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Majorana fermions in a topological-insulator nanowire proximity-coupled to an s-wave
superconductor
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A finite-length topological-insulator nanowire, proximity-coupled to an ordinary bulk s-wave superconductor
and subject to a longitudinal applied magnetic field, is shown to realize a one-dimensional topological
superconductor with unpaired Majorana fermions localized at both ends. This situation occurs under a wide
range of conditions and constitutes an easily accessible physical realization of the elusive Majorana particle in a
solid-state system.
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Predicted in a seminal 1937 paper1 as purely real (as op-
posed to complex-valued) solutions of the Dirac equation de-
scribing a spin- 1

2 particle, Majorana fermions are distinguished
by the fact that they are their own antiparticles. More precisely,
in second quantized formulation, the creation and annihilation
operators for Majorana fermions coincide. In high-energy
physics theoretical arguments suggest that neutrinos might be
Majorana fermions but, to the best of our knowledge, a con-
vincing experimental proof is yet to be given.2 In condensed-
matter physics Majorana fermions can appear as emergent
degrees of freedom in certain systems of electrons when super-
conducting order or strong correlations are present.3,4 Over the
past decade solid-state realizations of Majorana fermions have
been under intense theoretical study both as a fundamental in-
tellectual challenge and as a possible platform for fault-tolerant
quantum computation.5,6 Yet their unique properties—and
indeed their very existence—await experimental confirmation.

The purpose of this Rapid Communication is to advance
a proposal for an alternate type of solid-state device that can
serve as a host for Majorana fermions under a wide range
of experimentally accessible conditions. Our proposed device,
depicted schematically in Fig. 1, draws conceptually on recent
ideas to realize Majoranas in both two- and one-dimensional
heterostructures composed of a topological insulator7 or a
semiconductor with strong spin-orbit coupling,8–11 coupled
to an ordinary superconductor through a proximity effect.
Specifically, we consider a nanowire (i.e., quantum wire with
a nanometer-scale cross section) fashioned out of a strong
topological insulator (STI), such as Bi2Se3 or Bi2Te2Se,
placed on top of an ordinary s-wave superconductor (SC),
subject to applied magnetic field along the axis of the
nanowire. Through a combination of analytical insights and
numerical calculations, we demonstrate below that when the
magnetic flux through the nanowire cross section is close
to a half-integer multiple of the fundamental flux quantum
�0 = hc/e, the topologically protected surface state realizes a
one-dimensional topological superconductor12 with Majorana
fermions localized near the ends of the wire. We note that
single-crystalline Bi2Se3 nanowires with ribbon geometry
(i.e., “nanoribbons”) have been fabricated13 and transport
experiments in these show unambiguous evidence for the
topologically protected surface states up to, possibly, a room
temperature.14 Very recently, the SC proximity effect has been
demonstrated in Sn-Bi2Se3 interfaces.15

The device depicted in Fig. 1 appears superficially similar
to the devices based on semiconductor wires proposed in
Refs. 10 and 11. The physics underlying the emergence of
Majorana fermions is nevertheless fundamentally different.
In the semiconductor wires the applied magnetic field serves
to open up a gap through the Zeemann coupling to electron
spins, whereas our proposal relies exclusively on the orbital
effect of the applied field. This difference leads to several key
advantages of our device over the previous proposals. First,
for the topological phase to occur in a semiconductor wire,
it is essential that the chemical potential is fine tuned to lie
inside the Zeemann gap, whose typical size in a 1-T field
is ∼1 meV or less. In our device, by contrast, the chemical
potential can be anywhere inside the TI bulk gap, which
is ∼300 meV in Bi2Se3. Second, as explained below, our
device can be operated in the regime where the TI surface
state is protected by time-reversal symmetry (T ) and the
induced pairing gap is therefore robust against nonmagnetic
disorder. Such a protection is absent in ordinary semiconductor
wires.10,11 Finally, the energy gap protecting the Majorana
fermions in our setup is generically an order of magnitude
larger than in previous proposals.

We begin with a qualitative discussion of the physics behind
the proposed device. As explained in previous works,7,12 the
key ingredient necessary to build a topological superconductor
is an underlying normal state characterized by the electron
dispersion with the spin degeneracy removed. It is possible
to achieve this situation on the surface of a TI.16–18 The low-
energy fermionic excitations on such a surface are governed
by the Dirac Hamiltonian19

h = 1
2v[h̄∇ · n̂ + n̂ · (p × s) + (p × s) · n̂] + s · m, (1)

where p = −ih̄∇, v is the Dirac velocity, n̂ is the unit vector
normal to the surface, and s = (s1,s2,s3) is the vector of Pauli
spin matrices. m denotes the magnetization vector, caused,
e.g., by the Zeemann coupling of spins to the external magnetic
field. Inclusion of the latter is not essential for the functionality
of the proposed device but will prove useful in subsequent
considerations.

Now consider a TI wire in the shape of a cylinder with
radius R and magnetic field B applied along its axis. The
magnetic flux is included by replacing the momentum operator
with π = p − (e/c)A, where A = η�0(ẑ × r)/2πr2 is the
vector potential. � = η�0 represents the total magnetic flux
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FIG. 1. (Color online) Schematic of the proposed device. Mag-
netic field B is applied along the axis of the wire taken to coincide
with the z direction.

through the cylinder. Taking n̂ = (cos ϕ, sin ϕ,0) and m = 0
the spectrum of Hamiltonian (1) reads20

Ekl = ±vh̄

√
k2 +

(
l + 1

2 − η
)2

R2
. (2)

Here k labels momentum eigenstates along the cylinder while
l = 0, ± 1, . . . is the angular momentum. The spectrum in
Eq. (2) is clearly periodic in η, which reflects the expected �0

periodicity in the total flux. Our identification of the suitable
“spinless” normal state hinges on the following observation.
For η = 0 all branches of Ekl are doubly degenerate [Fig. 2(a)].
For η �= 0, however, the degeneracy is lifted and one can
always find a value of the chemical potential μ that yields
a single pair of nondegenerate Fermi points, as illustrated in
Fig. 2(a). Pairing induced by the proximity effect in such a
state is then expected to drive the system into a topological
phase.

One can formalize the above argument by considering
Kitaev’s Majorana number M, defined as M = (−1)ν , where
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FIG. 2. (Color online) (a) Surface-state excitation spectra Ekl for
various values of magnetic flux � = η�0. The solid and dashed lines
indicate doubly degenerate and nondegenerate bands, respectively.
(b) Kitaev’s Majorana number: M = −1(+1) in shaded (white)
regions. The numerals inside the squares indicate the number of
Fermi points for k > 0. (c) A possible shape of the SC and magnetic
domain wall located near z = 0. The dashed line shows the exact
zero-mode solution u(z) for this domain wall.

ν represents the number of Fermi points for k > 0. In the limit
of weak pairing, M = −1 indicates the existence of unpaired
Majorana fermions at the ends of the wire.12 Figure 2(b) shows
M calculated from the spectrum Eq. (2) as a function of
μ and η. We observe, specifically, that when η = 1/2, i.e.,
for the flux equal to a half-integer multiple of �0, Majorana
fermions will appear for any value of the chemical potential
(as long as it lies inside the bulk gap). This result is easily
understood by noting that for η = 1/2 the gapless l = 0 branch
is nondegenerate while the remaining branches are all doubly
degenerate. Thus, the number of Fermi points for k > 0 is
odd for any value of μ. It is also worth noting that, for
the surface state, η = 1/2 represents a T -invariant point and
the above pattern of degeneracies should therefore be robust
with respect to nonmagnetic disorder.21–23 In this situation
Cooper pairs are formed from time-reversed electron states
and the pairing gap is protected against disorder by Anderson’s
theorem. Below, we will explicitly demonstrate the existence
and the robustness of the Majorana fermions both analytically
within the low-energy theory based on Hamiltonian (1) and
numerically using a minimal lattice model.

Writing the Hamiltonian (1) in cylindrical coordinates and
with the ansatz for the wave function

ψkl(z,ϕ) = eiϕle−ikz

(
fkl

eiϕgkl

)
, (3)

the spinor ψ̃kl = (fkl,gkl)T is an eigenstate of

h̃kl = s2k + s3
[(

l + 1
2 − η

)/
R + m

]
. (4)

Here we take v = h̄ = 1 and m = mẑ. To illustrate the
emergence of Majorana fermions in the simplest possible
setting, we now focus on the η = 1/2 case and consider
chemical potential |μ| < vh̄/R, i.e., intersecting only the l = 0
branch of the spectrum Eq. (2). The Hamiltonian for this
branch then becomes hk = (ks2 − μ) + ms3, where we have
explicitly included the chemical potential term.

With this preparation we can now construct the
Bogoliubov–de Gennes Hamiltonian describing the proximity-
induced superconducting order in the nanowire. In the second-
quantized notation it reads H = ∑

k �
†
kHk�k , with �k =

(fk,gk,f
†
−k,g

†
−k)T and

Hk =
(

hk 	k

−	∗
−k −h∗

−k

)
. (5)

In the following we consider the simplest s-wave pair potential
	k = 	0is2 with 	0 a (complex) constant order parameter,
which corresponds to the pairing term 	0(f †

k g
†
−k − g

†
kf

†
−k).

Introducing Pauli matrices τα in the Nambu space we can
write, assuming 	0 real,

Hk = τ3(s2k − μ + s3m) − τ2s2	0, (6)

with eigenvalues Ek = ±[k2 + μ2 + m2 + 	2 ± 2(k2μ2 +
μ2m2 + m2	2)1/2]1/2.

In the special case when μ = 0, the spectrum simplifies,

Ek = ±
√

k2 + (m ± 	0)2. (7)

The form of the spectrum above suggests that a localized
zero mode will exist at a boundary between SC and magnetic
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domains, i.e., when (m ± 	0) changes sign. We thus seek
a zero-energy eigenstate H�0(z) = 0 of H = τ3[−s2i∂z +
s3m(z)] − τ2s2	(z) with m(z), 	(z) of the form indicated
in Fig. 2(c). A single Jackiw-Rossi zero mode24 indeed
exists and has the form �0(z) = (1, − 1,1, − 1)T u(z), with
u(z) = u0 exp

∫ z

0 dz′[	(z′) − m(z′)] and u0 a normalization
constant. The associated field operator

ψ̂0 =
∫

u(z)[f (z) − g(z) + f †(z) − g†(z)]dz (8)

has the property ψ̂
†
0 = ψ̂0 and represents, therefore, a Majo-

rana fermion.
The above explicit calculation establishes the existence of

an unpaired Majorana mode at a SC and magnetic domain
wall in a TI nanowire under very special conditions. We now
argue that the effect is in fact generic. First, we reason that
the magnetic order, although convenient in the derivation, is
in fact irrelevant. Consider a nanowire of length L � ξ , the
length scale of the zero mode, with the domain wall located
near its center. In a physical system Majoranas always come
in pairs. Since the second Majorana fermion evidently cannot
live in the gapped bulk (or at the magnetic end), we conclude
that it must be localized at the SC end, irrespective of the exact
boundary condition. Second, it is easy to see that the chemical
potential can be moved away from zero without perturbing the
Majoranas. Indeed, with m = 0 the spectrum of Eq. (6) reads
Ek = ±[(k ± μ)2 + 	2

0]1/2, indicating that the bulk of the wire
shows a SC gap 	0 for any value of μ. Therefore, Majorana
end states will persist even as μ is varied away from 0.
When the chemical potential intersects additional bands, then
each band contributes a single Majorana end state. Any even
number of these will pair up to form ordinary fermions (whose
energies will generically be nonzero), but for an odd number of
occupied bands a single unpaired zero-energy Majorana will
remain. This consideration elucidates the physical meaning of
Kitaev’s Majorana number M. We note that the topological
nature of the zero mode guarantees its stability against smooth
deformations of the nanowire shape, as long as its bulk remains
gapped and the total magnetic flux seen by the surface state is
unchanged.

To explicitly address the existence and robustness of Majo-
rana end states, we now study the nanowire using a concrete
lattice model of Bi2Se3 family of materials.18 Specifically, we
use the model given by Fu and Berg,25 regularized on a simple
cubic lattice, defined by a k-space Hamiltonian

hk = Mkσ1 + λσ3(s2 sin kx − s1 sin ky) + λzσ2 sin kz, (9)

with Mk = ε − 2t
∑

α cos kα . Here σα represent the Pauli
matrices acting in the space of two independent orbitals per
lattice site. For λ,λz > 0 and 2t < ε < 6t the system described
by Hamiltonian (9) is a TI in a Z2 class (1;000), i.e., a
strong topological insulator. The magnetic field enters through
the Peierls substitution, replacing all hopping amplitudes as
tij → tij exp [−(2πi/�0)

∫ j

i
A · dl] and the Zeemann term

−gμBB · s/2, where μB = eh̄/2mec is the Bohr magneton.
In the SC state the BdG Hamiltonian takes the form of Eq. (5),
with 	k = 	0is2 describing on-site spin singlet pairing.

We have solved the problem posed by Hamiltonian (9) in
various wire geometries by exact numerical diagonalization

)(b)(a

FIG. 3. (Color online) (a) Energy dispersion for an infinitely long
TI wire with a 20 × 20 base described by lattice Hamiltonian (9)
in the normal state with η = 0.52. For clarity, only the low-energy
portion of the spectrum is displayed in a part of the Brillouin zone.
The inset shows the spin expectation values for the gapless state
at small positive k. The length of the arrow is proportional to the
wave-function amplitude. (b) Lines separating regions with different
Majorana numbers M = −1(+1) extracted from the spectrum. All
energies are in units of λ = 150 meV and we use parameters λz =
t = 1, ε = 4, and g = 32, corresponding to the strong TI phase with
a Z2 index (1;000) and a bulk band gap 2λ = 300 meV.

and by sparse matrix techniques. Figure 3(a) shows a typical
example of the excitation spectrum in an infinitely long wire
with a W × W cross section in the normal state. We observe
that for η close to 1/2 the surface state is indeed gapless
and the low-energy modes exhibit the expected pattern of
degeneracy. Because of the surface-state penetration into the
TI bulk, the surface electrons see a slightly smaller magnetic
flux than the nominal flux � = BW 2 given by the wire
geometry and the gapless state is shifted to a slightly higher
value of η. This is also seen in Fig. 3(b), which displays the
Majorana number for the same system. This figure indicates
that for η = 0.52(2n + 1) the system will be a one-dimensional
(1D) topological SC for any value of μ inside the bulk
gap.

Superconducting order opens a gap in the electron excita-
tion spectrum, as illustrated in Fig. 4(a). For an open-ended
wire, crucially, our calculations reveal a pair of nondegenerate

(b)(a)

FIG. 4. (Color online) (a) Energy bands for an infinitely long TI
wire with a 6 × 6 base in the SC state with η = 0.49, μ = 0.09, 	0 =
0.08, and g = 0 (solid lines), and the energy levels for a L = 36 finite-
length wire with open boundary conditions (red circles) obtained by
exact numerical diagonalization. (b) Three lowest positive energy
eigenvalues obtained by the Lanczos method as a function of L.
The Dashed line represents the envelope function 0.089e−L/ξ with
ξ = 17.5.
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states at ±E0 inside the SC gap whose energies approach zero
for large L as E0 ∝ e−L/ξ . Figure 4(b) illustrates this expo-
nential decay (which is, in addition, modulated by oscillations
at 2kF ). Higher-energy eigenstates approach nonzero values
close to 	0 for large L. We have verified that the appropriate
linear superpositions of the wave functions associated with
the ±E0 eigenvalues are exponentially localized near the
ends of the wire. The corresponding field operators then
satisfy the Majorana condition ψ̂† = ψ̂ , and represent, up
to exponentially small corrections in their separation, the
Majorana zero modes.

We conclude with comments on the experimental real-
ization. For the existing Bi2Se3 nanowires13,14 with a cross-
sectional area S ≈ 6 × 10−15 m2, the surface level spacing is
δES 
 vh̄

√
π/S 
 7 meV. At half flux quantum, which cor-

responds to the magnetic field strength B = �0/2S 
 0.34 T,
the Zeemann energy scale δEZ = gπh̄2/2meS 
 0.6 meV
(taking v = 5 × 105 m/s and g = 32) and is thus probably
negligible. Experiments on planar Sn-Bi2Se3 interfaces15 show
an induced SC gap ∼0.2 meV, a significant fraction of the
native Sn bulk gap (∼0.6 meV). It thus appears conceivable
that a pairing gap of several meV could be induced in Bi2Se3

nanowires by using, in place of Sn, a superconductor with a
larger bulk gap, such as NbTiN or MgB2. A gap of this size
should permit detection of the Majorana fermion by scanning
tunneling techniques. The latter will show up as a zero-bias

peak exponentially localized near the end of the wire in the
topological phase, but will disappear as the phase boundary
into the non-topological phase is traversed by tuning either the
chemical potential or magnetic field. Unambiguous detection
of Majorana fermions can be achieved by probing 4π -periodic
Josephson current through a weak link in the wire, as described
in Refs. 10–12. Another intriguing possibility is to fabricate
nanowires from CuxBi2Se3, which becomes a superconductor
below 4 K (Ref. 26) while simultaneously retaining protected
surface states.27

Energy scales orders of magnitude higher compared to
the ordinary semiconductor wires, significantly reduced re-
quirements for chemical potential control and sample purity
(afforded by operation in the T -invariant regime) make TI
nanowires promising candidates for the experimental detection
of Majorana fermions. Our numerical simulations of the model
Hamiltonian (9) with disorder (to be reported separately)
show essential robustness against nonmagnetic impurities,28

but systematic studies of the effects of disorder and interactions
along the lines of recent works29,30 constitute a future research
direction.
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