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Approximate method for controlling solid elastic waves by transformation media
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By idealizing a general mapping as a series of local affine ones, we derive approximately transformed material
parameters necessary to control solid elastic waves within classical elasticity theory. The transformed elastic
moduli are symmetric, and can be used with Navier’s equation to manipulate elastic waves. It is shown numerically
that the method can provide a powerful tool to control elastic waves in solids in case of high frequency or small
material gradient. Potential applications can be anticipated in nondestructive testing, structure impact protection,
petroleum exploration, and seismology.
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The transformation method1–3 provides an efficient tool to
find necessary material distribution when a wave pattern is
prescribed in a space. Many interesting devices have been
proposed, especially with the help of electromagnetic or
acoustic metamaterials.4–8 The method is also extended to
control heat conduction9 and matter waves.10 These exotic
properties are bestowed by form invariance of Maxwell or
Helmholtz equations under a general spatial transformation.
A comprehensive theory for the transformation method of
generalized acoustics was developed by Norris,11 and an
acoustic cloak has been recently demonstrated experimentally
by Zhang et al.12 However, for elastic waves in solid materials,
Milton et al.13 show that Navier’s equation is transformed to
Willis’ equation for a general spatial transformation, therefore,
the machinery developed for electromagnetic or acoustic
waves cannot be directly applied to solid elastic waves. Due to
the complicated nature of Willis’ equation and its unusual
constitutive equation, efforts are continually made to find
approximate methods to control the elastic wave in some
degrees, since elastic waves are involved in broad engineering
applications. For example, in the quasistatic limit, Zhou et al.14

proposed an elastic cloak with an impedance-matched method;
Brun et al.15 reported a cylindrical cloak for an in-plane elastic
wave with an asymmetric elasticity tensor; Farhat et al.16

suggested a cloak for shielding a thin plate bending wave in a
long wavelength limit. In this Rapid Communication, we will
idealize a general space transformation by local affine ones
point by point, and propose an approximate method to control
elastic waves. The approximation of the method will also be
clarified in the context of elastic ray theory.

When an initial space � is transformed to �′ by a mapping
x′ = x′(x), a physical process F prescribed on the initial
space with field quantity u and material parameter C is also
transformed to the new space �′ with a new field quantity u′
and material parameter C′. The transformed relation between
u′ and u, and C′ and C can be derived if the governing
equation of the physical process is globally form invariant.
For elastic waves governed by Navier’s equation, we will
idealize a general transformation by a series of local affine
ones point by point. Since Navier’s equation locally keeps
its form under an affine transformation,17 we will derive the
transformed material parameters in this circumstance. To this
end, we establish at any point x of � a local Cartesian frame ei

and at the point x′ = x′(x) of �′ another local Cartesian frame

e′
i , uniquely determined by the mapping. With the assumption

of a local affine transformation, the governing equation will
retain locally its form in the two spaces with respect to the two
local Cartesian systems, i.e.,

F (x,u,C,t) = 0, x ∈ �, (1)

F (x′,u′,C′,t) = 0, x′ ∈ �′. (2)

Equation (2) imposes a constraint condition on u′ and C′. In
addition, we assume that each type of energy is conserved
at every point during the mapping; this will lead to another
constraint condition, and these constraint conditions will
determine directly the transformed relations for u′ and C′.
During a mapping, the space will experience locally a rigid
rotation and a stretch operation, i.e., A = ∇xx′ = VR,18 where
R is a rigid rotation, V is a stretch operation, and it can be
expressed by its eigenvector e′

i and eigenvalues λi as V =
λ1e′

1 ⊗ e′
1 + λ2e′

2 ⊗ e′
2 + λ3e′

3 ⊗ e′
3. The e′

i establish a
local Cartesian frame at each point in the transformed space �′.
Any physical quantity q in the initial space will experience with
the space element the same rigid rotation, then it will stretched
to reach q′ in the transformed space, i.e., VqR : q → q′. The
transformed physical quantities must rescale themselves to
satisfy Eq. (2) and the energy conservation condition; this
provides a way to determine them. This general idea has
been applied to electromagnetic and acoustic waves.19 In the
following, we will apply the above idea to elastodynamics,
namely, Navier’s equation

∇ · σ = ρ
∂2u
∂t2

, σ = C : ∇u, (3)

where u denotes the displacement vector, σ is the two-order
stress tensor, C is the four-order elasticity tensor, and ρ is the
density. Any transformed physical quantity q′ can be written
symbolically as

VqR : q → q′, q = σ,u,C,ρ, (4)

where R establishes a local Cartesian frame e′
i from ei (chosen

arbitrary due to isotropy in the initial space) by a rotation, Vq
has a diagonal form expressed in e′

i for the physical quantity
q, i.e.,

Vσ = diag[a1,a2,a3], Vu = diag[b1,b2,b3],

VC = diag[c1,c2,c3], Vρ = diag[d1,d2,d3], (5)
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ai , bi , ci , and di are scaling factors, respectively, for stress,
displacement, modulus, and density, and they will be deter-
mined with the help of the constraint conditions. During a
rigid rotation, any attached physical quantity together with the
frame ei are rotated to e′

i , so the component of the physical
quantity in the local frame e′

i will not be altered by this rigid
rotation. In the local Cartesian frame e′

i , Vq is of diagonal
form, so the transformed relations for the physical quantities
from frame ei to frame e′

i at each point can be written as20

σ ′
ij = aIaJ σij , u′

i = bIui, C ′
ijkl = cI cJ cKcLCijkl,

ρ ′
ij = dI δijρ, (6)

where δij is the Kronecker delta, and the capital letter in the
index means the same value as its corresponding lowercase
letter but without the summation.

Equation (3) is written in the initial local Cartesian frame
ei as

∂σij

∂xi

= ρ
∂2uj

∂t2
, σij = Cijkl

∂uk

∂xl

. (7)

After a local affine transformation, this equation retains its
form in the local Cartesian system e′

i in the transformed space
�′

∂σ ′
ij

∂x ′
i

= ρ ′
ij

∂2u′
i

∂t2
, σ ′

ij = C ′
lijkl

∂u′
k

∂x ′
l

. (8)

With the help of Eqs. (6) and (8), and the differential relation
between the two spaces ∂/∂x ′

i = ∂/λI ∂xi ,19 we have

aI aJ

λI

∂σij

∂xi

= dJ bJ ρ
∂2uj

∂t2
, aI aJ σij = cI cJ cKcL

bK

λL

Cijkl

∂uk

∂xl

.

(9)

Here the scaling factors are uniform at the considered point
and its neighborhood, respectively, due to the assumption of
the local affine transformation. The conservations of strain
and kinetic energies during the mapping give the following
constraint for the scaling factors:

ρδij

∂ui

∂t

∂uj

∂t
= λ1λ2λ3dI b

2
i ρ

(
∂ui

∂t

)2

, σij

(
∂ui

∂xj

+ ∂uj

∂xi

)

= λ1λ2λ3aI aJ σij

(
bI

λJ

∂ui

∂xj

+ bJ

λI

∂uj

∂xi

)
. (10)

By comparing Eq. (9) directly with (7), together with Eq. (10),
the scaling factors are found to satisfy

aiaj

dJ bJ

= λi,
aiaj

cI cJ cKclbk

= 1

λl

, aiajbI = λj

λ1λ2λ3
. (11)

λi is known when a mapping is provided, so the scaling factors
ai , bi , ci , and di can be related to λi . Generally, Eq. (11) has a
nonunique solution, if we set u′ = (AT)−1u as in Ref. 13, i.e.,
bi = 1/λi , then the scaling factors are uniquely determined as

ai = λi√
det A

, bi = 1

λi

, ci = λi

4
√

det A
, di = λ2

i

det A
. (12)

In the global frame, the transformed relations of σ ′, u′, and ρ ′
are given, respectively, by

σ ′ = AσAT

det A
, u′ = (AT)−1u, ρ ′ = AρAT

det A
, (13a)

The transformed relation of C′ is expressed in the local
Cartesian frame e′

i as

C ′
ijkl = λIλJ λKλL

det A
Cijkl . (13b)

Equation (13) provides the transformed material parameters
for controlling solid elastic waves by the transformation
method. The transformed moduli possess the necessary
symmetry C ′

ijkl = C ′
ij lk = C ′

jikl = C ′
klij , as required in

classical elasticity theory. If the material in the initial space
is fluid, i.e., Cijkl = κδij δkl , and u′ = (AT)−1u, both ρ ′ and
C′ agree with the results given in Ref. 11 for generalized
acoustic waves obtained by a completely different method.
If the materials in the initial and transformed spaces are
both fluid, i.e., σij = Pδij , σ ′

ij = P ′δij , Cijkl = κδij δkl , and
C ′

ijkl = κ ′δij δkl , the transformed relation given by Refs. 7,8,
and 21 for the acoustic wave also can be recovered.

To illustrate the proposed method, we design in the
following an elastic rotator with the transformed material
parameters given by Eq. (13), and validate them through
numerical simulation. We propose the following mapping for
the rotator:

r ′ = r, θ ′ = θ + f (r)θ0, (14)

where θ0 is a rotation angle, a and b are the radii of inner
and outer boundaries of the rotator, respectively, andf (r) is
a function used to satisfy the impedance-matched condition
at the boundary. To this end, the quintic polynomial f (r)
is used with f (a) = 1, and f (b) = f ′(a) = f ′(b) = f ′′(a) =
f ′′(b) = 0 at the boundaries. Once the transformation is
complete, and the material parameters for the elastic rotator
are obtained from Eq. (13), the constructed rotator is then
simulated with COMSOL Multiphysics. We set a = 0.1 m, b

= 0.35 m, the normalized Lamé constants of the background
are λ = 2.3, μ = 1, and the density is ρ = 1 with respect
to fused silica.15 A small circle of radius r = 0.01 m, a
distance away from the rotator, can emit harmonic P or S

waves, respectively, and it in turn impinges on the rotator. The
perfectly-matched-layer (PML) conditions are imposed on the
boundary of the computed region.22

In order to quantify the approximation of the pro-
posed transformed relation, we define a parameter L =

max
�′,i,j,k,l

|∇C ′
ijkl|γ /C ′

ijkl , where γ is the wavelength in the

initial space; this parameter represents approximately the max-
imum material variation within a wavelength. It is expected
that the proposed method will give better results when L

is small, i.e., more approaching the condition necessary for
local affine transformation. Figure 1 shows the distributions
of total displacement of the designed rotators with different θ0

and different incident frequencies γ , respectively, and all are
with an impinging S wave. It is seen that the wave patterns
are all rotated, as expected. The wave pattern is clearer in
the case where L is smaller, as shown in Fig. 1. The wave
front becomes slightly blurred when L is large, as illustrated
in Fig. 1(a). The same effect can also be observed for the
P waves.

The local affine transformation implies that the material
is considered locally to be homogeneous round at a point
(piecewise constant); this assumption is commonly used in
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FIG. 1. (Color online) Simulation of rotator for elastic waves,

total displacement field (
√

u2
x + u2

y) of the generated S wave: (a)

θ0 = π/4, γ = 0.0375 m, L ≈ 1.748; (b) θ0 = π/4, γ = 0.03 m,
L≈1.398; (c) θ0 = π/4, γ = 0.0225 m, L ≈ 1.049; (d) θ0 = π/8,
γ = 0.0375 m, L ≈ 0.774.

elastic ray theory.23 According to this theory, for a wave of
form u(x,t) = U(x)F (t − T (x)), Navier’s equation is reduced
into the following two equations in a high-frequency approxi-
mation (elastic ray theory):

Cijkl

∂T

∂xl

∂T

∂xj

Uk − ρijUj = 0, (15a)

Cijkl

∂T

∂xj

∂Uk

∂xl

+ ∂

∂xj

(
Cijkl

∂T

∂xl

Uk

)
= 0. (15b)

Equation (15a) is called the eikonal equation describing the
ray path, and (15b) is the transport equation characterizing
the wave amplitude along the ray. It can be shown that
the transformed relation (13) verifies the form invariant of

the eikonal equation, but keeps the transport equation (15b)
form invariant only if the scaling factors change slowly or
their derivatives can be neglected, contrary to transformation
optics and acoustic cases. This implies that the transformed
material parameters can well control the wave path, but leave
the wave amplitude to be controlled approximately. For very
high frequency, the eikonal equation dominates; the proposed
method will lead to nearly perfect results. Detailed discussions
of the transformation method based on the elastic ray theory
will be presented elsewhere. As shown by Milton et al.,13

Navier’s equation is transformed to Willis’ equation, and
when the material gradient is small or the frequency is high,
Willis’ equation can be reduced to Navier’s equation, and
the transformation relation (13) can also be found from their
theory. It must be stressed that the proposed method is different
from the transformation methods existing in literature; the
transformed relations are derived directly from the constraint
conditions, and none of transformed relation is preassumed.
As a result, the proposed method can offer more flexibility in
material design, such as the impedance-matched condition in
isotropic transformed materials.24

In summary, we have proposed an approximate method to
derive the transformed relation for controlling the solid elastic
wave. The method idealizes a general transformation by local
affine ones; the local form invariant of Navier’s equation and
the conservation of energy provide the constraint conditions
to derive the transformed relations. It is shown numerically
that the obtained transformed relation can be used within the
classical elasticity theory to control elastic waves, especially
for the regime of high frequency or the small material gradient.
It is also shown that the transformed material parameters
control well the ray path, but only approximately control the
amplitude along the ray. Potential applications of the proposed
results can be anticipated in nondestructive testing, structure
impact protection, petroleum exploration, and seismology.23,25
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