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Kinks in the electronic dispersion of the Hubbard model away from half filling
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We study kinks in the electronic dispersion of a generic strongly correlated system by dynamic mean-field
theory (DMFT). The focus is on doped systems away from particle-hole symmetry where valence fluctuations
matter potentially. Three different algorithms are compared to asses their strengths and weaknesses, as well as to
clearly distinguish physical features from algorithmic artifacts. Our findings extend a view previously established
for half-filled systems where kinks reflect the coupling of the fermionic quasiparticles to emergent collective
modes, which are identified here as spin fluctuations. Kinks are observed when strong spin fluctuations are
present and, additionally, a separation of energy scales for spin and charge excitations exists. Both criteria are
met by strongly correlated systems close to a Mott-insulator transition. The energies of the kinks and their doping
dependence fit well to the kinks in the cuprates, which is surprising in view of the spatial correlations neglected
by DMFT.
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I. INTRODUCTION

Collective bosonic modes can modify the low-energy
electronic properties on the characteristic energy scale of these
bosonic excitations. Well understood are the significant mass
enhancement1 and the kinks in the electronic dispersion2 in
materials with strong electron-phonon coupling. These kinks
are abrupt changes of the slope of the electronic dispersion
which occur at energies of the order of the Debye energy,
which is much smaller than the Fermi energy in such systems.

In this paper we study kinks in the electronic dispersion
which are related to emergent collective bosonic modes of the
purely electronic system rather than by a coupling to external
bosons such as phonons. It was shown by Byczuk et al. in the
framework of dynamic mean-field theory3,4 (DMFT) that such
kinks are a generic feature of strongly interacting systems and
require no externally coupled bosons.5 Their argument relies
on the structure of the DMFT equations and the spectral density
of the local propagator.

Our work supplements the mathematical argument in Ref. 5
with the physical picture that the internally generated emergent
collective modes provide the bosons which generate the kinks
in the dispersion. This point of view has been already put
forward for the half-filled case where the physical situation is
particularly clear.6 We show that in the model studied below
these collective modes are spin fluctuations of local moments
formed due to the strong local Coulomb interaction. In the
Mott insulating phase, stable local moments are generated
which tend to form magnetically ordered phases due to residual
spin-spin interactions. In the metallic phase, however, these
local moments are completely screened at zero energy and
the spin fluctuations at intermediate energies live only for a
finite time because they decay into particle-hole pairs (Landau
damping). We call the spin fluctuations appearing as reso-
nances emergent modes because they become long-lived for
even larger interaction in the insulating phase. Photoemission
experiments support our view in antiferromagnetic7–9 and in
ferromagnetic systems.10

As we show, there exist two conditions for the kinks to
appear in the dispersion relation. For one, strong emergent
collective modes (spin fluctuations) must be present in the
system. This is signaled by a pronounced maximum in the

imaginary part of the spin susceptibility at a finite energy ωmax.
For another, the energy scale for charge excitations ωcharge

must be much larger than the characteristic spin-excitation
energy, that is, |ωcharge| � |ωmax|. Here the energy scale for
charge excitations is set either by a single-particle energy
or the characteristic scale for collective charge excitations,
depending on which is smaller. Both criteria are met in strongly
correlated metallic systems close to a Mott-insulator transition.

The term “collective bosonic modes” in solid-state systems
usually refers to dispersive, that is, wave-vector dependent,
excitations such as (para-)magnons or charge-density waves.
Such modes are characterized by the momentum-dependent
spin and charge susceptibilities χmag(�q,ω) and χcharge(�q,ω),
respectively. It may be put forward that in DMFT no true
collective modes exist because they do not propagate properly.
Indeed, in the strict limit of infinite dimensions collective
two-particle properties are local because they are momentum-
independent except for some momenta of measure zero.11–14

Yet we do not adopt this puristic view and stick to the wording
of collective bosonic modes for three reasons. First, spin
fluctuations and charge fluctuations are two-particle properties
and, as such, comprise at least two elementary fermionic
excitations so that they are collective and bosonic in this sense.
Second, even in the strict DMFT, the spin susceptibilities and
charge susceptibilities are true lattice quantities involving all
lattice sites. Otherwise, their imaginary parts would show only
one or two δ peaks instead of broad continua (see, for instance,
Ref. 15). Third, generically the DMFT is taken as an approxi-
mation to finite dimensional systems. Then, the susceptibilities
acquire a nontrivial �q dependence through the inner momen-
tum and frequency sums in the Bethe-Salpeter equations, even
though the irreducible two-particle vertex is assumed to be
local.16,17 In the present work, we extract the characteristic
energy scales relevant for the dispersive collective modes from
the local susceptibilities χ (ω) = 1

N

∑
�q χ (�q,ω) because they

readily reflect these energy scales and can be obtained in
DMFT from the effective impurity model.

We investigate the low-temperature phase of the Hubbard
model away from half filling using the DMFT with three
different impurity solvers in order to be able to clearly
separate physical features from possible algorithmic artifacts.
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We employ two numerical schemes, namely, the density-
matrix renormalization group18 (DMRG) and the numerical
renormalization group19 (NRG), as well as a diagrammatic
approach, the so-called enhanced noncrossing approximation
(ENCA).20,21 The results of all three algorithms agree very
well. The remaining differences can be understood on the basis
of the known strengths and weaknesses of the approaches.

The prevailing effect of the interaction is a significant
renormalization of the bare electron mass due to correlations.
The Fermi liquid theory22 connects this mass renormalization
to a fundamental energy scale T ∗ below which the Fermi
liquid picture of renormalized weakly interacting, long-lived
quasiparticles applies. In strongly correlated electron systems
the properties of these renormalized quasiparticles may differ
dramatically from those of noninteracting electrons as exem-
plified in heavy fermion systems.23,24

The article is laid out as follows. The model and the
relevant theoretical background are described in Sec. II. In
particular, the basic ideas of all three impurity solvers are
discussed. In order to gauge their differences a comparison of
the single-particle dynamics is shown in Sec. III. We begin
with the results for the self-energies. Then we turn to the
extraction of the Fermi liquid low energy scale T ∗ and relate
it to the maxima in the local charge and spin susceptibilities.
In Sec. III B, we explicitly show that T ∗ also occurs as an
energy scale in the dynamic spin susceptibility but not in the
local charge susceptibility. Therefore, the connection made
between emergent spin fluctuations and the the kinks in the
electronic dispersion6 extends to the metallic regime away
from half filling. This main results of our work is contained in
Sec. IV, where also the doping dependence of the kink energies
is compared to experimental results. Finally, our findings are
summarized in Sec. V.

II. MODEL AND METHODS

A. Hubbard model and dynamic mean-field theory

We consider the single-band Hubbard model which is the
simplest model for correlated electrons on a lattice,

H = −t
∑

〈i,j〉,σ
(c†iσ cjσ + c

†
jσ ciσ )

+U
∑

i

ni↑ni↓ −
(

U

2
+ μ

) ∑
iσ

niσ . (1)

The operators c
†
iσ (ciσ ) create (annihilate) electrons with

spin σ = {↑ , ↓} at lattice sites i and niσ = c
†
iσ ciσ is the

occupation number operator. The first term in the Hamiltonian
(1) describes electronic hopping with amplitude t , where 〈i,j 〉
indicates nearest-neighbor sites. The local Coulomb repulsion
is incorporated in the second term with matrix element U .
The last term sets the local single-particle levels and includes
the chemical potential in a way that μ = 0 corresponds to an
electron-hole symmetric situation, that is, half filling.

Despite its simplicity, the exact solution of the Hub-
bard Hamiltonian (1) has only been possible in one spatial
dimension;25,26 for a recent book on this topic, see Ref. 27. In
order to obtain an approximate solution for higher dimensional

systems we employ the dynamic mean-field theory (DMFT);3,4

for recent reviews, see Refs. 28 and 29.
A nontrivial, but considerable, simplification is obtained

in the limit of infinite coordination number (infinite spatial
dimension) if the hopping matrix elements are rescaled
appropriately.11,30,31 In this limit DMFT represents the exact
solution.3,4 When applied in finite dimensions, the major
approximation of DMFT consists of treating all nonlocal
correlations in a mean-field manner while the correlated local
dynamics is faithfully retained. This translates to the self-

energy being momentum independent,11 �(�k,z)
DMFT→ �(z),

where we use z as a general complex energy argument with
finite imaginary part.

Then the local Green’s function of the lattice problem reads

G(z) = 1

N

∑
�k

1

z + μ + U
2 − ε�k − �(z)

, (2)

where N is the number of lattice sites and ε�k the bare
dispersion. This local lattice propagator equals the local
Green’s function of an effective single-impurity Anderson
model (SIAM),

G(z) = 1

z + μ + U
2 − �(z) − �(z)

, (3)

embedded in a medium characterized by the hybridization
function �(z). Thus, the embedding medium is a dynamic
medium and it is not independent from the solution of the
SIAM, but it has to be determined self-consistently as in any
generic mean-field approach.

For a given guess for the hybridization function the
local Green’s function is determined by a suitable numerical
algorithm which is commonly referred to as the employed
“impurity solver.” This yields the self-energy

�(z) = z + μ + U

2
− �(z) − G(z)−1, (4)

which, in turn, is used to obtain the local lattice propagator
G(z) via Eq. (2). It is in this step that the lattice structure
enters. The self-consistency cycle is closed by reorganizing
Eq. (4) and to extract a new guess for �(z). This cycle is
iterated until convergence is reached in the pragmatic sense
of a tolerable deviation of two successive results for the local
Green’s function, the self-energy, or the hybridization function.

The nontrivial step in this cycle is the solution of
the effective SIAM. Due to the long history of DMFT,
a multitude of different impurity solvers for treating this
model exists, such as iterative perturbation theory,31–33 exact
diagonalization,34,35 and several variations of quantum Monte
Carlo schemes.16,36–39 In this work, we employ the ENCA,
the NRG, and the dynamic DMRG as impurity solvers and
compare their results.

B. Enhanced noncrossing approximation

The ENCA,20,21,40,41 sometimes also called one-crossing
approximation,42 is a thermodynamically conserving43,44 ap-
proximation for the SIAM which utilizes the expansion with
respect to the hybridization between the impurity electrons
and the conduction band.45–48 It extends the usual noncrossing
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approximation (NCA)49,50 to finite values of the Coulomb
repulsion U via the incorporation of the lowest order vertex
corrections, which are necessary to produce the correct
Schrieffer-Wolff exchange coupling and the order of mag-
nitude of the low-energy Kondo scale TK in the problem. The
impurity spectral function20 and dynamic susceptibilities51 are
extracted directly for real frequencies without any adjustable
parameters.

The NCA is known to violate Fermi liquid properties
at very low temperatures and some pathological structure
appears at the Fermi level below a pathology scale.52,53 The
ENCA removes the cusps associated with this pathology20

and significantly improves the Fermi liquid properties of the
spectral functions and dynamic susceptibilities.17,51 However,
the skeleton diagrams selected within the ENCA still suffer
from an imbalance between charge and spin excitations.
While magnetic properties, that is, the magnetic susceptibility,
are described excellently, charge fluctuations are not as
well accounted for.51 In the spectral functions, where spin
and charge fluctuations contribute equally, this leads to an
overestimation of the height of the many-body resonance at
the Fermi level at too-low temperatures. The dynamic charge
susceptibility is overestimated for very low frequencies. These
shortcomings are related to the threshold exponents of the
auxiliary ionic propagators and tend to be worse in parameter
regimes with substantial valence fluctuations, that is, in the
mixed valence regime or at small Coulomb repulsions U .

Within the DMFT the overestimation of the many-body
resonance of the impurity solution might lead to a violation
of causality in the self-energy due to the subtraction occurring
in Eq. (4). In parameter regimes with considerable valence
fluctuations, that is, at small U or at large doping, this
fact limits DMFT calculations to temperatures above the
characteristic low temperature scale T ∗ of the lattice. Because
T ∗ → 0 on approaching the Mott-Hubbard metal-to-insulator
transition (MIT) the ENCA can be used as impurity solver
down to very low temperatures in the vicinity of the MIT.

Detailed comparisons of various approximations based on
the hybridization expansion can be found in the literature, for
example, in Refs. 3, 40, 54, and 55.

C. Numerical renormalization group

The NRG is a very powerful tool for accurately calculat-
ing equilibrium properties of complex quantum impurities.
Originally developed for treating the single-channel Kondo
Hamiltonian,56 this nonperturbative approach was successfully
extended to the Anderson impurity model57,58 and other more
complex quantum impurities.19 At the heart of this approach
is a logarithmic discretization of the continuous conduction
band, controlled by the discretization parameter56 	 > 1.
Using an appropriate unitary transformation, the discretized
Hamiltonian is mapped onto a semi-infinite chain, with the
impurity coupled to the open end. The N th link along the
chain represents an exponentially decreasing energy scale,
ωN ∝ 	−N/2. Using this hierarchy of scales, the sequence of
finite-size Hamiltonians HN for the N -site chain is solved
iteratively, discarding the high-energy states at the end of
each step to maintain a manageable number of states. The
reduced basis set of HN thus obtained is expected to faithfully

describe the spectrum of the full Hamiltonian on a scale of
ωN , corresponding to the temperature TN ∼ ωN .56 Because
the thermal Boltzmann factors suppress the contributions of
higher-lying energy states exponentially, the reduced NRG
basis set of HN is sufficient for an accurate calculation of
thermodynamic quantities at temperature TN .

Dynamical quantities, however, such as impurity Green’s
functions and susceptibilities, require the information on all
energy scales. In a recent extension of the NRG to real-time
dynamics out of equilibrium59,60 a complete basis set for a
Wilson chain of length N has been identified which is also
used for the accurate calculation of spectral functions.61,62 Ad-
ditionally, the discretization error is reduced by averaging over
several different discretizations of the conduction band.63 In
order to reduce the arbitrariness in the spectral broadening64–66

the single-particle self-energy entering the DMFT equations is
obtained from an exact expression of a ratio of two correlations
functions.64 Since the local dynamic bosonic spin and charge
susceptibilities are calculated directly from the NRG raw
data61 more pronounced broadening artifacts occur.

In this work we use a discretization parameter 	 = 2 and
keep approximately 1700 states in each NRG iteration step.
Eight different band discretizations63 are averaged and the
artificial logarithmic broadening64 varies between b = 0.08
and b = 0.2.

D. Dynamic density matrix renormalization

The DMRG introduced by White67,68 in 1992 is an excellent
numerical method for one-dimensional quantum systems with
open boundary conditions18,69 such as the SIAM in linear
chain representation. The dimension of the Hamilton matrix
grows exponentially with system size. The DMRG provides a
well-controlled procedure to cut off this growth by selecting
an optimum basis set for the desired states, for example, the
ground state or another target state. The optimum basis states
are selected from the eigenvectors of a reduced density matrix
from which only the largest eigenvalues are retained.

We calculate dynamic quantities at zero temperature such as
the advanced Green’s functions G(ω − iη) = G>(ω − iη) +
G<(ω − iη) and G(ω) = limη→0+ G(ω − iη) using

G≷(ω − iη) := 〈0|A 1

ω − iη ∓ �HA†|0〉, (5)

where �H := H − E0. The imaginary part of G≷(ω − iη)
provides the spectral densities which we are aiming at. Several
variants of numerical methods were introduced to obtain
dynamic quantities, for instance, the Lanczos method70 and
the correction vector method.71–73 Since the Lanczos method
has a limited numerical resolution70,74–76 (for details, see the
analysis in Ref. 77), we use the correction vector method which
targets the ground state |0〉, the excited state |A〉 := A†|0〉,
and the resolvent applied to the excited state. This additional
targeted state |ξ±〉 is called the correction vector,

|ξ±〉 := 1

ω − iη ± �H |A〉 . (6)
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Technically, one targets both the real and the imaginary part of
|ξ±〉. The Green’s function G<(ω − iη) is obtained from the
scalar product

G<(ω − iη) = 〈A|ξ±〉 (7)

for discrete complex frequencies ωj − iηj , ηj > 0. In order to
obtain G(ω) at the real axis with continuous spectral density
ρ(ω) := ImG(ω)/π , we use the least-bias deconvolution
algorithm.78

The key advantage of the correction vector DMRG is a
good energy resolution for low- and high-frequency ω. With
correction vector DMRG combined with least-bias deconvo-
lution, local Green’s functions79,80 and local susceptibilities15

have been computed successfully.
In this work, we use a fixed distance �ω = 0.1D between

two successive frequencies ωj and ωj+1; the artificial broad-
ening is ηj = 0.1D. The energy scale D is half the bandwidth.
We keep 256 states in the reduced density matrix.

III. COMPARISON OF METHODS

In this section, we present results for the Hubbard
model within DMFT using the three impurity solvers in-
troduced in the previous section. The noninteracting den-
sity of states (DOS) is given by the semiellipse ρ0(ω) =
[2/(Dπ )]

√
1 − (ω/D)2.

The NRG and DMRG calculations were done at zero
temperature while the ENCA requires a small finite T as
discussed in Sec. II B; the used values are given for each result
below. The spectral density ρ(ω) of the Green’s function is
given by ρ(ω) = ImG(ω)/π and we similarly define �(ω) :=
limη→0+ �(ω − iη).

A. Single-particle dynamics

Figure 1 displays a comparison of the local spectral
densities for a moderate interaction U = D and for two
different values of the chemical potential. All three methods
qualitatively yield the same result with a broad central peak and
only very small shoulders at energies |ω| ≈ D. The latter are
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FIG. 1. (Color online) Spectral function for U = D and μ = 0
(left panel) and μ = 0.25D (right panel). While the NRG and DMRG
results are for T = 0, the ENCA curves are computed for T = 0.17D

(left panel) and for T = 0.22D (right panel). The case μ = 0 implies
half-filling, n = 0.5, while for μ = 0.25D the fillings are nNRG ≈
0.583, nDMRG ≈ 0.577, and nENCA = 0.573.
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FIG. 2. (Color online) Imaginary (top row) and real (bottom row)
parts of the self-energy for μ = 0 (left column) and μ = 0.25D (right
column) and U = D. Other parameters are as in Fig. 1.

precursors of the Hubbard bands centered at the energies ω ≈
±U/2 − μ. The NRG and DMRG results agree quantitatively
and only the shoulders are slightly more pronounced in the
DMRG curve, which is probably due to the lower resolution
of the NRG at high energies. The central resonance of the
ENCA curve is narrower and the shoulders of the Hubbard
bands are more washed out. The latter feature can be attributed
to the rather high temperature, T ≈ 0.17D for μ = 0 and
T ≈ 0.23D for μ = 0.25D, required to avoid the ENCA
problems at too low temperatures (see Sec. II B). At large
energies, that is, for |ω + μ| � 1.5D, the spectra of all three
methods agree almost perfectly.

The corresponding self-energies are shown in Fig. 2. For
all methods the imaginary part Im�(ω) displays a quadratic
minimum at the Fermi level signaling the validity of a low-
energy effective Fermi liquid description. This implies that the
central peak in the spectral function of Fig. 1 is essentially
due to Fermi liquid quasiparticle excitations. In accord with
the Kramers-Kronig (KK) relation, Re�(ω) behaves linearly at
the Fermi level. The self-energies of the renormalization-group
(RG) approaches NRG and DMRG agree quantitatively and
the visible deviations are only due to the different broadening
procedures used to obtain continuous functions in ω. The
ENCA approach yields a too-steep quadratic and linear
dependence around the Fermi level in the imaginary and real
part, respectively.

B. Collective modes and low energy scale

The imaginary part of the local dynamic magnetic and
charge susceptibilities shown in Fig. 3 shed light on the
characteristic energies for both types of collective excitations.
The characteristic energy for local charge excitations is given
by the position of the Hubbard bands, as can be observed in
Fig. 1. Consequently, Imχcharge(ω) has a broad peak at roughly
ω ≈ 1.1D. Away from half-filling, the asymmetric position
of the lower and the upper Hubbard band is reflected by a
slightly broadened peak. Compared to the charge excitations,
the characteristic energy for local spin excitations is shifted
toward lower values and the absolute height of Imχmag(ω) is
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FIG. 3. (Color online) Imaginary part of the magnetic (top row)
and charge (bottom row) susceptibility for μ = 0 (left column) and
μ = 0.25D (right column) and U = D. Other parameters are as in
Fig. 1.

roughly twice as large as Imχcharge(ω). Both these features
are signs of the enhanced magnetic Kondo-like correlations in
the system already present for this moderate value of U = D.
The overall height of the ENCA susceptibilities is lower than
those of the RG approaches due to the nonzero temperature.
Additionally, the maxima in the ENCA results are shifted to
slightly lower energies.

Increasing the Coulomb repulsion to U = 2D strongly
enhances the correlations in the system. At half-filling, this
increase drives the system toward the MIT. In the spectral
densities depicted in Fig. 4 for half filling (μ = 0) and for
finite chemical potential (μ = 0.5D), the Hubbard bands are
now well separated from the many-body resonance at the
Fermi level. The inner edges of the Hubbard bands are rather
sharp with slight peaks associated presumably with bound
trions of a quasiparticle and a particle-hole pair.79,80 In the
ENCA spectra, such peaks have also been obtained,81 but they
are not observed here due to the relatively high temperature.
The spectra obtained by DMRG and by ENCA are almost
indistinguishable at high energies, that is, for |ω + μ| � 1.5D.
The NRG curve falls off slower for large energies due to the
limited resolution at large energies mentioned previously.

The deviation between the ENCA and the RG results are
partly due to the finite temperature to be used in the ENCA
evaluation. Another part is due to a too-low Fermi liquid scale
T ∗ procured by the ENCA. This will be shown in the following.

For further analysis, we extract a common energy scale T ∗
from the data of all three methods. In microscopic Fermi liquid
theory the low-energy scale is proportional to the inverse mass
enhancement82 determined from the quasiparticle weight Z.
The energy scale T ∗

Z defined in this way reads

T ∗
Z = Z D = 1

1 − ∂ωRe�(0)
D, (8)

and it is shown in Fig. 5 as a function of the Coulomb
repulsion U . For the two values of μ displayed in the
figure, T ∗

Z diminishes with increasing U and vanishes at the
MIT. For larger values of the chemical potential, that is, for
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FIG. 4. (Color online) Spectral densities at U = 2D and chemical
potentials μ = 0 [panel (a)] and μ = 0.5D [panel (b)]. For NRG and
DMRG T = 0 holds, while for the ENCA T = 0.027D ≈ 0.15T ∗

(μ = 0) and T = 0.1D ≈ 0.6T ∗ (μ = 0.5D). For μ = 0.5D, the
fillings are nNRG ≈ 0.580, nDMRG ≈ 0.592, and nENCA = 0.567.

|U
2 ± μ| � D

2 , the MIT will not occur anymore due to finite
doping and T ∗

Z will approach a constant value (not shown).
While the energy scale T ∗

Z extracted from the two RG
approaches agree quantitatively, the ENCA scale follows the
same trend, but is lower by about a factor of two. This in accord
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FIG. 5. (Color online) Fermi liquid scales T ∗
Z and T ∗

χ extracted
from the quasiparticle weight and from the maximum in the spin
susceptibility, respectively, as a function of U for two values of the
chemical potential. The magnetic scale T ∗

χ is rescaled by a single
factor T ∗

Z = aT ∗
χ = 3.125 · T ∗

χ to obtain coinciding energies.
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with results for the SIAM, that is, without self-consistency,
where the ENCA is known to produce the correct order of
magnitude for the Kondo scale.20,51 The ENCA provides the
exponential dependence of TK on U , but the absolute values are
slightly too low.40 Within the self-consistency of the DMFT
this tendency persists and it is slightly amplified.

Another estimate for the low energy scale can be de-
fined from the characteristic excitation energies for spin
fluctuations.83 We determine a magnetic scale T ∗

χ from the
position of the maximum in the local dynamic magnetic
susceptibility, T ∗

χ = ωmax. This estimate is equivalent to the
energy scale extracted from the linear slope in Imχmag(ω)
for small ω. As can be seen in Fig. 5, the two scales T ∗

Z

and T ∗
χ of each method lie on top of each other at large U

if T ∗
χ is rescaled by a single factor a of order unity. Thus,

the low-energy magnetic excitations and the single-particle
excitations originate from the same physical process which is
governed by a single energy scale. We call such a behavior
“universal” in the context of the present work. For the SIAM
such behavior is well known to occur in the Kondo regime. The
DMFT self-consistency alters only quantitative aspects, but
no qualitative ones. Hence, Fig. 5 indicates universality in the
metallic phase of the Hubbard model at large U where Kondo-
correlated quasiparticles dominate the low-energy physics.

We observe in Fig. 5 that the magnetic scale T ∗
χ and the

single-particle scale T ∗
Z differ for small values of U (and

at large doping, not shown), in analogy to what has been
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FIG. 6. (Color online) Rescaled self-energy T ∗�(ω) for U = 2D

and (a) μ = 0 (b) μ = 0.5D as a function of energy measured in
units of the low energy scale T ∗. Within the RG approaches we find
T ∗ ≈ 0.31D and T ∗ ≈ 0.33D for μ = 0 and μ = 0.5D, respectively.
In ENCA we find T ∗ ≈ 0.18D for and T ∗ ≈ 0.2D for μ = 0 and
μ = 0.5D, respectively. The temperatures are as in Fig. 4.

found in the SIAM.84 T ∗
Z and T ∗

χ differ so that no universality
can be established. A description of all excitations in terms
of a single energy scale cannot be maintained. The Fermi
liquid description is certainly still applicable, but all Landau
parameters have to be determined independently.

Henceforth, we write T ∗ = T ∗
Z to represent the low energy

scale and omit subscripts for simplicity.
The rescaled self-energy T ∗�(ω), which determines the

scattering rate of the Fermi liquid,82 is plotted in Fig. 6
as function of ω/T ∗ for the same parameters as in Fig. 4.
Generally, the agreement between the three methods is very
good and deviations only occur at large energies, establishing
the too-low energy scale to be the main source of discrepancy
between the ENCA and RG methods. The deviations for
ω/T ∗ � 1 observable in panel (b) are on the one hand due to
the improper description of correlated valence fluctuations17,51

and on the other hand due to the thermal broadening required
in ENCA.

The rescaled dynamic magnetic susceptibility is depicted in
Fig. 7 for two different chemical potentials. The peak positions
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FIG. 7. (Color online) (a) Rescaled imaginary part of the mag-
netic susceptibility T ∗Imχ (ω/T ∗) for μ = 0 (left panel) and μ =
0.5D (right panel) at U = 2D as a function of frequency. Parameters
are as in Figs. 4. (b) T ∗Imχ (ω/T ∗) vs ω/T ∗ calculated with
DMFT(NRG) for μ = 0 (left panel) and μ = 0.25D (right panel)
at various values of U .
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function of frequency in units of the half bandwidth D. Parameters
are as in Fig. 4.

from all three methods coincide but their heights differ. For
the ENCA this is due to the finite temperature T ∝ O(T ∗) and
the susceptibility is expected to increase if T → 0. The use
of raw NRG data without using the equation-of-motion trick64

might be responsible for the discrepancies between the NRG
and DMRG susceptibilities.

In the metallic regime, the universality conjectured before
is supported by the fact that T ∗Imχmag(ω/T ∗) approaches a
universal function for large values of U in the half-filled case.
This can be observed in Fig. 7(b), where the susceptibility
from NRG is depicted for various values of U . For finite μ,
however, T ∗Imχmag(ω/T ∗) continues to grow with decreasing
T ∗ indicating that valence fluctuations modify the low-energy
physics decisively, thus abolishing universality in the lattice
model away from half-filling. This is in contrast to what is
found in the impurity model.

The local charge susceptibility Imχcharge(ω) shown in Fig. 8
is strongly suppressed for small energies ω as consequence
of the large Coulomb repulsion. This is particularly striking
in comparison to the spin susceptibility. The characteristic
energy scale of the charge susceptibility remains set by the
interband excitation energy between the quasiparticle band
and the Hubbard bands which is of the order ∼ U

2 − |μ|.
In the curves obtained by the RG methods at half-filling,

peaks emerge at the onset of the interband excitations, as
can be seen in Fig. 8 (left panel). They originate from the
sharp features at the inner Hubbard band edges.15 As in
the single-particle spectrum, these are missing in the ENCA
curve due to thermal broadening. Away from half-filling, the
charge susceptibility increases due to the increased phase space
at low energies. There, the ENCA reveals its limitations in the
mixed-valence regime since at low temperature its threshold
exponents generate an additional low-frequency peak for
ω → 0, which is expected to disappear if higher-order vertex
corrections were included.

For increasing Coulomb repulsion U , the spectral weight of
Imχcharge is shifted toward larger energies ω, as illustrated in
Fig. 2 in Ref. 15. In contrast, the position of the maximum of
the spin susceptibility, which sets the scale T ∗

χ , is shifted toward
smaller energies with increasing U , as shown in Fig. 7(b).

FIG. 9. (Color online) Spectral density ρ(ω,εk) obtained within
DMFT (ENCA) as function of frequency ω and bare electronic energy
εk for U = 2D at (a) half filling (μ = 0) and (b) μ = 0.5D.

As a consequence, the energy scales of collective charge and
spin excitations are clearly separated. This will turn out to be
important for the observation of kinks.

Finally, we illustrate the full dependence of the spectral den-
sities on the momentum via the bare dispersion εk according
to

ρ(ω,εk) = 1

π
Im

1

ω − iδ − εk − �(ω)
(9)

in the false-color plots in Fig. 9. The separation of single-
particle energy scales and the influence of particle-hole
asymmetry can be seen clearly. The almost flat ridge around
ω = 0 represents the narrow band of heavy quasiparticles,
which is well-separated in energy from the lower and upper
Hubbard bands below and above ω = 0. The coherence of
the quasiparticle excitations is lost once εk reaches the scale
T ∗

χ where spin fluctuations become important. This causes a
kink in Re�, as is discussed in the following section. At large
electron doping shown Fig. 9(b), the upper Hubbard band
and the quasiparticle band merge, rendering charge and spin
excitations equally important for positive energies. However,
at negative energies, valence fluctuations are suppressed and
the separation of energy scales persists.

IV. KINKS AND COLLECTIVE MODES

It is well known that the coupling of fermions to energeti-
cally low-lying bosonic modes causes kinklike structures in the
fermionic dispersion. This picture is based on diagrammatic
weak fermion-phonon coupling theory; see, for instance,
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many-body resonance and the Hubbard bands calculated by NRG
as function of the quasiparticle weight Z. The inset shows the same
data in a double-logarithmic plot. The dashed line depicts a power
law Z0.25 for comparison.

Refs. 85 and 86 and references therein. The kink in the
fermionic dispersion occurs roughly at the bare phonon energy.
For stronger coupling, the diagrammatic approach breaks
down87,88 and the kink feature persists but it does no longer
occur at the bare phonon energy.89 Roughly, the strength of the
kink increases with the coupling between the fermionic and
the bosonic modes.

Recently, it was demonstrated that kinks in the electronic
dispersion are a generic feature of strongly correlated electron
systems without any coupling to external bosons.5 Subse-
quently, it was shown that the kinks occurring in strongly
interacting electron systems can be seen as result of the
coupling of the fermions to the emergent collective excitations
of magnetic character. Thus, the system creates its own bosonic
modes which, in return, generate the kinks.6

The original argument by Byczuk et al. for the kinks was
based on the three-peak structure in the spectral density ρ(ω),
as shown in Fig. 4. Its essence is as follows: The many-body
resonance extends around the Fermi level ω = 0 from �− < 0
to �+ > 0, where �± are the positions of the minima between
the many-body resonance and the Hubbard bands.

Numerical results for the positions |�±| of these minima
calculated by NRG are shown in Fig. 10 as function of the
quasiparticle weight Z. The lifting of the degeneracy of |�±|
upon doping is clearly visible. The NRG analysis suggests that
the power law scaling � ∝ Z1/4 holds for Z → 0 (dashed line
in Fig. 10 and in its inset).

Furthermore, the KK relation implies that the real part of
G(ω) is linear around ω = 0 and that it has sharp maxima
at positions r± which are of the order of the half-width of
the many-body resonance. In particular, |r±| < |�±| holds.
For the semielliptic DOS the self-consistency condition for
the effective medium can be solved analytically by �(z) =
(D/2)2G(z). For general lattices, using this relation amounts
up to approximating �[G(z)] by the linear term of its moment
expansion. Then Eq. (4) implies kinks in Re�(ω) at ω±

� with
|ω±

� | < |�±|.
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FIG. 11. (Color online) Comparison of the kink position from a
numerical analyis of Re� and from Eq. (11) for μ = 0.25D for the
two RG impurity solvers as a function of U .

An explicit expression for the position of the kinks can be
obtained by describing the local Green’s function around the
Fermi level by

G(ω) ≈ Zloc

ω − ω0 − i(γ + γ ′ω)
. (10)

The parameters ω0, γ , γ ′, and Zloc are determined from the
physical quasiparticle weight Z and the noninteracting DOS
alone. The kink positions ω±

� are calculated as the maxima of
the second derivative of the dressed dispersion

ω±
� = ω0 ∓ γ + γ ′ω0√

1 + γ ′2

(
1 −

√
2

√
1 ∓ γ ′√

1 + γ ′2

)
; (11)

for details, see the supplement of Ref. 5, but note the
differing sign of the inner square root. For the particle-hole
symmetric case one has γ ′ = ω0 = 0 so that (11) reduces to
ω±

� = ±(
√

2 − 1)γ . For the semielliptic DOS γ = ZD and
the kinks are thus located at ω±

� = ±(
√

2 − 1)ZD.
Indeed, the kink positions in the numerical data for Re�

agree nicely with results obtained via Eq. (11). This is
demonstrated for μ = 0.25D in Fig. 11, where the kink
positions extracted for the DMRG and the NRG impurity
solver are plotted as a function of U/D. Only data for small
doping and large repulsion are shown because for large doping
and/or small repulsion the three-peak structure of ρ(ω) is not
found so that the above analytical argument does not hold
and the kinks cannot be resolved. For large doping and strong
repulsion there still exists one kink in Re� for which Eq. (11)
still predicts the correct position (not shown).

The above analysis due to Byczuk et al. focuses on
the mathematical structure of the equations defining the
propagator and the self-energy. In Ref. 6 some of us showed
for the half-filled case that the characteristic excitation energy
of spin fluctuations agrees with the kink energy. Kinks in
Re�(ω) lead via the KK relation to inflexion points in Im�(ω)
at the same energies. This corresponds to a change in the
quasiparticle lifetime τ ∼ 1/Im�. Inversely, this implies that
humps in Im� imply kinks in Re�(ω) via the KK transform.
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FIG. 12. (Color online) Illustration of the KK transforms of two
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average slope for small frequencies. The KK transforms are shifted
by ai,bi such that KK[fi](−ai) + bi = 0.

Hence, even though no explicit bosonic modes are included in
the Hubbard model, the emergent collective spin excitations
are responsible for the structures in Im�(ω) and thus for the
kinks in Re�.

This argument is also applicable without particle-hole
symmetry, that is, for the doped model. The kinks in Re�(ω)
are still associated with additional inflexion points in Im�(ω)
which are related to changes in the relaxation mechanism.
To illustrate this view qualitatively, we mimic a kink in
Re�(ω) by the function f1 depicted in Fig. 12 and include for
comparison f2 without a kink. Then we study the differences
in the KK transforms which correspond to the imaginary part.
While KK[f2] is governed by a wide parabola in the range
ω ∈ (−4,4), KK[f1] displays a noticeable hump starting below
the frequency of the kink. A parabolic fit would hold only in
the interval ω ∈ (−1,1).

DMFT self-energies computed with the NRG are shown
in Fig. 13(a). The dashed lines in the top panel indicate the
linear fits to Re�(ω) used to determine the kink positions.
Figure 13(a) displays the same qualitative features as Fig. 12,
though they are less pronounced. The physical model does
not display mathematically sharp kinks as the test function
f1 does. The real part Re�(ω) in Fig. 13(a) displays two
kinks. The one at negative frequencies is fairly clear; the one
at positive frequencies is fairly weak. Correspondingly, the
humps in Im�(ω) are clearly visible at negative frequencies,
but only weakly discernible at positive frequencies. The kinks,
which mark the beginning of the humps, indeed occur at about
T ∗

χ ≈ 1
3T ∗(≡ 1

3T ∗
Z ) (cf. Fig. 5), in agreement with the previous

finding at half-filling.6

A parabolic description in terms of the Fermi liquid scale
(ω/T ∗)2 is possible, but only up to about |ω/T ∗| ≈ 0.3, again
in accord with the finding at half filling.6 The scattering rate
as given by Im�(ω) decreases compared to a pure (ω/T ∗)2

behavior with increasing |ω|.
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FIG. 13. (Color online) (a) Re�(ω) (top panel) and Im�(ω)
(bottom panel) at finite doping as function of ω/T ∗ obtained from
DMFT (NRG). The dashed lines in the top panel indicate linear
fits used to determine kink positions. In the bottom panel the
parabola (ω/T ∗)2 expected from Fermi liquid theory is included for
comparison. The coherence scale T ∗ ≈ 0.16D is the low energy scale
for U = 2.6D (cf. Fig. 5). (b) Same as in panel (b), but for μ = 0.5D

at U = 2D. Note that the kink at positive of frequencies is very weak
and concomitantly Im�(ω) displays parabolic behavior up to ω ≈ T ∗

except for a very shallow hump.

This picture is consistent with the RG flow and the RG fixed
points of the effective site for a converged metallic DMFT
solution. For T ∗ � |ω| → 0, the physics is determined by
a line of strong coupling (SC) fixed points which describes
a Fermi-liquid with broken particle-hole symmetry.19,58 Its
characteristic energy scale is given by T ∗ and Im�(ω) ∝
(ω/T ∗)2. With increasing frequency, however, the system is
described by the unstable local-moment (LM) fixed point.
The dynamic Kondo singlet is broken on a scale TK ∝ T ∗

χ by
singlet-triplet excitations and the quasiparticles disintegrate at
higher excitation energies, leaving a free local spin coupled
to the conduction band. As a consequence, the scattering is
reduced and the self-energy is increasing much slower than
close to the SC fixed point. Spin-flip scattering dominates the
self-energy in the vicinity of the LM fixed point.

Therefore, the single-particle self-energy retraces the
crossover from the LM to the SC fixed point. At very high
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frequencies the magnetic scattering is weak, and the physics
of the Hubbard model is determined by the local charging
energies derived from the atomic picture. Hence, the self-
energies depicted in Fig. 6 are low and featureless at very
high frequencies. At intermediate frequencies, the spin-flip
scattering provides an additional decay channel on top of a
weakly correlated, particle-hole asymmetric conduction band.
This additional decay channel reveals itself in Im�(ω) as the
humps at intermediate energies (cf. Figs. 12 and 13). At low
energy scales, the spin-flip scattering is replaced in Im�(ω)
by the Fermi-liquid parabola determined by T ∗ for |ω| → 0.

At larger electron doping, only the lower Hubbard band is
well separated from the quasiparticle band (see Fig. 4). The
particle-hole asymmetry and the correlated valence fluctua-
tions matter for positive excitation energies. The scales for
spin and charge excitations are not well separated so that both
channels contribute to the self-energy. The Im�(ω) remains
almost quadratic in ω for ω > 0 even on the scale of ω ≈ T ∗,
as can be seen in Fig. 13(b) for μ = 0.5D at U = 2D. Only a
minute hump occurs in the quasiparticle decay rate at the spin
excitation energy and, consequently, only a very weak kink
occurs at positive energies. Even though the spin-susceptibility
shows a pronounced maximum, the accessibility of low-energy
charge fluctuations for positive energies suppresses the kink,
in accord with the two conditions stated in the Introduction.

At negative excitation energies, correlated low-energy
valence fluctuations cannot be excited so that the charge energy
scale is well separated from the coherence scale T ∗. Thus,
the kink and the corresponding hump are distinct at negative
frequencies.

The above discussion shows that kinks can be directly
linked to physical processes in the system. As in the symmetric
case, the kink positions in the self-energy correlate with the
positions of the maxima of the spin susceptibility, that is, T ∗

χ ,
which is shown in Fig. 14 for two values of μ. The values
for both quantities from all three methods coincide and the
small deviations can be understood from the strengths and the
weaknesses of the methods as discussed in Sec. III A. The kink
positions ω� equal T ∗

χ for T ∗
χ → 0. This clearly supports the

view that the spin fluctuations are responsible for the kinks.
Deviations occur for larger energies corresponding to smaller
values of U . There, the Fermi liquid description in terms of
a single energy scale does not apply anymore since T ∗

χ and
T ∗

Z stem from combinations of different types of excitations,
and nonuniversal valence fluctuations play a role. Additionally,
kinks are less pronounced for small U and hence their positions
are harder to determine unambiguously. For smaller U the
spin fluctuations do not yet behave like emergent collective
bosonic modes, and the charge and spin excitations are not
well separated in energy.

Finally, we study the doping dependence of the kinks at
fixed interaction. Generic results are depicted in Fig. 15 for
hole doping. As observed in Fig. 14 the kink positions and
energy scale of the spin fluctuations coincide ω+

� ≈ |ω−
� | ≈ T ∗

χ

for small doping δ � 0.07. For larger doping the particle-hole
asymmetry implies that ω+

� and |ω−
� | differ from each other and

hence from T ∗
χ . For hole doping, we find ω+

� > T ∗
χ > |ω−

� | but
the deviations are rather small. Up to an offset, all three energy
scales depend essentially linearly on doping. The energy scales
rise upon increasing doping. The two panels of Fig. 15 compare

0

0.1

0.2

0.3

0 0.05 0.1 0.15 0.2 0.25 0.3

ω
�
/D

T ∗
χ/D

μ = 0

(a)
NRG

DMRG

ENCA

ω� = T ∗
χ

0

0.1

0.2

0.3

0 0.05 0.1 0.15 0.2 0.25 0.3

|ω
�
|/

D

T ∗
χ/D

μ = 0.25D
(b)

NRG |ω−
� |

NRG ω+
�

DMRG

ENCA

ω� = T ∗
χ

FIG. 14. (Color online) Kink energies ω±
� as function of the

frequency of the maximum T ∗
χ /D in the imaginary part of the spin

susceptibility for (a) μ = 0 and (b) μ = 0.25D.

the doping dependence of the kinks for two different values of
U . Clearly, a larger value of U decreases the energy scale
of the kinks, as one would expect for a magnetic energy
scale.

At this point, a comparison to experiment is in order.
The experimentally best studied strongly correlated systems
displaying kinks are the superconducting cuprates. It is
presently still debated whether these kinks are of phononic90,91

or of magnetic origin.9,92 Our calculation based on DMFT and
a semielliptic DOS is too far away from the experimental
situation to make a quantitative comparison. However, it is
interesting to note that the kink positions observed at low
temperatures in underdoped high-Tc materials indeed display
a linear behavior with offset very similar to the one in Fig. 15.
Even the numbers are in the experimental range7,8 of about
30 meV at zero doping to 120 meV at δ = 0.15 if we assume
D = 1.4 eV and U = 4 eV ≈ 2.8D. The latter number is too
high by a factor 2 compared to the cuprates,8 but this is not
astounding in view of the approximation made in the present
study.

We emphasize that we consider only the low-energy kinks.
These can be expected to be described with an effective low-
energy single-band Hubbard model, which is based on the
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FIG. 15. (Color online) Dependence of the kink positions ω±
� and

of the scale of the magnetic modes on hole doping for U = 2D (top
panel) and U = 2.8D (bottom panel) obtained from DMFT (NRG).

existence of the Zhang-Rice singlets.93 Any statements on the
formation of Zhang-Rice singlets and on dispersion features at
higher energies such as “waterfalls” which require a multiband
description (see, for instance, Ref. 94) are beyond the scope of
the present work. Still, the doping dependence observed here
is in accord with a magnetic explanation of the kinks in the
cuprates.

V. SUMMARY

In this paper, we have focused on the physical origin
of kinks in the electronic dispersion of strongly correlated
electronic systems without coupling to external bosons. Exem-
plarily, we have studied the doped Hubbard model in DMFT
at zero temperature.

Three different numerical algorithms have been employed
for solving the self-consistent impurity problem for the DMFT
and their results have been compared. We have found a very
good agreement between all three impurity solvers. This is
quite remarkable considering their very different nature and
corroborates the validity of our evaluations. We distinguish
the two renormalization group approaches (NRG and DMRG),
which can be applied directly at zero temperature, and the

analytical ENCA, which is based on the summation of a large
subset of diagrams of an expansion in the hybridization.

The NRG is an efficient numerical approach for arbitrary
temperatures and very precise at small frequencies, but
washes out spectral details at higher frequencies due to the
logarithmic discretization and the concomitant broadening.
The DMRG is the most resource-consuming approach because
it requires a separate run for each spectral frequency. It is
used here as a zero-temperature method, though extensions
to finite temperatures are, in principle, possible. To access
exponentially small frequencies a logarithmic discretization
would be necessary.95 For equidistant discretization, however,
the DMRG exhibits a very good resolution at all frequencies.
The ENCA is fastest in the computation and provides data with
arbitrary resolution at all frequencies. However, it suffers from
Fermi liquid pathologies far below the coherence temperature
T ∗ which prevent its reliable application at very small
temperatures.

With all these three different methods, we have studied
the kinks in the dispersion of the interacting electron system
away from half-filling. We have established that the appearance
of the kink is linked to dominant spin fluctuations at low
energies. In particular, the position of the kinks in energy is
intimately linked to the spin-fluctuation scale T ∗

χ , where the
magnetic susceptibility exhibits its maximum. Additionally,
the occurrence of kinks requires a substantial energy separation
between the charge fluctuation scale U/2 − |μ| and T ∗

χ , that
is, U/2 − |μ| � T ∗

χ . This is clearly the case in the strongly
correlated regime at large values of U � 2D = W , where W

is the bandwidth. Therefore, the low-lying bosonic modes of
the electronic system modify the electronic dispersion on the
scale T ∗

χ at sufficiently strong electron-electron interaction U .
Universality, that is, the possibility to describe the low-

energy dynamics in units of a single energy scale, is only
observed close to half-filling where the scale is set by the
spin-fluctuation scale T ∗

χ . For large doping and/or weaker
interaction, there is no clear separation between the spin- and
charge-fluctuation scale and universality is lost.

Finally, we have compared the doping dependence of the
kinks in the single-band Hubbard model with kinks measured
with angle-resolved photoemission in planar cuprates. In spite
of the much higher complexity of the cuprates compared to our
model study, the energy scales are qualitatively reproduced:
Magnetically induced kinks evolve from 30 meV to about
120 meV with increasing hole doping for U = 1.4W .

In conclusion, we extended the view that emergent modes
of the electronic system can generate kinks in the electronic
dispersion in analogy to materials with strong electron-phonon
coupling even away from half filling, provided (i) that there
is a significant energy separation between the high and low
energy scale, T ∗

χ /D � 1, and which implies that we are in
the strong coupling regime U/W � 1, and (ii) that the charge
energy scale is much larger than T ∗

χ . Note that in the studied
strongly correlated system the ratio T ∗

χ /D takes the role of
the ratio of the Debye frequency over the Fermi energy in
coupled electron-phonon systems. We expect that this a generic
feature and very similar results will apply in many other
related systems with clearly separated energy scales and strong
emergent modes.
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