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Thermopower with broken time-reversal symmetry
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We show that when inelastic scattering effects are taken into account, the thermopower is, in general,
asymmetric under magnetic field reversal, even for noninteracting systems. Our findings are illustrated in the
example of a three-dot ring structure pierced by an Aharonov-Bohm flux.
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In power generation and refrigeration by means of thermal
engines, efficiency plays a basic theoretical and practical role.
The Carnot bound on efficiency lies at the foundations of
thermodynamics: For a heat engine functioning between hot
and cold reservoirs at temperatures Th and Tc, the efficiency η,
defined as the ratio of the output power over the heat extracted
per unit time from the high-temperature reservoir, is upper
bounded by the Carnot efficiency ηC : η � ηC = 1 − Tc/Th.

For systems with time-reversal symmetry, thermoelectric
power generation and refrigeration is governed, within linear
response, by a single parameter, the dimensionless figure of
merit ZT = (σS2/κ)T , where σ is the electric conductivity, S
is the thermopower (Seebeck coefficient), κ is the thermal con-
ductivity, and T ≈ Th ≈ Tc is the temperature. The maximum
efficiency is given by

ηmax = ηC

√
ZT + 1 − 1√
ZT + 1 + 1

. (1)

Thermodynamics only imposes ZT � 0 and the Carnot limit
is reached when ZT → ∞.

On the other hand, we have recently shown1 that for systems
with broken time-reversal symmetry the efficiency depends
on two parameters: a “figure of merit” and an asymmetry
parameter. In contrast to the time-symmetric case, the figure of
merit is bounded from above, yet the Carnot efficiency can be
reached at lower and lower values of the figure of merit as the
asymmetry parameter increases. According to the expression
for the efficiency, large asymmetry of the thermopower can
be responsible for highly nontrivial effects,1 and potentially
can be a useful tuning parameter to control thermoelectric
efficiency of the material. Hence, finding general conditions
for asymmetry of the thermopower is of general interest both
from a practical and purely fundamental point of view.

If time-reversal symmetry is broken, e.g., by means of
a magnetic field B, then one does not expect the Seebeck
coefficient to be, in general, symmetric with respect to the
magnetic field. Yet for the particular case of noninteracting
systems, one has S(B) = S(−B) as a consequence of the
symmetry properties of the scattering matrix.2 Even though
this constraint does not apply when interactions or inelastic
scattering are taken into account, and even though there are
no general results imposing the symmetry of the Seebeck

coefficient, the latter has always been found to be an even
function of the magnetic field in purely metallic two-terminal
mesoscopic systems.3 On the other hand, Andreev interferom-
eter experiments4 and recent theoretical studies indicate that
systems in contact with a superconductor5 or with a heat bath6

can exhibit nonsymmetric thermopower. However, accurate
numerical simulations of various models of two-terminal
purely Hamiltonian interacting dynamical systems, which
violate time-reversal symmetry, such as a two-dimensional
anisotropic and inhomogeneous system of interacting particles
in a perpendicular magnetic field,7 systematically failed to
find a nonsymmetric thermopower S(B) �= S(−B). Therefore,
it remains a completely open and interesting problem to
understand what requirements must be fulfilled in order to
actually lead to a thermopower which is asymmetric in the
magnetic field.

In this Rapid Communication we show that the ther-
mopower is, in general, asymmetric when inelastic scattering
is added to the system, even though the system is noninter-
acting. Indeed, in the noninteracting case the symmetry of
the thermopower is a consequence of the unitarity of the
scattering matrix, which is broken when noise is added. A
very convenient way to introduce noise is by means of a
third terminal, whose parameters (temperature and chemical
potential) are chosen self-consistently so that there is no
average flux of particles and heat between the terminal and
the system. In mesoscopic physics, such a third terminal, or
a “conceptual probe,” is commonly used to simulate phase-
breaking processes in partially coherent quantum transport,
since it introduces phase relaxation without energy damping.8

We also show that, as a consequence of the asymmetry of the
Seebeck coefficient, a weak magnetic field generally improves
either the efficiency of thermoelectric power generation or of
refrigeration, the efficiencies of the two processes being no
longer equal when a magnetic field is added. Our findings are
illustrated by the example of a realistic, asymmetric three-dot
ring structure pierced by an Aharonov-Bohm flux. A main
advantage of this model is that it can be analyzed exactly,
without resorting to approximations.

General setup. The model we consider is sketched in
Fig. 1. A system is in contact with left (L) and right (R)
reservoirs (terminals) at temperatures TL = T + �T , TR = T
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FIG. 1. Schematic drawing of the model. The third (probe)
reservoir mimics inelastic scattering.

(without loss of generality, we assume TL > TR) and chemical
potentials μL = μ + �μ, μR = μ. Both electric and heat
currents flow along the horizontal axis. Inelastic scattering
effects are simulated by means of a third (probe) reservoir
(P ) at temperature TP = T + �TP and chemical potential
μP = μ + �μP . Let Jρk and JEk denote the particle and
energy currents from the kth reservoir (k = L,R,P ) into
the system, with the steady-state constraints of charge and
energy conservation

∑
k Jρk = 0,

∑
k JEk = 0. The sum of the

entropy production rates at the reservoirs reads Ṡ = ∑
k(JEk −

μkJρk)/Tk . Within a linear response, Ṡ = J · X ≡ ∑4
i=1 JiXi ,

where we have defined the four-dimensional vectors J and X
as

J = (eJρL,JqL,eJρP ,JqP ), (2)

X =
(

�μ

eT
,
�T

T 2
,
�μP

eT
,
�TP

T 2

)
, (3)

and where the heat currents Jqk ≡ JEk − μJρk and e is
the electron charge. The equation connecting the fluxes Ji

and the thermodynamic forces Xi within linear irreversible
thermodynamics is9

J = L X, (4)

where L is a 4 × 4 Onsager matrix, and J , X must be written
as column vectors.

The probe reservoir is adjusted in such a way that J3 =
J4 = 0, that is, the net particle and heat flow from the probe
into the system vanishes. It is convenient to write Eq. (4) in
the block matrix form(

Jα

Jβ

)
=

(
Lαα Lαβ

Lβα Lββ

) (
Xα

Xβ

)
, (5)

where α stands for (1,2) and β for (3,4). The self-consistency
condition Jβ = (J3,J4) = 0 implies Xβ = −Lββ

−1 Lβα Xα ,
so that

Jα = L′ Xα, L′ ≡ Lαα − Lαβ Lββ
−1 Lβα. (6)

The problem has then been reduced to two coupled fluxes(
J1

J2

)
=

(
L′

11 L′
12

L′
21 L′

22

) (
X1

X2

)
, (7)

where the reduced 2 × 2 Onsager matrix matrix L′ fulfills the
Onsager-Casimir relations

L′
ij (B) = L′

ji(−B) (i,j = 1,2). (8)

We would like to draw the reader’s attention to the fact that
the matrix L′ is the Onsager matrix for two-terminal noisy
transport, with noise modeled by means of a self-consistent

reservoir. In particular, the Seebeck and the Peltier coefficients
are given by S = L′

12/(eT L′
11) and 	 = L′

21/(eL′
11). The

thermopower is asymmetric when L′
12(B) �= L′

21(B), i.e.,
	 �= ST .

A key point is that, since J3 = J4 = 0, J1 is the charge
current from the left to right reservoir and the heat is extracted
from (for power generation) or dissipated to (for refrigeration)
the left (or right) reservoir only. Therefore, we can apply
the analysis developed in Ref. 1. In particular, the efficiency
depends on the asymmetry parameter x and on the “figure of
merit” parameter y

x = L′
12

L′
21

, y = L′
12L

′
21

detL′ . (9)

For power generation (J2 > 0 and output power ω =
−J1�μ = −J1eT X1 > 0) the efficiency η = ω/J2 has a
maximum value

ηmax = ηCx

√
y + 1 − 1√
y + 1 + 1

, (10)

while for refrigeration (J2 < 0, ω < 0) the maximum of the
efficiency η(r) = J2/ω is

η(r)
max = ηC

1

x

√
y + 1 − 1√
y + 1 + 1

. (11)

Noninteracting systems. Exact calculation of thermopower
and efficiencies is possible for noninteracting models by means
of the Landauer-Büttiker approach. We start from the bilinear
Hamiltonian H = HS + HR + HC , where the different terms
correspond, respectively, to the nanoscale electronic system,
the reservoirs, and the reservoir-system coupling. The tight-
binding N -site system Hamiltonian reads

HS =
N∑

n,n′=1

Hnn′c†nc
′
n, (12)

where cn and c
†
n are fermionic annihilation and creation

operators. The reservoirs are modeled as ideal Fermi gases
HR = ∑

k,q Eqc
†
kqckq , where c

†
kq creates an electron in the state

q in the kth reservoir. The coupling (tunneling) Hamiltonian

HC =
∑
k,q

(tkqc
†
kqcik + t∗kqckqc

†
ik

) (13)

establishes the contact between site ik and reservoir k.10

The charge and heat currents from the left terminal
(reservoir) are given by11

J1 = e

h

∫ ∞

−∞
dE

∑
k

[TkL(E)fL(E) − TLk(E)fk(E)], (14)

J2 = 1

h

∫ ∞

−∞
dE(E − μL)

∑
k

[TkL(E)fL(E) − TLk(E)fk(E)],

(15)

where fk(E) = {exp[(E − μk)/kBTk] + 1}−1 is the Fermi
function and Tkl is the transmission probability from terminal
l to terminal k. Analogous expressions can be written for J3

and J4, provided the terminal L is substituted by P .
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The Onsager coefficients Lij are obtained from the linear
response expansion of the currents Ji . We have

L11 = e2

h

∫ ∞

−∞
dE

∑
k �=L

TLk(E)F (E), (16)

L12 = L21 = e

h

∫ ∞

−∞
dE(E − μ)

∑
k �=L

TLk(E)F (E), (17)

L22 = 1

h

∫ ∞

−∞
dE(E − μ)2

∑
k �=L

TLk(E)F (E), (18)

where F (E) ≡ −Tf ′(E) = 1/4kB cosh2[(E − μ)/2kBT ].
Analogous formulas are obtained for L33, L34 = L43, and
L44, with the P terminal used instead of L. Note that,
for the noninteracting three-terminal model, L12 is still an
even function of the magnetic field, that is, L12 = L21. On
the other hand, the symmetry of the off-diagonal matrix
elements is broken for the reduced Onsager matrix L′. Indeed,
reduction (6) involves other off-diagonal matrix elements of
L—between “left” (1,2) and “probe” (3,4) sectors—which,
in general, are not even functions of an applied magnetic field.
The block Lαβ of matrix L is given by

Lαβ = −e2

h

∫ ∞

−∞
dE

(
1 E−μ

e

E−μ

e

(
E−μ

e

)2

)
TLP (E)F (E), (19)

and Lαβ �= Lβα , since Lβα is obtained from Lαβ after
substitution of TLP with TPL and, in general, TLP �= TPL.

The transmission probabilities are given by2

Tpq = Tr[�p(E)G(E)�q(E)G†(E)], (20)

where the broadening matrices �k are defined in terms
of the self-energies �k: �k(E) ≡ i[�k(E) − �

†
k(E)] and

the (retarded) system Green function G(E) ≡ [E − HS −∑
k �k(E)]−1.
Aharonov-Bohm interferometer. As an illustrative, realistic

example we consider a three-dot ring structure pierced by an
Aharonov-Bohm flux, with dot k coupled to reservoir k, as
sketched in Fig. 2. The system Hamiltonian reads

HS =
∑

k

εkc
†
kck + (tLRc

†
RcLeiφ/3 + tRP c

†
P cReiφ/3

+ tPLc
†
LcP eiφ/3 + H.c.), (21)

and the broadening matrices are �k = γkc
†
kck . We apply

the Landauer-Büttiker approach to this model, numerically
computing the Onsager coefficients following Eqs. (16)–(20).

As expected, we obtain asymmetric off-diagonal reduced
Onsager matrix elements, that is, L′

12 �= L′
21, as far as the

Aharonov-Bohm flux φ is nonvanishing and there is anisotropy
in the systems, for instance, when εL �= εR . Since the ther-
mopower is not symmetric with respect to the magnetic field,
i.e., L′

12(B) �= L′
12(−B) = L′

21(B), then, in general, the ratio
x = L′

12/L
′
21 �= 1. The asymmetry parameter x can be made

arbitrarily small when L′
12 → 0 or arbitrarily large when

L′
21 → 0—see, for instance, Fig. 3.

FIG. 2. Schematic drawing of the three-dot model.

Remarks. Large asymmetries do not imply, ipso facto, large
efficiencies, for example, in the case of Fig. 3 when x diverges
the figure of merit y and the efficiency tend to zero. It is,
however, interesting to compare the efficiencies of power
generation and refrigeration. While in the time-symmetric case
the two efficiencies coincide ηmax(φ = 0) = η(r)

max(φ = 0), this
is no longer the case when x �= 1. For small fields, x is, in
general, a linear function of the field x(φ) = 1 + αφ + O(φ2),
while y is by construction an even function of the field, so
that y(φ) = y(0) + βφ2 + O(φ4). From Eqs. (10) and (11)
we obtain ηmax(φ) = ηmax(0)[1 + αφ + O(φ2)] and η(r)

max(φ) =
ηmax(0)[1 − αφ + O(φ2)]. Therefore, a small external mag-
netic field either improves power generation and worsens
refrigeration or vice versa, while the average efficiency η̄ ≡
[ηmax(φ) + η(r)

max(φ)]/2 = ηmax(0) up to second-order correc-
tions. Due to the Onsager-Casimir relations, x(−φ) = 1/x(φ),
and therefore by inverting the direction of the magnetic field
one can improve either power generation or refrigeration.

In conclusion, we have shown that inelastic scattering
generally leads to a thermopower which is a nonsymmetric
function of the magnetic field. Such a general result has been
illustrated by means of a realistic three-dot Aharonov-Bohm
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FIG. 3. Ratio x of the off-diagonal matrix elements L′
12 and L′

21

of the reduced Onsager matrix at T = 1, μ = 0.3, εL = 0, εR =
0.5, εP = 1, all hopping terms tpq = −1, and broadenings γk = 0.1,
independently of energy (wide-band limit). Hereafter we set e = h̄ =
kB = 1.
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interferometer model, which appears suitable for experimental
investigations by means of three-terminal mesoscopic devices.
The asymmetry of the Seebeck coefficient with respect to
the magnetic field allows, in principle, in the linear response
regime, to obtain a finite power at Carnot efficiency. Whether
this is actually the case remains an interesting open problem.
An additional interesting open problem is whether noiseless
interacting systems might exhibit asymmetric thermopower.
In our Rapid Communication, we have introduced the third
lead to take dissipation into account phenomenologically.
We hope that our work motivates further studies in order
to gain a better understanding of the mechanisms lead-

ing to large asymmetry of the thermopower in realistic
situations.

Recently, we became aware of a related work,12 showing
that in a setup with inelastic scattering mimicked by a third
(probe) reservoir, the Seebeck coefficient is magnetic field
asymmetric only when the Sommerfeld expansion is carried
out beyond leading order.
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