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Topological insulators from complex orbital order in transition-metal oxides heterostructures
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Topological band insulators which are dynamically generated by electron-electron interactions have been
theoretically proposed in two- and three-dimensional lattice models. We present evidence that the two-dimensional
version can be stabilized in digital (111) heterostructures of transition-metal oxides as a result of purely local
interactions. The topological phases are accompanied by spontaneous ordering of complex orbitals and we discuss
their stability with respect to the Hund’s rule coupling, Jahn-Teller interaction, and inversion-symmetry breaking
terms. As main competitors we identify spin-nematic and magnetic phases.
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Introduction. Recently, the search for materials which
realize a topological insulator (TI) phase1–4 has dramatically
increased. Thereby, the main focus has been on compounds
involving heavy elements with strong spin-orbit coupling.3,4

On the other hand, it was pointed out that topological band
properties can also arise from the spontaneous breaking
of a symmetry in interacting systems where the spin-orbit
coupling is negligible.5 In principle, this scenario suggests
that TIs can be found in a much larger class of materials,
and several theoretical investigations support the existence
of such interaction-driven TIs in two- and three-dimensional
interacting lattice models.5–11 From the experimental point of
view, the situation is less satisfying and an experimental study
of an interaction-driven TI is still lacking. In fact, the number
of possible experimental systems is rather limited, and the most
promising candidate so far is probably few-layer graphene.12,13

In this Rapid Communication, we build on previous theoretical
investigations and show that a two-dimensional interaction-
driven TI phase may be stabilized from purely local interac-
tions in multiorbital models for transition-metal oxides. This
result significantly extends the range of possible experimental
systems. Using the conventional Hartree-Fock mean-field
theory in combination with the theoretical analysis of the
k · p model, we find that the TI phase is accompanied by
the spontaneous ordering of complex orbitals.

Our starting point is a system which belongs to the recently
proposed class of digital oxide heterostructures14,15 grown
in the (111) direction,16 and it is sketched in Fig. 1. More
precisely, we focus on the d electrons of a (111) bilayer of the
cubic transition-metal oxide ABO3 [see Fig. 1(b)] which is
embedded in a band insulator AB ′O3. We assume that the “ac-
tive” compound (ABO3) is metallic in bulk with a low spin d7

configuration of the transition-metal (TM) ions, i.e., we assume
filled t2g orbitals and one electron in the eg manifold. A possi-
ble choice of materials satisfying these requirements is a (111)
bilayer of LaNiO3 embedded in the band insulator LaAlO3.

The orbital degrees of freedom of the eg manifold are
described by the two real orbitals |a〉 = |dz2〉 and |b〉 =
|dx2−y2〉 [see Fig. 1(c)], which form a T = 1/2-pseudospin
�T . We will argue that topological phases can be stabilized
by a spontaneous (and possibly spin-dependent) ferro-orbital
ordering of complex orbitals of the form

|d ± id〉 = (|dz2〉 ± i|dx2−y2〉)/
√

2. (1)

These orbitals are eigenstates of T y . In most cases, the
complex orbitals (1) are energetically disfavored because both
superexchange and lattice distortions prefer real orbitals in
stoichiometric compounds.17 However, the band structure of
the considered (111) bilayer features a quadratic band crossing
(QBC) point with a d-wave symmetry in orbital space which
favors ordering of complex orbitals in a range of parameters
at weak interactions.6

Bilayer model. As illustrated in Figs. 1(b) and 1(c), the
transition-metal ions of the (111) bilayer system form a hon-
eycomb lattice. We study the following effective Hamiltonian
for the eg electrons hopping on this honeycomb lattice:

H = H0 + Hint + Hperp. (2)

The band Hamiltonian H0 in the tight-binding approximation
has been derived in Ref. 16. In momentum space it takes the
form

H0 =
∑
k,σ

�d†
σ (k)H0(k) �dσ (k), (3)

where �dσ = (d1aσ ,d1bσ ,d2aσ ,d2bσ )T is a vector of fermionic
annihilation operators. Here, the bottom layer is labeled with
the subscript 1 and the top layer with the subscript 2. The
orbital labels are a and b and the spin is σ . The Bloch matrix
H0(k) is a 4 × 4 matrix of the form

H0(k) =

⎛
⎜⎜⎜⎝

0 0 εak εabk

0 0 εabk εbk

ε∗
ak ε∗

abk 0 0

ε∗
abk ε∗

bk 0 0

⎞
⎟⎟⎟⎠. (4)

Here, we kept only the dominant nearest-neighbor
hopping t and εak = −t[1 + 1

2 cos(
√

3
2 kx)e−i 3

2 ky ], εbk =
− 3t

2 cos(
√

3
2 kx)e−i 3

2 ky , and εabk = −i
√

3
2 t sin(

√
3

2 kx)e−i 3
2 ky . [kx

and ky directions refer to the (X,Y ) axes in Fig. 1(c).] A
more general form which also includes the second neighbor
hopping is reproduced in the Supplemental Material.18,19 Our
main conclusions remain valid as long as t is large compared
to other tight-binding parameters. The noninteracting band
structure of Eq. (4) has an interesting and, for the following
discussion, crucial feature: The Fermi surface at quarter filling
consists of a single Fermi point k = 0 where two bands touch
quadratically.16,20 This QBC point has a d-wave symmetry in
orbital space and a sixfold rotation symmetry in k space which
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FIG. 1. (Color online) (a) The digital oxide heterostructure
considered here is grown in the (111) direction and of the form
AB ′O3/ABO3/AB ′O3. (b) The “active” region consists of a (111)
bilayer of the metallic ABO3 perovskite. Shown are the locations
of the transition-metal ions (B). (c) The bilayer system forms a
honeycomb lattice when projected to the plane perpendicular to (111).
We assume that the relevant orbital degrees of freedom are the eg

orbitals of the transition-metal ions.

protects it from splitting into Dirac points.6 We note here that
the angular momentum of the eg manifold is quenched and
spin-orbit coupling only enters as a higher-order process via
coupling to the t2g orbitals,16 which is assumed to be weak and
neglected in the following. Furthermore, the linear coupling to
the trigonal crystal field is also absent,16 and the QBC point in
the noninteracting band structure is a rather generic feature of
the considered heterostructure.

The electron-electron interaction is accounted for by the
local interaction between the d electrons of the form

Hint =
∑

r

[
U

∑
α

nrα↑nrα↓ + (U ′ − J )
∑

α>β,σ

nrασ nrβσ

+U ′ ∑
α 	=β

nrα↑nrβ↓ + J
∑
α 	=β

d
†
rα↑drβ↑d

†
rβ↓drα↓

+ I
∑
α 	=β

d
†
rα↑drβ↑d

†
rα↓drβ↓

]
. (5)

The intraorbital repulsion is denoted by U , the interorbital
interaction by U ′, J parametrizes the Hund’s rule coupling, and
I is the pair-hopping term. We employ the standard relations
U = U ′ + 2J and J = I valid for an isolated ion, which leaves
us with two independent interaction parameters U and J .

The ideal electronic model is perturbed by Hperp = HV +
HJT. Here, HV describes a sublattice potential which breaks
the inversion symmetry between the top and bottom layer

HV = V

2

∑
k,σα

[d†
1ασ (k)d1ασ (k) − d

†
2ασ (k)d2ασ (k)]. (6)

This term is present if the bilayer system is capped by a dif-
ferent insulator than the one beneath it. Finally, HJT accounts
for the cooperative Jahn-Teller effect which potentially drives
a structural phase transition with distorted oxygen octahedra.
The coupling of the electrons to the phonons of the oxygen
displacements leads to an effective interaction between the
electrons of neighboring transition-metal ions, and we adapt
the simple form17,21

HJT = K
∑
〈i,j〉

τ l
i τ

l
j . (7)

The suffix l = x,y,z denotes the direction of the bond
between i and j and τ l

i = cos( 2πnl

3 )T z
i − sin( 2πnl

3 )T z
i with

K/t

V
/
t
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J
/
U
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FIG. 2. (a) Zero-temperature mean-field phase diagram of the
ideal model as function of the repulsion U/t and Hund coupling J/U .
Topological phases are found in the small-U limit (QAH2/QSH) and
within the ferromagnetic phase (FM + QAH1). (b) Mean-field phase
diagram as function of an inversion-symmetry breaking field V/t

and a Jahn-Teller interaction of strength K/t for fixed interaction
parameters [∗ in (a)]. We find a topological phase between a spin-
nematic (SNz) and an antiferromagnetic (AFM) phase. More details
about the various phases are given in the main text.

(nx,ny,nz) = (1,2,3). K is positive and therefore favors a
staggered orbital order of real orbitals.

Phase diagram. We first focus on the ideal electronic
model and assume Hperp = 0. The mean-field phase diagram
obtained by solving the self-consistency equations numerically
is shown in Fig. 2(a) as a function of the two dimensionless
interaction parameters U/t and J/U . We will understand the
small-U phases in this diagram qualitatively by analyzing
the instabilities of the QBC below. The strongly interacting
limit is dominated by magnetic phases: If the Hund coupling
J/U is sufficiently small, we find an antiferromagnetic (AFM)
phase which is accompanied by a ferro-orbital (FO) order. For
larger ratios of J/U we find (fully polarized) ferromagnetic
(FM) order. In the absence of orbital order, the FM phase
is gapless and has two Dirac nodes. Orbital order can open
a gap in the FM phase. In particular, a quantum anomalous
Hall state1 (QAH1) with Chern number n = ±1 is found if
complex orbitals are involved.22 The topological nature of this
phase can be understood in analogy to the small-U situation
discussed below.

The weak-to-intermediate interaction regime is dominated
by phases which are characteristic of the underlying QBC
point.11 For small ratios J/U , we find an interaction-driven
topological phase. The topological state either breaks the
time-reversal symmetry and has a finite Chern number n =
±2 (QAH2), or it preserves the time-reversal symmetry but
breaks the spin-rotation symmetry realizing the quantum spin
Hall (QSH) state.2 On the mean-field level, QAH and QSH
phases are degenerate (in fact, for I > J QAH and for
I < J QSH is favored).18 The topological phase is surrounded
by a spin-nematic (SN) phase which also develops a weak
FM order (wFM) for increasing U/t . For U/t � 0.9 it is
difficult to numerically resolve the energy difference between
the topological and the spin-nematic phases because both
energies are exponentially small in U/t . The phase boundary
shown in Fig. 2(a) for U/t < 0.9 is an extrapolation to
J/U = 0.2 for U/t → 0, which is the result obtained from
the following analysis of a reduced model. Finally, we note
that charge nematic (CN) phases are absent for the considered
parameters.18
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FIG. 3. (Color online) Spin and charge densities in orbitally
ordered phases of the bilayer system as seen from the (111) direction.
The bright and dark orbitals in the spin-nematic and AFM phases
denote opposite majority-spin densities and the orbital ordering also
breaks the threefold rotation symmetry. The relevant orbitals in the
topological phase preserves the threefold rotation symmetry.

We now briefly discuss some aspects of perturbing the
ideal system with Hperp = HV + HJT. In Fig. 2(b) we show
the resulting phase diagram for fixed interaction parameters
U = 2t and J = 0.1t , which corresponds to the SN phase
in the ideal model. For finite K and V , the SN phase
is accompanied by weak ferrimagnetic order. Interestingly,
because the Jahn-Teller interaction favors staggered orbital
order, it destabilizes the SN phase with uniform orbital order,
allowing the topological phase to be energetically favored for
some intermediate values of K/t and small V/t . For even
larger values of K/t , we find an AFM phase with staggered
orbital order (AFO).

The mean-field analysis reveals various types of ordering
of the orbital degrees of freedom. In Fig. 3 we sketch the
charge- and spin-density distribution for some representative
examples. In the SN and the AFM phase the threefold rotation
symmetry of the lattice is broken and the orbital ordering
involves real orbitals of the form

|θ〉 = cos
θ

2
|dz2〉 − sin

θ

2
|dx2−y2〉. (8)

The AFM phase orders in orbitals with θAFM = 0 (or ±2π/3),
which are eigenstates of Tz (or the equivalent operators
obtained by rotating �T by ±2π/3 around the y axis in
orbital space). The spin-nematic phase is either ordered along
the z axis (SNz) or the x axis (SNx) in orbital space and
electrons of a given spin are predominantly in one of the two
orbital eigenstates. On the other hand, 〈 �T 〉 points along the
y direction for topological phases, and the ordering involves
complex orbitals of the form given in Eq. (1). As opposed to
the real orbitals, the charge distribution associated with the
complex orbital of the form Eq. (1) preserves the trigonal
symmetry of the bilayer system. We note here that a finite
spin-dependent ordering in the y direction formally enters the
mean-field Hamiltonian in the same way as would the intrinsic
spin-orbit coupling.16 The relation between the topological
band properties and the complex orbitals is further discussed
below.

Reduced model for QBC point. The competition among
various weak-coupling instabilities can be discussed in a
reduced model which focuses only on the bands participating
in the quadratic touching point and to momenta within a radius

	 around the origin in k space (k · p expansion). The effective
model for the QBC point at the Fermi energy is found by
expanding H0(k) to order k2 and eliminating the coupling
to the higher bands in the same order by use of a canonical
transformation. In polar coordinates the reduced Hamiltonian
takes the form

H̃0 =
∑

σ

∫ 	

0

kdk

2π

∫ 2π

0

dφ

2π
|k,φ,σ 〉〈k,φ,σ | ⊗ Horb(φ,k).

(9)

Horb acts on the two-dimensional orbital space defined by the
bonding orbitals of the bilayer system given by

|α̃〉 = 1√
2

(|α,1〉 + |α,2〉)

for k = 0 with α = a,b. Horb has the standard form of a QBC
point with d-wave symmetry6

Horb(φ,k) = k2[tI I + tx sin(2φ)T̃x + tz cos(2φ)T̃z]. (10)

Here, I denotes the identity and we have introduced the

pseudospin operator �̃T (with eigenvalues ±1) of the reduced
orbital space (|ã〉,|b̃〉). The parameters in Eq. (10) can be
related to the hopping t entering the full Bloch matrix
Eq. (4): tI = tz = −tx = 3t/16. Diagonalizing Eq. (9) yields
two quadratically dispersing bands with different effective
masses which touch at k = 0: ε1,2(k) = ∓k2/(2m1,2), with
m1,2 = 1/[2(|tz| ∓ tI )]. (For tz = tI > 0 the lower band is flat
and m1 → ∞.) The eigenfunctions of Eq. (10) depend on the
azimuth φ and have the simple form

|1〉φ = sin φ|ã〉 + cos φ|b̃〉, |2〉φ = cos φ|ã〉 − sin φ|b̃〉.
In other words, the orbital character changes twice when
encircling the origin in k space.

Lifting the degeneracy. The degeneracy of the spectrum at
k = 0 is lifted by a uniform “orbital field” �oσ which couples

to the orbital pseudospin �̃T . A finite y component oy,σ yields
a φ-independent coupling between the two bands. Adding a
term oy,σ T̃y to Eq. (10) opens an energy gap throughout k

space: ε±,σ (k) = tI k
2 ±

√
t2
z k4 + o2

y,σ . The resulting bands

are topologically nontrivial and one finds a finite Chern
number23,24

Cσ = 1

4π

∫
d2k n̂ ·

(
∂ n̂
∂kx

× ∂ n̂
∂ky

)
= −sign(oy,σ ). (11)

Here, the limit oy,σ /(tz	2) → 0 has been taken. The unit
vector n̂ denotes the direction of the resulting field which

couples to the orbital pseudospin �̃T :

n̂ = [−tzk
2 sin(2φ),oy,σ ,tzk

2 cos(2φ)]T /

√
t2
z k4 + o2

y,σ .

Cσ measures the winding number of the vector n̂ around the
sphere. From Eq. (11) we conclude that a finite orbital field in
the y direction results in a topological phase: If oy,↑ = oy,↓,
the two electrons occupy the same complex orbital, realizing
a QAH state with a total Chern number n = ∑

σ Cσ = ±2
and Hall conductivity σxy = −ne2/h. If oy,↑ = −oy,↓, time-
reversal symmetry is preserved and n = 0. However, this phase
has a nontrivial Z2 invariant and the QSH state is realized.
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An orbital field which couples to T̃x and/or T̃z leads to a
φ-dependent coupling between the noninteracting bands.18 As
a result, the rotation symmetry of the spectrum in k space
is broken and the QBC point splits into Dirac points with
Berry phases ±π . Therefore, a orbital field in the (x,z) plane
corresponds to a nematic phase.6,9

Mean-field instabilities. We have analyzed the mean-field
theory in the reduced space of the model Eq. (9) and have found
that the order parameters of the nematic and topological phases

enter through an orbital field which couples to �̃T . The CN and
QAH order parameters enter through a spin-independent field
while the SN and the QSH order parameters enter through a
spin-dependent field with opposite values for ↑ and ↓ spins.18

In either case, the linearized self-consistency equations can
be solved, and we find that the condensation energies depend
exponentially on the interaction parameters. For the nematic
phases (ν = SN, CN) we find

�Eν ≈ −2γ t2
z 	4

/
uν exp (−8πtz/uν) , (12)

where γ ≈ 10.8 is a numerical factor.18 The interaction
parameters enter through the combinations uSN = (U − J )/8
and uCN = (U − 5J )/8 and Eq. (12) holds for uν > 0. Because
uSN > uCN for J > 0, the spin nematic is favored over the
charge nematic phase. For the topological phases we find the
following condensation energy:

�Eϑ ≈ −2t2
z 	4

/
uϑ exp (−4πtz/uϑ ) . (13)

The effective interactions for QAH and QSH are equal and are
given by uϑ = (U − 3J )/8. There is a factor of 2 difference
in the exponents of Eqs. (12) and (13). This difference can be
traced back to the angular averaging in momentum space which
for the nematic phases effectively reduces the interaction
parameter in the exponent. The phase boundary between
the topological and nematic phase is obtained by equating
the condensation energies Eqs. (12) and (13). In the limit
U/t → 0, it suffices to compare the exponents which yields

a critical ratio (J/U )c = 1/5. If J/U < 1/5, the topological
phase is preferred over the SN phase, and if J/U > 1/5, SN
is preferred. For small but finite U/t we find a monotonically
decreasing phase boundary consistent with the numerical
results of the full model presented in Fig. 2(a).

Conclusion. In summary, we have discussed a mechanism
for spontaneous quantum Hall states in interacting multiorbital
models for a class of transition-metal oxide heterostructures.
These topological phases are stabilized from purely local
interactions and are accompanied by an orbital ordering of
complex orbitals. In the weak-coupling limit, the topological
aspects can be understood qualitatively within a reduced
model addressing the instabilities of the QBC point. Our
results suggest that, in the weakly interacting limit, topological
phases are most likely found for small Hund coupling in an
inversion-symmetric bilayer. Notably, we find that a weak-
to-intermediate Jahn-Teller interaction can help stabilizing
a topological phase by suppressing its main competitor, the
spin-nematic phase. Furthermore, the mean-field calculations
also suggest a topological phase at larger interaction strength
within the strongly ferromagnetic regime.22

The (111) oxide heterostructures discussed in the present
Rapid Communication offer a large freedom to design the
electronic properties by suitable material combinations. Be-
sides the two-dimensional spin-orbit16 or interaction-driven
topological insulators, one might also engineer more exotic
topological phases such as the spin-charge-separated QSH∗
phase25–27 or fractional quantum Hall states.16,28–35 An impor-
tant future direction is to incorporate first-principle calcula-
tions to study the validity of the tight-binding approximation
and to identify possible candidate materials.
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