v

)
=ε

(
u

v

)
.

(C26)

Here �(�r) = exp(iθ )�(|�r|), with �(|�r|) = |�r|
ξ

�∞ for |�r| � ξ

and �(|�r|) = �∞ for |�r| � ξ (we have neglected an irrelevant
overall phase factor). Here ξ is the penetration depth and �∞
is the magnitude of the order parameter far from the vortex.
From previous studies,47,48 for rotationally symmetric type II
superconducting vortices, we know that there is a zero mode
for the Hamiltonian given in Eq. (C26). It is given by γ =∫

d2r[u0(r)�(−→r ) + v0(r)�†(r)] with(
u0(r)
v0(r)

)
∼= N√

2
J0 (kF r) exp [−χ (r)]

(
1 + i

1 − i

)
. (C27)

Here kF = √
2mμ is the Fermi wave vector, J0 (kF r) is the

lth Bessel function, and χ (r) = m
kF

∫ r

0 �(r), where �(r) is
the position-dependent order parameter. Furthermore a good

approximate value for the normalization constant is given by
N ∼= 0.06 (kF /ξ ) (see Ref. 47).

Next we will recall the form of the wave functions
for an s-wave superconductor. For s-wave superconductors
we may write Bogoliubov–de Gennes equations in the
form(

− ∇2

2m
− μ̃ �̃

�̃∗ ∇2

2m
+ μ̃

)(
f (r)
g(r)

)
= E

(
f (r)
g(r)

)
. (C28)

Here the top component represents creation operators
for spin-up while the bottom component represents anni-
hilation operators for spin-down fermions; μ̃ and �̃ are
the chemical potential and the gap of the s-wave super-
conductor. Furthermore a similar equation may be written
with the spins interchanged and �̃ → −�̃. We will place
the origin of coordinates at the center of the vortex in the
p-wave superconductor. Solutions for this equation are of
the form(

f (+,−)(r)

g(+,−)(r)

)
= 1

C

(
A(+,−)eilθ Jl (qr)

B(+,−)eilθ Jl (qr)

)
. (C29)

Here C is a size-dependent normalization constant with
1
C

∼= πq

R
(where R is the system radius). Eigenenergies and

eigenfunctions are now given by⎧⎪⎪⎨⎪⎪⎩
E(+,−) = ±

√(
q2

2m
− μ̃

)2
+ �̃2,

(A+, B+) = (cos (θ/2) exp (iϕ̃) , sin (θ/2)),
(A−, B−) = (− sin (θ/2) exp (iϕ̃) , cos (θ/2)).

(C30)

Here tan(θ ) = q2/2m−μ̃

�̃
, �̃

�̃∗ = exp(i2ϕ̃), and Jl are the lth
Bessel functions. There are completely analogous equations
for the opposite spin, with appropriate sign and phase changes.
Using Eq. (C6) as well as the symmetry between the upper
and lower component of the solution for the zero mode,
see Eq. (C27), and various symmetries between the spin
species, we see that various trig functions [such as the
sine, cosine, and exponential appearing in the solution of
Eq. (C29) above] cancel out. By taking the thermodynamic
limit we can convert the sum (A7) into an integral of
the form

N∑
i=1

|�i |2
ε2
i

∼= 8π

∫ ∞

0
dq

⎛⎜⎜⎜⎝ 1(
(μ̃ − μ) +

√(
q2

2m
− μ̃

)2 + �̃2

)2 + 1(
(μ̃ − μ) −

√(
q2

2m
− μ̃

)2 + �̃2

)2

⎞⎟⎟⎟⎠N2

∣∣∣∣T ∫ ∞

0
drru0(r)J0 (qr)

∣∣∣∣2 .

(C31)

We note that because of rotational invariance only Jl=0 terms contribute to the sum. Here u0 is the upper component of the
Majorana mode wave function [Eq. (C27)]. We wish to evaluate the integral given in Eq. (C31) above. We will begin by evaluating∫∞

0 dr ru0(r)J0(qr). As a first step we will use the approximate relation that u0(r) ∼= N exp(− �
kF ξ

r2)J0(kF r) [see Eq. (C27) and
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discussion that immediately follows]. Next we write that∫ ∞

0
drru0(r)J0 (qr) = N

2π

∫ ∞

−∞
dx

∫ ∞

−∞
dy exp

(
− �

kF ξ
r2

)
J0 (kF r) J0 (qr)

= N

(2π )3

∫ ∞

−∞
dx

∫ ∞

−∞
dy exp

(
− �

kF ξ
r2

)∫ 2π

0
dθ1e

−i
−→
kF (θ1)·�r

∫ 2π

0
dθ2e

−i �q(θ2)·�r

= N

(2π )3

∫ 2π

0
dθ1

∫ 2π

0
dθ2 exp

(
−kF ξ

4�
(
−→
kF (θ1) + �q (θ2))2

)
= N

2π2

∫ 1

−1

dx√
1 − x2

exp

(
−kF ξ

4�

(
k2
F + q2 + 2qkF x

))
= N

2π
I0

(
qξ

2�

)
exp

(
−kF ξ

4�

(
k2
F + q2

))
∼= N

2π

√
�

πqξ
exp

(
−kF ξ

4�
(q − kF )2

)
. (C32)

Here
−→
kF (θ1) is a vector with magnitude kF and direction

θ1 along the x axis and similarly for �q(θ2). In the second
line we have used a representation of the Bessel function:
J0(qr) = 1

2π

∫ 2π

0 dθe−i �q(θ)·�r , and �r is along the y axis. Here I0

is a modified Bessel function of zeroth order and in the last
step we have used an asymptotic form of the modified Bessel

function I0( qξ

2�
) ∼=

√
�

πqξ
exp(−( qξ

2�
)2). This asymptotic form

fails near q = 0 where it should be replaced by I0( qξ

2�
) ∼=

1 + 1
4 ( qξ

2�
)2 + · · ·. It is straightforward to check that this

correction does not effect the final answer; see Eq. (C33)
below. Indeed because of the exponential decay we may safely
approximate∫ ∞

0
dr ru0(r)J0 (qr) ∼=

{
N
2π

√
�

πqξ
, (q − kF ) � �

kF ξ
,

0, (q − kF ) � �
kF ξ

.

(C33)

From this we see that the integral given in Eq. (C31) above
has effectively a finite range of definition and no singularities.

As such it is clearly finite. Very similar arguments may be
used to show that the sum (A7) is bounded for tunneling
contact with any gaped material such as an insulator with
the chemical potential of the p-wave superconductor lying
within the gap. Indeed quite generically for an itinerant
system we may write the Hamiltonian as H = − ∇2

2m∗ + · · ·,
which means that the eigenvectors of H are similar to those
of an s-wave superconductor so the integrand in Eq. (C31)
above also has exponential decay for large momentum as the
solutions of H |�〉 = E|�〉 would behave almost like Bessel
functions. Because of the gap condition there will be no finite
momentum divergences either, leading to a finite integral. This
argument may be extended to models with band structure. By
“folding out” appropriate bands from the first Brillouin we
may convert the sum

∑
δ

∫ ∫
BZ

(�kδ

εkδ
)2 (where the integral is

over the first Brillouin zone) into an integral over all of k space
→ ∫ ∫

d2k(�kδ

εkδ
)2. As any possible divergence would come

from high-energy bands where the dispersion is essentially
quadratic and the wave function is essentially of the continuum
model, we may reduce the problem to a previously solved case.
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