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Anomalous mass enhancement in strongly correlated quantum wells
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Using dynamical-mean-field theory, we investigate the electronic properties of quantum wells consisting of
a t1

2g-electron system with strong correlations. The special focus is on the subband structure of such quantum
wells. The effective mass is found to increase with increase in the value of the bottom of the subband, i.e.,
decrease in the subband occupation number. This is due to the combination of Coulomb repulsion, whose effect
is enhanced on surface layers, and longer-range hoppings. We discuss the implication of these results for the
recent angle-resolved photoemission experiment on SrVO3 thin films.
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Two-dimensional electron gases (2DEGs) realized in a
variety of oxide interfaces have been attracting significant
interest.1,2 In particular, electronics utilizing oxides with strong
correlations would benefit from their rich phase behaviors.3

For example, control of the band structure of 2DEGs in
transition-metal oxides has been proposed as a way to create
noncuprate high-Tc superconductivity.4 Yet, the realization
of metallic behavior in few-unit-cell-thick oxides remains
challenging.5,6

Two-dimensional metallic behavior in confined geometry,
i.e., in quantum wells (QWs), has been studied for conventional
metals. Reconstructed band structures or subband dispersion
relations in QWs of Ag thin films have been confirmed
using photoemission spectroscopy.7,8 The subband dispersion
of 2DEGs realized on the surface of a band insulator
SrTiO3 was also observed using angle-resolved photoemission
spectroscopy (ARPES).9,10 More recently, Yoshimatsu and
co-workers have performed ARPES measurements on QWs
in thin films of the correlated metal SrVO3.11 The subband
structures realized in such QWs can be explained reasonably
well using a simple tight-binding-type description. However,
the effective mass of such subbands was found to increase with
decreasing binding energy of the subband. Since this trend is
opposite to what we expect based on the bulk behavior, i.e., the
effective mass is reduced with decreasing binding energy and
decreasing band occupancy, the origin of such an anomalous
mass enhancement remains to be understood.

In this Rapid Communication, we analyze model QWs
consisting of a t1

2g-electron system as experimentally con-
sidered by Yoshimatsu et al. We employ layer dynamical-
mean-field theory (DMFT) with the exact-diagonalization
impurity solver.12,13 In correlated QWs, a smaller coordination
number on surface layers induces larger mass enhancement
than in the bulk region.14–18 This brings about the anomalous
subband-dependent mass enhancement; the effective mass
becomes larger with decreasing subband binding energy or
depopulation of the subband. With the additional effect coming
from the longer-range hopping, the subband-dependent mass
enhancement was found to increase dramatically. We argue
that the anomalous mass enhancement reported for thin films
of SrVO3 is due to strong correlations and long-range transfer
integral.

We consider the three-band Hubbard model involving t2g

electrons, H = Hband + ∑
r Hloc(r). The first term describes

the noninteracting part of the system as

Hband = −
∑
τ,σ

∑
r,r′

t τrr′d
†
rτσ dr′τσ , (1)

where drτσ stands for the annihilation operator for an electron
at site r in orbital τ with spin σ , and t τrr′ is the hopping integral
between orbitals τ at sites r and r′. For the orbital τ = xy, we
take the nearest-neighbor hoppings t τrr′ = tπ for r′ = r ± x̂ (ŷ)
and t τrr′ = tδ for r′ = r ± ẑ, and the second-neighbor hopping
t τrr′ = tσ ′ for r′ = r ± x̂ ± ŷ. Here, x̂ (ŷ, ẑ) is the unit vector
along the x (y, z) direction. The hopping parameters for the
other orbitals are given by interchanging the coordinates x, y,
and z accordingly. Parameter values are taken from density-
functional theory results as tπ = 0.281, tδ = 0.033, and tσ ′ =
0.096 (all in eV).19 Hloc describes the local interaction as

Hloc = 1

2

∑
τ,τ ′,τ ′′
τ ′′′,σ,σ ′

Uττ ′τ ′′τ ′′′
d†

τσ d
†
τ ′σ ′dτ ′′′σ ′dτ ′′σ − μ

∑
τ,σ

d†
τσ dτσ .

(2)

Here, the site index r is suppressed for simplicity, and μ is the
chemical potential. Since we consider t2g-electron systems,
we assume the relation U = U ′ + 2J , where U = Uττττ

(intraorbital Coulomb), U ′ = Uττ ′ττ ′
(interorbital Coulomb),

J = Uττ ′τ ′τ (interorbital exchange) = Uτττ ′τ ′
(interorbital pair

transfer) for τ �= τ ′, and other components are absent.20 As
in Ref. 11, we consider QWs in which a finite number
of correlated layers stack along the z direction with the
open-boundary condition and the periodic-boundary condition
along the x and y directions.

Before going into the detailed analysis taking into account
the correlation effects, let us first discuss the low-energy
electronic behavior, focusing on quasiparticle bands. For this
purpose, we consider the following effective one-dimensional
Schrödinger equation:21

[
Zτ

z

{
ε̃τ

k − μ + Re�τ
z (0)

}
δz,z′ +

√
Zτ

z Zτ
z′ t

τ
k δz,z′±1

]
ϕτα

z′k

= Eτα
k ϕτα

zk , (3)

where �τ
z (ω) is the electron self-energy at orbital τ in layer z

computed in layer DMFT, and Zτ
z is the layer-dependent quasi-

particle weight defined by Zτ
z = {1 − Re∂ω�τ

z (ω)|ω=0}−1. ε̃τ
k

is the in-plane dispersion and t τk is the out-of-plane hopping
element for orbital τ with in-plane momentum k = (kx,ky).
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FIG. 1. (Color online) (a) Dispersion relation as a function of
momentum for a noninteracting 5-ML-thick quantum well. Crosses
indicate E

yz α

k=0 (binding energy at k = 0 times −1). (b) Three-
dimensional plot of subband quasiparticle weight Z̃yz

α , Eyz α

k=0 , and QW
thickness. For each QW, Z̃yz

α is defined at E
yz α

k=0 < 0. When projected
on the left (right) vertical plane, Z̃yz

α is given as a function of E
yzα

k=0
(QW thickness).

For τ = yz, these are explicitly given by ε̃
yz

k = −2tπ cos ky −
2tσ ′ cos kx and t

yz

k = −tπ − 2tδ cos ky . α labels the subband
with the eigenfunction ϕτα

zk in increasing order of the subband
energy Eτα

k . As an example, the energy eigenvalue Eτα
k

for a 5-ML-thick noninteracting (Zτ
z = 1) QW is plotted in

Fig. 1(a) (ML indicates monolayer). We notice that subbands
originating from yz (xz) orbitals are not parallel, while xy

subbands are. This is because the second-neighbor hopping
between neighboring layers induces k dependence in the
out-of-plane hopping t

yz(xz)
k . For orbital yz (xz), t τk = −tπ −

2tδ cos ky(x) and, therefore, the subband separation becomes
large when ky(x) approaches 0. As a result, the Fermi velocity
of high-energy (less-populated) bands becomes small, as if the
effective mass is enhanced.

The low-energy electronic behaviors of correlated QWs
are governed by the quasiparticle subbands. The correlation
effects enter as the quasiparticle weight of the subband. Using
the solution of Eq. (3), the subband-dependent quasiparticle
weight is given by21,22

Zτ
α =

∑
z

Zτ
z

∣∣ϕτα
z k=kα

F

∣∣2
. (4)

From Eq. (4), it is clear that the subband quasiparticle weight
becomes unity in the absence of correlations, i.e., Zτ

z = 1
leads to

∑
z |ϕτα

z k=kα
F
|2 = 1 (normalization of the quasiparticle

eigenfunction). Another important quantity is the effective
quasiparticle weight defined by

Z̃τ
α = ∂kE

τα
k

∂kε
τ
k0

∣∣∣∣
k=kτα

F

. (5)

Here, kτα
F is the Fermi momentum for the αth subband, and

ετ
kkz

is the bulk dispersion. For τ = yz, we have ε
yz

kkz
= ε̃

yz

k +
2t

yz

k − 2tπ cos kz. Thus, Z̃τ
α measures the change in the Fermi

velocity with respect to its bulk value. In Ref. 11, Z̃τ
α was used

to discuss the mass enhancement.
Because of the k dependence of the interlayer hopping

matrix t τk , Z̃ can be smaller than unity even without correla-
tions. Figure 1(b) summarizes the results for E

yz α

k=0 and 1/Z̃ for
noninteracting QWs with thickness varied from 4 to 10. As the
QW becomes thin, Eyz α

k=0 increases and the number of occupied
subbands is reduced (see the basal plane). For a 5-ML-thick
QW, 1/Z̃

yz
α is projected in the left vertical plane and thus is

shown as a function of E
yz α

k=0 (binding energy times −1). As
E

yz α

k=0 approaches 0, 1/Z̃
yz
α is increased. This trend can be seen

in all QWs studied (see the projection of 1/Z̃
yz
α on the right

vertical plane). A similar trend was reported experimentally.
However, 1/Z̃τ

α is enhanced from ∼1 to ∼1.7, so is at most
70%. Therefore, the band effect alone does not account for
the large mass enhancement reported in Ref. 11, where 1/Z̃τ

α

varies from ∼1.7 to ∼4.5. The experimental enhancement in
1/Z̃τ

α is nearly 300%, and 1/Z̃τ
α at the largest binding energy

is already ∼70% larger than the band mass. These results
indicate the influence of the correlation effects.

In order to see the effect of correlations rather quantita-
tively, here we employ layer DMFT, whose self-consistency
condition is closed by14–16,21

Gτ
z (ω) =

∫
d2k

(2π )2
Gτ

zz(k,ω). (6)

Here, Gτ
z is the local Green’s function on layer z, and the lattice

Green’s function matrix on the right-hand side is given as a
function of k and the z-axis coordinate as Ĝ(k,ω) = [(ω +
μ)1 − Ĥband(k) − �̂(k,ω)]−1. The hopping matrix Ĥband(k)
is given by an in-plane Fourier transformation of Hband as
Ĥband(k) = (ε̃τ

kδz,z′ + t τk δz,z′±1)δτ,τ ′ . The self-energy matrix is
approximated as �̂(k,ω) = �τ

z (ω)δz,z′δτ,τ ′ . The local self-
energy is obtained by solving the effective impurity model
defined by the local interaction term coupled with an effective
medium. In this study, we use the exact diagonalization
impurity solver with the Arnoldi algorithm.23,24 Here, the
effective medium is approximated as a finite number of bath
sites, and the impurity Hamiltonian is given by

Himp = Hloc +
∑
i,τ,σ

εiτ c
†
iτσ ciτσ +

∑
i,τ,σ

(viτ c
†
iτσ dτσ + H.c.).

(7)

ciτσ is the annihilation operator of an electron at the ith bath
site with potential εiτ and hybridization strength with the
impurity orbital τ denoted by viτ . Because of the exponentially
growing Hilbert space with respect to the numbers of orbitals
and electrons, we consider two bath sites per correlated orbital,
i.e., i = 1,2. In our numerical simulations, we use temperature
T = 10−2 eV to retain low-energy states with Boltzmann
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FIG. 2. (Color online) (a) Orbitally resolved spectral function as
a function of momentum and frequency for the interacting 5-ML-
thick QW with U = 4 and J = 0.5 eV. Dotted lines indicate the
solution of Eq. (3), Eτα

k , obtained using the layer DMFT result for the
quasiparticle weight Zτ

z . Note that yz and xz bands are symmetric
with respect to X ↔ Y. (b) Subband quasiparticle weights Zyz

α and
Z̃yz

α as functions of E
yz α

k=0 . (c) E
yz α

k , (d) quasiparticle weight Zyz
α , and

(e) effective quasiparticle weight Z̃yz
α as functions of the thickness

of QWs. Plots (b)–(e) are generated using the method displayed in
Fig. 1(b). See also Ref. 25 (Fig. S1).

factors larger than 10−6 and consider only paramagnetic
solutions.

Figure 2(a) shows the results for the orbitally resolved
spectral function Aτ (k,ω) = − 1

π

∑
z ImGτ

zz(k,ω) as well as
Eτα

k as dotted lines for a 5-ML-thick interacting QW with
U = 4 and J = 0.5 (both in eV). For Aτ (k,ω), the self-energy
is extrapolated to the real axis using the Padé approximation.24

In comparison with the noninteracting case, the bandwidth is
reduced by about 50% due to correlations. We notice that Eτα

k
reproduces the peak positions of Aτ (k,ω) fairly well. There
are five subbands for both yz and xy, but those in the latter are
indistinguishable because all subbands are located within the
range of 2tδ ∼ 0.07 eV. Thus, we focus on yz subbands in the
following discussion. Using the same procedure as in Fig. 1(b),
we analyze E

yzα

k=0 and the mass enhancements 1/Z
yz
α and 1/Z̃

yz
α .

Figure 2(b) shows plots of 1/Z
yz
α and 1/Z̃

yz
α as functions of

E
yzα

k=0 for a 5-ML-thick QW. At the largest binding energy, both
1/Z

yz
α and 1/Z̃

yz
α are about 2, the mass enhancement expected

in the bulk region. Figures 2(c), 2(d), and 2(e) summarize E
yz α

k=0 ,
1/Z

yz
α , and 1/Z̃

yz
α , respectively, for interacting QWs with

thickness varied from 4 to 10. Although 1/Z
yz
α shows an

increase with increasing E
yz α

k=0, it is only from ∼2 to ∼2.2.
On the other hand, 1/Z̃

yz
α shows a rather steep increase from

∼2 to ∼3.8, as reported experimentally.11

FIG. 3. (Color online) (a) Orbitally resolved occupation number
as a function of position z for a noninteracting 10-ML-thick QW.
(b) Same as (a) for the interacting model, and (c) the local
quasiparticle weight as a function of z. Layer DMFT with U = 4
and J = 0.5 eV is used for (b) and (c). Inset: Quasiparticle wave
functions ϕ

yz α

zk=kyz α
F

.

Aside from the quantitative difference, noninteracting QWs
and interacting QWs behave quite similarly. As a small but
clear difference, some of interacting QWs have a larger number
of occupied yz subbands, 7- and 9-ML-thick QWs. This is
caused by the different orbital polarization. As shown in
Figs. 3(a) and 3(b), noninteracting QWs have larger orbital
polarization with smaller occupancy in the yz and xz orbitals
on surface layers than interacting QWs. This is because these
bands have a quasi-one-dimensional character on the surface
layers, with a reduced effective bandwidth. The average
charge density also shows Friedel-type oscillatory behavior
with respect to z. On the other hand, in the interacting
case, the orbital polarization and the charge redistribution
are significantly suppressed because the charge susceptibility
is suppressed near integer fillings. This behavior was found
to be insensitive to the choice of the interaction strength as
shown in Ref. 25 (Fig. S2). Therefore, the effect of charge
relaxation is expected to be small, in contrast to LaTiO3/SrTiO3

heterostructures.
Figure 3(c) shows the position-dependent quasiparticle

weight Zτ
z , and its inset the quasiparticle eigenfunctions for

a yz electron at the Fermi level. Strong mass renormalization
takes place in surface layers where the coordination number
is smaller.14–18 In the current case, Zτ

z is ∼0.43 (0.51) on
surface layers (in the bulk region at z = 5); thus there is
about 15% stronger mass renormalization on the surface.
This small difference comes from the fact that SrVO3 is not
so strongly correlated. With increasing U , Zτ

z on surfaces
are more strongly renormalized [see Ref. 25, Fig. S3(a)].
Since an eigenfunction with larger α has larger weight on the
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FIG. 4. (Color online) Subband mass enhancement. (a) Effective
mass enhancement 1/Z̃yz

α for the noninteracting model as a function of
E

yz α

k=0 . Mass enhancement (b) 1/Zyz
α and (c) 1/Z̃yz

α for the interacting
model with U = 4 and J = 0.5 eV. (d) 1/Z̃yz

α for the interacting
model with the parameter values indicated. Gray bold lines are guides
to the eye.

surface layers, the effective mass of such a subband is more
strongly renormalized. But the renormalization of Z

yz
α , up to

∼10%, is smaller than that of Zτ
z because of the interlayer

hybridization. The additional enhancement in 1/Z̃
yz
α is caused

by the momentum-dependent interlayer hoppings, as discussed
earlier.

Figure 4 summarizes the mass enhancement as a function
of the position of the bottom of the subband. The enhance-
ment in 1/Z̃

yz
α is rather small for noninteracting QWs because

it comes from the small hopping parameter tσ ′ . The mass
enhancement 1/Z

yz
α originating purely from the correlation

effects also shows rather small dependence on E
yz α

k=0. On the

other hand, 1/Z̃
yz
α shows strong E

yz α

k=0 dependence because
both the band and correlation effects are included. The
effective mass enhancement 1/Z̃

yz
α somewhat depends on

the correlation strength, as shown in Fig. 4(d). Comparison
of 1/Z

yz
α for different interaction strengths is presented in

Ref. 25 [Figs. S3(b)–S3(d)]. With a reasonable parameter
set, the experimentally reported mass enhancement can be
semiquantitatively reproduced.

We notice that the number of subbands is overestimated
by ∼1 for interacting QWs compared with the experimental
observation.11 A possible explanation for this discrepancy is
that, in the experiment of Ref. 11, the surface layer is made of
VO2, so that the symmetry and the valence state of surface V
ions greatly deviate from those in the bulk. Also, we cannot
exclude the possibility of surface lattice relaxation by which
conduction electrons are strongly localized on the surface
layer. In these cases, the surface V sites would not contribute
to the ARPES spectrum near the Fermi level as do those in the
bulk. Detailed study including these effects would be necessary
to fully understand the nature of SrVO3 QWs, including the
dimensional crossover and the metal-insulator transition.5,11

Yet the present study provides a reasonable account for the
anomalous mass enhancement reported for SrVO3 thin films.

Summarizing, using dynamical-mean-field theory, we in-
vestigated the electronic properties of correlated quantum
wells consisting of a t1

2g-electron system. The special focus is
on the subband structure of such quantum wells. The subband
effective mass was found to increase with decreasing band
occupancy as reported for SrVO3 thin films. The present
theory provides a reasonable account for this observation
as the combined effect of Coulomb repulsion, whose effect
is enhanced on surface layers, and longer-range hoppings.
Inclusion of these two effects is essential to correctly interpret
experimental observations.
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