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Detecting a Majorana-fermion zero mode using a quantum dot
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We propose an experimental setup for detecting a Majorana zero mode consisting of a spinless quantum dot
coupled to the end of a p-wave superconducting nanowire. The Majorana bound state at the end of the wire
strongly influences the conductance through the quantum dot: Driving the wire through the topological phase
transition causes a sharp jump in the conductance by a factor of 1/2. In the topological phase, the zero-temperature
peak value of the dot conductance (i.e., when the dot is on resonance and symmetrically coupled to the leads) is
e2/2h. In contrast, if the wire is in its trivial phase, the conductance peak value is e2/h, or if a regular fermionic
zero mode occurs on the end of the wire, the conductance is 0. The system can also be used to tune Flensberg’s
qubit system [Phys. Rev. Lett. 106, 090503 (2011)] to the required degeneracy point.
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Majorana fermions, an exotic type of quasiparticle with
non-Abelian statistics, are attracting a great deal of attention
due to both their fundamental interest and their potential ap-
plication for decoherence-free quantum computation. Several
ways to realize unpaired Majorana fermions in a vortex core
in a p-wave superconductor1–6 and superfluid7,8 have been
proposed. Majorana bound states (MBSs) may also be realized
at the ends of a one-dimensional p-wave superconductor9

for which the proposed system is a semiconductor nanowire
with Rashba spin-orbit interaction to which both a magnetic
field and proximity-induced s-wave pairing are added.10,11

In view of these proposals, how to detect and verify the
existence of MBSs becomes a key issue. Suggestions include
noise measurements,12,13 resonant Andreev reflection by a
scanning tunneling miscroscope (STM),14 and 4π periodic
Majorana-Josephson currents.9–11,15

With regard to quantum computation, the braiding of
Majorana bound states in a network of wires by applying a
“keyboard” of individually tunable gates16 leads to nontrivial
computation. Note that all the detecting methods proposed to
date,9–15 involving electron transfer into or out of MBSs, will
destroy the qubit information. In addition, such braiding cannot
result in universal quantum computation; it must be supple-
mented by a topologically unprotected π/8 phase gate.17 Re-
cently, Flensberg introduced a system consisting of a quantum
dot coupled to two MBSs (MBS-dot-MBS) through which this
π/8 phase gate can be achieved.18 A key point is that the system
must be fine tuned so that the ground state is degenerate.18

In this Rapid Communication, we consider a spinless
quantum dot coupled to a MBS at the end of a p-wave
superconducting (SC) nanowire, and study the conductance
G through the dot by adding two external leads (schematic in
Fig. 1). We find that the conductance is independent of the
properties of the MBS, the nanowire, or the superconductor.
The dependence of G on the dot properties has the same
functional form whether a MBS is present or not. Therefore,
the conductance behavior can be conveniently summarized by
its peak value, when the dot is on resonance and symmetrically
coupled to the probing leads. It is e2/2h in the topological SC
phase, Gpeak = 1/2, in contrast to that for a dot coupled to
a regular fermionic zero mode, Gpeak = 0, as well as to that
for a dot coupled to the wire in its topologically trivial phase,
Gpeak = 1. Thus, as the wire is driven through the topological
phase transition, the conductance shows a sharp jump by a

factor of 1/2. The conductance through the dot is then a probe
of the presence of the MBS. Note that direct transfer between
the MBS and dot is not necessary, though dephasing of the
qubit is introduced when the dot is on resonance. Such a
“less invasive” sensing method provides a potential way to
probe a MBS without totally destroying the information in
the qubit. We also consider coupling the dot to both ends of
the wire (two MBSs), with a magnetic flux � through the
loop. The conductance as a function of phase shows peaks
at � = (2n + 1)π�0 which can be used to tune Flensberg’s
qubit system18 to the energy degeneracy point.

Single MBS. We consider the setup shown in Fig. 1(a) in
which a spinless quantum dot is coupled to the end of a semi-
conductor nanowire with strong Rashba spin-orbit interaction,
proximity-induced s-wave superconductivity, and a magnetic
field B.10,11 We assume the nanowire and superconductor are
not grounded and have a negligible charging energy. The
magnetic field is smaller than the superconductor’s upper
critical field, but the Zeeman splitting Vz = gμBB/2 must
be large enough for the wire to be in the topological SC phase,
Vz >

√
�2 + μ2, where � is the SC order parameter and μ is

the chemical potential of the wire. Isolated Majorana fermion
zero modes η1 and η2 appear in this case at the two ends of
the wire. Suppose the dot is coupled to η1 and the operators
d† (c†kα) create an electron in the dot (leads). The Hamiltonian
can then be written as19

H = HLeads + HDot + HD−L + iεMη1η2 + λ(d − d†)η1,

(1)

where HLeads = ∑
k

∑
α=L,R εkc

†
kαckα describes the left and

right metallic leads with chemical potential μlead = 0, HDot =
εdd

†d describes the dot with a gate tunable level εd , and
HD−L = ∑

α=L,R

∑
k Vα(c†kαd + H.c.) describes the coupling

between the dot and the leads. εM ∼ e−L/ξ is the coupling
between the two Majorana bound states, where L is the length
of the wire and ξ is the superconducting coherence length.

The last part of H describes the coupling between the dot
and the MBS. Here, we assume that the Zeeman splitting is
the largest scale Vz � |Vbias|,T ,
,λ, where Vbias is the source-
drain voltage, T is temperature, and 
 = 
L + 
R is the
dot-leads coupling with 
α ≡ π |Vα|2ρ0 and ρ0 the density
of states of the leads. In this case, one need only consider
a spinless single level in the dot. It is helpful to switch
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FIG. 1. (Color online) (a) Sketch of a dot-MBS system: the
semiconductor wire on an s-wave superconductor surface, and
a magnetic field perpendicular to the surface (ẑ direction). The
dot couples to one end of the wire; the conductance through
the dot is measured by adding two external leads. (b) Majorana
chain representation for a leads-dot-MBS system (Gpeak = e2/2h).
(c) Dot-leads system with nothing side coupled (left) and a Majorana
chain representation (right) (Gpeak = e2/h). (d) Dot-leads system
with side-coupled regular fermionic zero mode (left) and Majorana
chain representation (right) (Gpeak = 0).

from the Majorana fermion representation to the completely
equivalent regular fermion one by defining η1 = (f + f †)/

√
2

and η2 = i(f − f †)/
√

2. The last two terms in H become

HMBS = εM

(
f †f − 1

2

) + λ(d − d†)(f + f †)/
√

2. (2)

The linear conductance through the lead-dot-lead system is
related to the Green’s function of the dot level GR

dd (ω) by

G = e2

h

∫
dω

2π


L
R


L + 
R

{ − 2Im
[
GR

dd (ω)
]}( − ∂nf

∂ω

)
. (3)

The standard equation of motion method yields an exact
expression for the Green’s function20

GR
dd (ω) = 1

ω − εd + i
 − |λ|2K(ω)[1 + |λ|2K̃(ω)]
, (4)

with K(ω) = 1/(ω − ε2
M/ω) and

K̃(ω) = K(ω)

ω + εd + i
 − |λ|2K(ω)
. (5)

For εM = 0 and εd = 0, one has GR
dd (ω → 0) = 1/2(ω + i
),

and so the on-resonance (εd = 0) and symmetric (VL = VR),
i.e., peak, conductance at zero temperature is

Gpeak = −(e2/h)
Im
[
GR

dd (ω → 0)
] = e2/2h. (6)

This result is distinct from both the case of a dot coupled to
a regular fermionic zero mode, which gives Gpeak = 0,21 and
that of a dot disconnected from the wire, for which Gpeak =
e2/h. For asymmetric coupling (VL �= VR), there is a prefactor
4
L
R/(
L + 
R)2 for all cases. Therefore, the signature of
the Majorana fermion is that the conductance is reduced by a
factor of 1/2.

To further understand this result, we rewrite the model in
the Majorana representation.9 The probe leads are described
by two semi-infinite tight-binding fermionic chains ci (i =
. . . , − 1,0,1,2, . . .) joined at the dot, i = 0. By transforming

to the Majoranas (Greek letters), βi = (ci + c
†
i )/

√
2 and

γi = (−ici + ic
†
i )/

√
2, our model reduces to two decoupled

Majorana chains, as shown in Fig. 1(b). The side-coupled MBS
in the lower chain corresponds to the MBS η1. The conductance
through the dot is then the sum of the conductance from two
decoupled Majorana chains G = Gupper + Glower.

Consider now two other cases. First, for a system without
a side-coupled mode, the Majorana representation leads to
two decoupled chains, as shown in Fig. 1(c). Second, for a
system with a side-coupled regular fermionic zero mode, the
Majorana representation consists of two decoupled chains,
each of which has a side-coupled MBS [Fig. 1(d)]. For both
cases, H upper = −H lower, and thus Gupper = Glower. Since the
peak conductance for a dot with (without) a side-coupled
regular fermionic zero mode is 0 (e2/h), the result for a
single Majorana chain with (without) a side-coupled MBS is
0 (e2/2h).Therefore, the conductance of our model [Fig. 1(b)]
is Gpeak = 0 + e2/2h = e2/2h.

The spectral function of the dot A(ω) = −2
Im[GR
dd (ω)]

is shown in Fig. 2(a) for several values of the dot-MBS cou-
pling λ and dot-lead coupling 
 for εM = 0. The energy unit is
chosen so that the lead band width is DL = 40 throughout the
Rapid Communication. Consistent with our assumption that
the Zeeman splitting is the largest energy scale, we consider
the spectrum for only the spin-down channel. For λ = 0,
the spectral function reduces to the result of the resonant
level model. For small dot-MBS coupling (λ = 0.02,0.05), the
spectrum shows two peaks at ω ∼ ±λ which come from the
energy-level splitting caused by coupling to the MBS. As we
increase λ with fixed 
 = 0.2, the two-peak structure evolves
into a spectrum with three peaks, showing clearly the presence
of the Majorana zero mode. Note that the zero-frequency
spectral function always gives A(ω = 0) = 1/2 as long as
εM = 0 and λ �= 0. For small dot-MBS coupling (λ = 0.02),
the three-peak spectrum also appears upon decreasing 
.

The dot spectrum for different strengths of MBS-MBS
coupling εM appears in Fig. 2(b). Even for very small coupling
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FIG. 2. (Color online) Spectral function of the quantum dot in
the on-resonance (εd = 0) and symmetric (
L = 
R = 
/2) case.
(a) Coupling from the dot to MBS (λ) and leads (
) varies at fixed
εM = 0. Solid lines: 
 = 0.2 and λ from 0 to 0.1. Dashed lines:
λ = 0.02 and 
 from 0.05 to 0.1. The spectral function evolves from
a simple resonant tunneling form in the absence of coupling to a
three-peak structure; the middle peak is a direct result of the Majorana
zero mode. (b) MBS-MBS coupling strength varies at fixed 
 = 0.2,
λ = 0.1. Note that A(ω = 0) = 1/2 whenever a Majorana is coupled.
The unit is chosen so that the lead band width is DL = 40 for all
calculations.
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εM = 0.02, the zero-frequency spectrum shows A(ω = 0) = 1
not 1/2. The width of the narrow peak is proportional to εM .
For large coupling (εM = 0.3), the spectrum reduces to the
resonant level result along with two additional small peaks at
ω ∼ ±εM corresponding to the energy of the effective Dirac
fermionic state f . If the wire is long enough so that εM � T ,λ,
one can still observe the Gpeak = e2/2h signature.

More realistic wire. To analyze the robustness of the MBS
signature in the real physical system, the single MBS in Eq. (1)
is replaced by the whole nanowire10,11 shown in Fig. 1(a).
We study numerically a lattice tight-binding Hamiltonian22

Hwire = H0 + HRashba + HSC, where H0 includes nearest-
neighbor hopping along the wire (ŷ direction), a chemical
potential leading to half filling (μ = 0), and a magnetic field
perpendicular to the surface (ẑ direction) causing the Zeeman
splitting Vz. The Rashba spin-orbit interaction is

HRashba =
∑
i,ss

′
−iαRw

†
i+1,s ẑ · (
σss

′ × x̂)wi,s
′ + H.c., (7)

where w
†
i,s creates an electron with spin index s on site i of the

wire and −→σ are the Pauli matrices. Finally, the s-wave pairing
term with superconducting order parameter � is

HSC = �
∑

i

w
†
i,↑w

†
i,↓ + H.c. (8)

The Bogoliubov–de Gennes equation is constructed from Hwire

by the standard Nambu spinor representation (including the
same Zeeman splitting Vz in the dot) and then solved by a
recursive Green’s function method.21,23

The dot spectral function is shown in Fig. 3 for several
values of the SC order parameter � and Rashba interaction
strength αR (for an on-resonance, symmetrically coupled
dot).24 When the wire is in the topologically trivial phase
(� > Vz, no MBS), the spectrum is similar to the resonant
level result [Fig. 3(a)]. In contrast, when the wire is in the
topological SC phase (� < Vz = 6, μ = 0), the value of
the spectral function at zero frequency is 1/2. For � small
(� = 0.5), the spectrum shows two peaks, but upon increasing
� (� = 1,3), the two peaks become more separate and the
three-peak structure emerges. Curiously, a further increase
of � (� = 4.5,5.2) leads to a smaller separation between
the outer peaks. Similar phenomena occur upon varying the
Rashba interaction αR: Increasing αR leads first to an increase
in the splitting of the outer peaks (αR = 1,4,10) and then to a
decrease (αR = 15,25).

The nonmonotonic shifts in the positions of the outer peaks
can be understood as follows. When � or αR is small, the
p-wave SC pairing fp is weak, leading to a less robust MBS
and small peak splitting. On the other hand, when � is large
and close to the transition value � = Vz, SC pairing between
the lower and upper band6 makes the MBS less robust. For
large αR , the eigenfunction of the lower band at the Fermi
surface has a large spin-up component, while the dot and
leads are spin-down due to the Zeeman splitting; therefore,
the coupling between the dot and MBS is suppressed. As
a function of both parameters, then, there is nonmonotonic
behavior.

To detect the MBS, a clear signature appears in the
conductance as a function of Zeeman splitting [Figs. 3(c)
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FIG. 3. (Color online) Dot spectral function and peak conduc-
tance in the more realistic nanowire case (the dot is on resonance and
symmetrically coupled to the probe leads). A(ω) for different values
of (a) the SC order parameter at fixed αR = 2 and (b) the Rashba
interaction strength at fixed � = 3. The results are qualitatively
similar to those of the simple model (Fig. 2). (Parameters: 
 =
0.1, λ = 0.3, and Vz = 6.) (c),(d) Conductance as a function of
Zeeman energy for different temperatures at fixed � = 3. The
sharp change at Vz = � is a signature of the topological phase
transition. [Parameters: (c) αR = 2, λ = 0.1, 
 = 0.1; (d) αR = 10,
λ = 0.3, 
 = 0.08.] Throughout, μ = 0, the hopping in the nanowire
t = 10 corresponds to a bandwidth D = 40, and the wire consists of
1000 sites.

and 3(d)]: The conductance at zero temperature shows a sharp
jump at Vz = � due to a topological phase transition.24 For
Vz < �, the wire is in the topologically trivial phase, and the
peak conductance is e2/h. For Vz > �, the wire is in the
topological SC phase in which a MBS appears, and the peak
conductance is e2/2h. [Both of these values are multiplied by
the factor 4
L
R/(
L + 
R)2 for asymmetric coupling to the
leads.] At finite temperature, the jump becomes a crossover,
which is still quite sharp near the transition point. For small
αR and λ, but large 
, the spectrum has two peaks, so the finite
T conductance is larger than e2/2h [Fig. 3(c)]. For large αR

and λ, but small 
, the spectrum has three peaks, causing the
finite T conductance to be smaller than e2/2h [Fig. 3(d)].

We emphasize that the change in conductance by a factor
of 1/2 is universal as long as the MBS appears and couples
to the dot. With regard to the effect of disorder in the wire,25

a short-range impurity potential does not affect the MBS and
thus the Gpeak = e2/2h result, while a sufficiently strong long-
range impurity potential may induce mixing of the MBS at the
two ends and therefore leads to Gpeak = e2/h, as shown in
Fig. 2(b).

Two MBSs. Consider the geometry proposed by Flensberg18

for implementing a π/8 phase gate: a dot coupled to both ends
of the nanowire—and hence to two MBS—with magnetic flux
� through the loop, as shown in Fig. 4(b). The conductance
through the dot is measured using two external leads; since
electron tunneling between the dot and environment should be
avoided during qubit operation, a dual-tip STM setup26,27 is
proposed so that one can remove the external leads after tuning
the system. The Hamiltonian of this MBS-dot-MBS system18
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FIG. 4. (Color online) (a) Conductance for a MBS-dot-MBS sys-
tem as a function of the phase φ = �/�0 for different temperatures;
the dot is on resonance and symmetrically coupled to the STM tips.
(T = 0.01, 0.005, 0.00125, and 0, from top to bottom; parameters are
λ1 = λ2 = 
1 = 
2 = 0.1.) This curve does not depend on the value
of |λ1/λ2|. (b) Sketch of a MBS-dot-MBS system. The two MBSs
appear at the ends of the nanowire; � is the magnetic flux through the
loop. The conductance is measured using a dual-tip STM, allowing
tuning to the degeneracy point.

can be written as

H = εdd
†d + (λ∗

1d
† − λ1d)η1 + i(λ∗

2d
† + λ2d)η2. (9)

The phase difference between the two couplings, φ ≡
2 arg(λ1/λ2), is related to the flux � via φ = �/�0, where
�0 = h/2e. Without loss of generality, we take λ1 to
be real (λ1 = |λ1| and λ2 = |λ2|e−iφ/2), and the Hamilto-
nian reduces to H = εd†d + λ(d†η12 + η

†
12d), where η12 ≡

(|λ1|η1 + ieiφ/2|λ2|η2)/λ and λ ≡
√

|λ1|2 + |λ2|2. For φ =
(2n + 1)π (n integer), we have η12 = η

†
12. In this case, the dot

is effectively coupled to a single MBS η12; therefore, the T = 0
on-resonance conductance is e2/2h. For φ �= (2n + 1)π , we
have η12 �= η

†
12 corresponding to a regular fermionic zero

mode, for which the T = 0 on-resonance conductance is
zero.

Following the method for a single MBS, one can exactly
solve for the dot Green’s function GR

dd (ω) in this two-MBS
problem in the case of εM = 0:

GR
dd (ω) = {[

GR0
dd (ω)

]−1 − A(ω) − B(ω)
}−1

, (10)

where A(ω) = −i
 + (|λ1|2 + |λ2|2)/2ω and

B(ω) =
1

4ω2 [|λ1|4 + |λ2|4 + 2|λ1|2|λ2|2 cos(φ − π )]

ω + εd + i
 − (|λ1|2 + |λ2|2)/2ω
. (11)

The conductance peak value as a function of the phase
difference φ can be obtained from Eq. (3) and is shown in
Fig. 4(a). For T = 0, the G = e2/2h signature appears only at
φ = (2n + 1)π , corresponding to the energetically degenerate
state in Flensberg’s qubit,18 with G = 0 otherwise. For T �= 0,
the peak width becomes finite; note that the peak is fairly wide
even for T = 0.01, but that the temperature is still low enough
to see the MBS. By tuning the conductance to a resonance peak,
one can tune the MBS-dot-MBS to the desired degenerate
energy point.
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