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One-dimensional surface states on a striped Ag thin film with stacking fault arrays
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One-dimensional (1D) stripe structures with a periodicity of 1.3 nm are formed by the introduction of stacking
fault arrays into a Ag thin film. The surface states of such striped Ag thin films are studied using a low-temperature
scanning tunneling microscope. Standing waves running along the stripes and characteristic spectral peaks are
observed by differential conductance (dI/dV ) measurements, revealing the presence of 1D states on the surface.
Their formation can be attributed to quantum confinement of Ag(111) surface states into a stripe by stacking
faults. To quantify the degree of confinement, the effective potential barrier at the stacking fault for Ag(111)
surface states is estimated from independent measurements. A single quantum well model with the effective
potential barrier can reproduce the main features of dI/dV spectra on stripes, while a Kronig-Penney model fails
to do so. Thus the present system should be viewed as decoupled 1D states on individual stripes rather than as
anisotropic 2D Bloch states extending over a stripe array. The result is discussed in terms of electron localization
into stripes due to strain-induced inhomogeneities and absorption from surface to bulk states.
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I. INTRODUCTION

Growth of a thin metal film on a semiconductor sub-
strate is usually governed by the Volmer-Weber mode or
the Stranski-Krastanov mode, resulting in formation of an
inhomogeneous and granular film. The rapid advancement
of nanotechnology, however, has motivated researchers to
fabricate epitaxial films on a semiconductor such as silicon
with atomic-scale precision. This was accomplished by what
is called the two-step growth method1–20 utilizing a kinetic path
to avoid a route to the thermodynamically stable states. Thus
fabricated ultrathin metal films can possess Shockley surface
states3,6,19,20 and quantum well states3,6–8,10–13,16–18 due to
electron confinement in the normal direction, both of which are
well-defined two-dimensional (2D) systems. They offer ideal
platforms for studying intricate electronic interactions with
the substrate5,11,13–18 and various quantum effects manifesting
themselves, e.g., in the film growth behaviors4,5,8,10,12 and
superconductivity.10 These have been revealed with unprece-
dented accuracies by surface-sensitive techniques such as
scanning tunneling microscopy/spectroscopy (STM/S)6,8,19,20

and photoemission spectroscopy.3,7,10–13,16–18,21

The growth behaviors of such epitaxial thin films are
strongly influenced by a substrate surface.2,6,9 Recently, it
was found by Uchihashi et al. that the atomic structure of
a Ag thin film can be periodically modulated using a substrate
with one-dimensional surface structures.14,15 The surface of
a silicon substrate was decorated with arrays of In atomic
chains with a periodicity of 1.33 nm in a self-assembling
fashion. This surface reconstruction, Si(111)-(4×1)-In,22–27

plays the role of a geometrical template for the growth of a
Ag film and introduces stacking fault (SF) arrays. Figure 1(a)
shows a representative topographic STM image (displaying
the height z) of such a Ag thin film with a nominal thickness
of 22 monolayers (ML). The overall surface morphology is flat
and exposes only a few layers as a result of epitaxial growth.
A careful inspection reveals that the surface is composed of
narrow parallel stripes. The lower-right section of the image
displays the derivative of the topographic height (dz/dx, x: the

horizontal coordinate), where parallel stripe arrays are clearly
visible.

The atomic structure of these Ag stripes has been explained
as follows [see Fig. 1(a)].14 The film surface consists of
Ag(111) nanoplanes with periodic insertion of SF planes at
every five layers. This results in a relatively good matching
between the transverse periodicities of the SF array and
the In chains on the substrate and stabilizes the film. (Here
the transverse direction is defined as being perpendicular
to the In chains and Ag stripes; likewise, the longitudinal
direction as being parallel.) Notably, this SF array has been
found to significantly affect the bulk electronic states in the
film and to change the quantum well states into those of 1D
character or a high anisotropy.16,17,28 The SF array should
also modify the Shockley surface states of Ag(111) because
of their strong electron reflection and quantum confinement
effects.19,20 However, the details of such potentially 1D surface
states on a Ag film have not been clarified yet.

In this paper, we investigate the surface states of the
striped Ag film with SF arrays using a low-temperature (LT)
STM. Differential conductance (dI/dV ) imaging shows clear
standing-wave patterns along the stripes, the periodicity of
which exhibits a systematic energy dependence. This allows us
to obtain a free-electron-like energy dispersion and to compare
it to that of Ag(111) surface states. dI/dV spectra taken
on stripes exhibit a peak around V ≈ 0.3–0.4 V and their
shapes are consistent with the density of states (DOS) in a
1D electron system. These observations reveal the presence
of 1D electronic states on the stripe surface, which is formed
by quantum confinement of the Ag(111) surface states within
a stripe. To quantify the degree of confinement, the effective
potential barrier at the SF for surface states was estimated
from independent spectral measurements on a wider area. A
single quantum well (SQW) model with the above effective
potential barrier can reproduce the main features of dI/dV

spectra on stripes, while a Kronig-Penney (KP) model fails
to do so. This indicates that the surface states on the striped
Ag film should be viewed as decoupled 1D states rather than
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FIG. 1. (Color online) (a) Topographic STM image of a striped
Ag film with a nominal thickness of 22 ML grown on the
Si(111)-(4×1)-In surface (V = 2 V, I = 120 pA). The lower-right
section displays the derivative of the topographic height (dz/dx, z:
topographic height, x: the horizontal coordinate). (b) The atomic
structural model of the Ag stripes with stacking fault planes.

anisotropic 2D Bloch waves extending over periodic arrays of
stripes. The result may be explained by electron localization in
the transverse direction due to strain-induced inhomogeneities
and absorption from surface to bulk states.

The present paper is organized as follows. In Sec. II, the
experimental methods are explained. Section III describes the
results on dI/dV measurements and the determination of
the effective potential barrier at a SF. In Sec. IV, we calculate
the DOS as a function of energy on a stripe using the
two models to compare them to the experimental data. The
summary is given in Sec. V.

II. EXPERIMENTAL METHODS

The experiments were performed in an ultrahigh vacuum
system equipped with a low-temperature STM and low-energy
electron diffraction (LEED) optics. First, a Si(111)-(7×7)
clean surface was prepared by high-temperature flashing up to
1280 ◦C. Deposition of a small amount of indium (∼1.8 ML)
on the surface followed by sample annealing around 340 ◦C
for 5 min resulted in formation of a Si(111)-(4×1)-In surface
reconstruction.22–25 This was confirmed by LEED and, if
necessary, was further observed by STM to optimize its domain
sizes and defect density. Ag was deposited up to a coverage of
22 ML onto the substrate that was cooled down below 100 K,
followed by natural annealing to room temperature (RT). This
two-step growth process is crucial for creating a flat epitaxial
Ag film with a good crystallinity on a silicon substrate.1,3,4,7,9

As a result of the templating effect of the Si(111)-(4×1)-In
substrate, periodic SF planes were introduced into the Ag
film with a mean transverse periodicity of 1.3 nm.14 The
SF planes are terminated on the surface by “fractional steps”
with a height of 0.078 nm (=1/3 of monatomic step height),
as shown in Fig. 1(b). The most frequently observed terrace
bounded by parallel fractional steps has a width of 1.3 nm equal
to the periodicity, which is referred to here as a single-unit
stripe. Occasionally a terrace with a width of 2.6 nm was also
observed, which is referred to as a double-unit stripe. Although
the surface of a striped Ag film also includes monatomic steps
with a height 0.31 nm, they can be easily distinguished from
fractional steps by measuring the step height.

All STM spectroscopic measurements and accompanying
topographic imaging were performed below 8 K. W tips
prepared by flashing and Ar+ ion bombardment were further
shaped by slight touching to a sample surface. A sample
bias voltage V was measured relative to the tip, which is
converted to the energy level E of a sample state through
a relation of E = eV . Here E is measured relative to the
Fermi level. dI/dV spectra were acquired by standard lock-in
ac detection. The modulation amplitude Vmod was set to
5–20 mVp-p according to the energy resolution required for
a specific measurement. Since the feedback was stabilized at a
relatively high voltage of 1 V, we neglect tip height variations
at different locations and thus regard the measured spectrum
as being proportional to the sample DOS. The effect of the
energy-dependent tip DOS should be marginal because we
concentrate on the empty states of the sample here.29 dI/dV

images were taken with Vmod = 35–40 mVp-p while scanning
in the constant-current mode.

III. RESULTS

A. d I/dV imaging on single-unit stripes

Figure 2(a) shows a typical topographic STM image of
parallel stripes running through a monatomic-height island.
The positions of the monatomic and fractional steps are
indicated by solid and dashed lines, respectively. The island
includes five stripes labeled by (A)–(E), among which (B) and
(C) are single-unit stripes bounded by fractional steps. Because
of the presence of the island edge, standing waves are expected
to arise if electrons can move freely along the stripes.30–36

This is indeed observed in dI/dV images where the signal is
periodically modulated along the stripes, an example of which
is shown in Fig. 2(b). Each stripe has different amplitudes of
modulation, and almost no modulation in the dI/dV signal is
visible on the fractional steps. This suggests that the electronic
states on stripes are of 1D character, decoupled from each
other by the presence of fractional steps. Figure 2(c) plots
a series of dI/dV signals taken along the middle of stripe
(B) with different sample voltages V from 0.38 to 0.68 V.
The periodicity of the modulation decreases with increasing
V , which allows us to attribute the phenomenon to surface
electronic standing waves.30–36

The voltage-dependent dI/dV imaging on a single-unit
stripe as performed above was repeated to obtain the energy
dispersion of the surface states. The wave number k of the
wave function probed at an energy E = eV is determined
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FIG. 2. (Color online) (a) Topographic STM image of parallel
stripes running through a monatomic-height island (V = 0.6 V, I =
120 pA). The positions of the monatomic and fractional steps are
indicated by solid and dashed lines, respectively. The narrow striped
regions are labeled by (A)–(E), among which (B) and (C) are single-
unit stripes. (b) dI/dV image on the same area as in (a) showing
the periodically modulated signal along the stripes (V = 0.58 V,
I = 120 pA). (c) Series of dI/dV signals taken along the middle of a
stripe (B) with different sample voltages V from 0.38 to 0.68 V. The
data are offset along the ordinate for clarity. (d) Energy dispersion
of the surface states obtained from the standing-wave observations.
Closed circles and crosses are data taken on single-unit stripes and a
flat area of a Ag(111) film epitaxially grown on Si(111), respectively.
The solid and dashed lines show the fitting results using Eq. (1).

through the relation k = π/λ, where λ is the wavelength of the
standing wave. The results are summarized in Fig. 2(d) (solid
circles). Because λ is not strictly reproduced at the same E

for different stripes, the data are distributed along the ordinate
within a range of ≈0.15 eV; however, they show a clear trend
of increasing E with increasing k. The data were fitted using
a free-electron-like dispersion relation:

E = E0 + h̄2k2

2m∗ , (1)

where E0 is the onset energy of the surface band and m∗
its effective mass. The fitting analysis gives E0 = 0.30 ±
0.03 eV(≡E0,stripe) and m∗ = 0.51 ± 0.06 m0(≡m∗

stripe),
where m0 is the free electron mass. For comparison, a similar
experiment was performed on a flat surface (without stripes)
of an epitaxially grown Ag(111) film on S(111) [crosses
in Fig. 1(d)]. The same fitting analysis using Eq. (1) gives

E0 = 0.01 ± 0.01 eV (≡E0,flat) and m∗ = (0.40 ± 0.02)
m0(≡m∗

flat), the result of which is plotted in Fig. 2(d) as the
dashed line. Considering that the two energy dispersions
are similar, we can conjecture that these 1D surface states
originate from Ag(111) surface states. Although 1D standing
waves have been reported on a Ag(111) surface decorated
with biomolecular gratings,37 their existence on such a narrow
stripe has not been clear so far. We note that, in the case of
1D standing waves on Si(001) surfaces,38,39 the electrons are
confined within a dimer row due to the local dangling bonds,
which is a different mechanism from the one for the present
system.

The large difference ∼0.3 eV between E0,stripe and E0,flat is
attributed to a quantum confinement in the transverse direction
as corroborated later.32,33,40,45–47 It is also worth noting that the
onset energy of the Ag flat surface E0,flat is increased from the
value for bulk samples (E0 = −0.065 ∼ −0.063 eV) although
the effective mass is nearly the same (m∗ = 0.40 ∼ 0.42 m0

for bulk).33,34,36 This has been attributed to a tensile strain
in the film due to a lattice mismatch between the epitaxially
grown Ag film and a silicon substrate.3 A small tensile strain of
0.95% is sufficient to shift up the Ag(111) surface states rigidly
in energy by 0.15 eV. The effects of the quantum confinement
and the tensile strain on the onset energy E0 will be discussed
in Sec. IV.

B. d I/dV spectra on single-unit stripes

To study the electronic states on single-unit stripes in more
detail, dI/dV spectra were measured on different locations on
Ag stripes. Figure 3(a) shows an STM image of the central part
of a four-stripe array with a length of ∼15 nm. The topographic
height z averaged along the stripe direction is displayed below
the image. The dashed lines indicate the locations of fractional
steps, which were determined from the steepest slope in z.34

First the STM tip was moved along the dotted line indicated by
#1 and dI/dV spectra were taken at the seven sites (shown by
the crosses). It was then moved onto the locations indicated by
#2– #5 successively and the same measurement was repeated
(the spectral sites are not explicitly shown). The data were
averaged for each line and are summarized in Fig. 3(b) (raw
data: crosses, average: solid lines).

The raw spectra are reproduced reasonably well for each
data set, which is consistent with the presence of 1D electronic
states. Small variations in spectral shapes are probably due to
atomic-scale defects on fractional steps that are not resolved
by the topographic imaging. As expected, the data taken near
the middle of the stripes (#1, #3, #5) exhibit clear peaks,
but they appear at slightly different voltages of 0.41, 0.33,
0.28 V (indicated by triangles). This variation is consistent
with the distribution of the energy dispersion data obtained
from standing-wave images in the preceding section. Note
that the energy increase δE due to quantum confinement in the
longitudinal direction is negligible since δE is estimated to be
5 meV at most for the stripe length of 15 nm. We also note that
the slope of each peak at the lower energy side is steeper than
that at the higher energy side. This feature is characteristic
of the DOS of a subband formed in a 1D system; the peak
is due to the energy quantization in the transverse direction
and the gradual decrease above the peak is due to the free
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FIG. 3. (Color online) (a) Topographic STM image of the central
part of an array of four single-unit stripes (V = 0.5 V, I = 120 pA).
The dashed lines indicate the locations of fractional steps. The
crosses on the dotted line indicated by #1 show the spectral sites for
dI/dV measurements. The same measurements were performed at
the locations indicated by #2– #5 (the spectral sites are not explicitly
shown). The lower panel shows the topographic height z averaged
along the longitudinal direction of the stripes. (b) Raw spectra taken
on the locations indicated by #1– #5 (crosses) and the averaged spectra
for each data set (solid lines). The data are offset along the ordinate
for clarity. (c) Averaged spectra taken in the middle of an isolated
single-unit stripe.

electron motion along the stripes. Since the surface states exist
only for E > 0 (empty states) due the strain effect mentioned
earlier, the observed peaks correspond to the lowest subband.
As expected, the peak structure is suppressed for spectra taken
near the fractional steps (#2, #4). However, the fact that the
peak does not completely vanish at the boundaries indicates
that electron confinement within a stripe is not perfect.

For comparison, dI/dV spectra were taken on an isolated
single-unit stripe (not in an array). Figure 3(c) shows the
average of 10 raw data taken in the middle of the stripe. The
peak positions (V = 0.34 V) and the shapes of the spectra are
very similar to those observed on the stripe array [#1, #3, #5
in Fig. 3(b)]. This means that the electronic states in a stripe
array are basically the same as those of an isolated stripe,
which again suggests that stripes in an array are decoupled.
We will return to this issue in Sec. IV.

C. d I/dV spectra on double-unit stripes

Since single-unit stripes as studied above are very narrow,
their electronic states may be sensitive to residual defects
on fractional steps as mentioned above. In addition, precise
identification of the spectral sites is not easy due to the

finite size of the probing tip and the presence of steps. For
quantitative analysis, therefore, we measured dI/dV spectra
on a double-unit stripe where the above difficulties were
mitigated to a considerable degree. This allows us to extract
information on the effective potential barrier at the fractional
steps and to perform model calculations for electronic states
on single-unit stripes.

Figure 4(a) shows a topographic STM image of an area
including a double-unit stripe with a length of 18 nm and
single-unit stripes at sides. The topographic height z averaged
in the longitudinal direction is plotted below the image. The
locations of fractional steps were determined from the steepest
slope in z as previously and are indicated by dashed lines in
the figures. Following the procedure described in the preceding
section, five longitudinal lines #1– #5 were set (the line and
the spectral site are not shown for #2– #5) and four dI/dV

spectra were taken for each line and averaged. The result is
summarized in Fig. 4(b) (raw data: crosses, average: solid
lines). First we note that the raw spectra are reproduced very
well for each line, suggesting the negligible effects of residual
defects. The energy increase δE due to a longitudinal quantum
confinement is at most 3 meV for the stripe length of 18 nm
and is negligible. The sharp peak at V = 0.11 V (shown by
the solid triangle) is attributed to the lowest subband as in
the case of single-unit stripes. As expected, it is enhanced in the
middle of the double-unit stripe (#3) and is suppressed near the
boundaries (#1, #5). The rather broad peak around V = 0.4 V
(shown by the open triangle) may be attributed to the second
lowest subband, but since it is enhanced around boundaries
(#1, #5), the influence of neighboring single-unit stripes cannot
be ignored. Note that the spectra taken on single-unit stripes
have peaks around this energy region as shown above. We thus
restrict ourselves to the lowest energy peak at V = 0.11 V for
further analysis.

The local density of states (LDOS) of a stripe bounded by
parallel steps can be calculated using a Fabry-Perot resonator
model from a 2D surface state band, as demonstrated by
Bürgi et al.33 Since the dI/dV signal is proportional to
the corresponding LDOS, it is given for an energy E and a
transverse location x by the following equations:

dI/dV(E,x) = A

[
Coff +

∫ k

0
dq

1√
k2 − q2

× 1

1 + R4 − 2R2 cos(2qd + 2φ)

× 2(1 − R2){1 + R2 + R cos (2q(x − d) − φ)

+R cos(2qx + φ)}
]
, (2)

k =
√

2m∗(E − E0)/h̄2. (3)

Here A is a parameter representing the signal intensity,
R the reflection amplitude at the steps, φ the phase shift
at the reflection, and d the width of the stripe [for the
schematic configuration, see Fig. 4(c)]. E0 and m∗ are the
onset energy and the effective mass of the 2D surface state
band, respectively. Coff was included as a constant offset
to account for the bulk contribution to the surface DOS.
For simplicity, R and φ are assumed to be identical for the
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FIG. 4. (Color online) (a) Topographic STM image of an area
including a double-unit stripe at center and single-unit stripes at sides
(V = −2 V, I = 120 pA). The crosses on the dotted line indicated
by #1 show the spectral site where dI/dV measurements were taken.
The same measurements were performed at the locations indicated by
#2– #5 (the spectral sites are not explicitly shown). The lower panel
shows the topographic height z averaged in the longitudinal direction
of the stripes. (b) Raw spectra taken on lines #1– #5 (crosses) and
the averaged spectra for individual locations (solid lines). The dashed
lines show the fitting results using Eq. (2). The data are offset along
the ordinate for clarity. (c) Schematic diagram of the Fabry-Perot
resonator model for determining the reflection amplitude R and the
phase shift φ at the fractional step.

ascending and descending steps here. The treatment on R can
be rationalized since R does not show a clear difference for the
two types of steps.20 To compensate the assumption on φ, the
locations of spectra were allowed to be shifted uniformly by
δx. This additional parameter can absorb the error due to the
above assumption into an apparent shift of the step locations,
which can be caused by the finite tip radius. Coff = 0.3
was determined from independent spectral measurements on
a flat area of a surface and d = 2.6 nm was determined
from the topographic measurement. m∗ = 0.4m0 was adopted
from the literature on the Ag(111) surface states.33,34 These
considerations leave A, R, φ, E0, δx as fitting parameters. A
reasonably good agreement with the experiment was obtained
for all spectra #1– #5 [see dashed lines in Fig. 4(b)], giving
R = 0.85 and φ = −0.87π . Since the analysis was performed
for the lowest peak in Fig. 4(b), these values are valid for an
electron energy E ∼ 0.1 eV.

IV. MODEL CALCULATION AND DISCUSSION

A. Determination of the effective potential barrier

In this section, we calculate the DOS in isolated and arrayed
single-unit stripes to be compared to the experimentally

obtained spectra. In the preceding section, we have obtained
the reflection amplitude R and the phase shift φ at the
fractional step, but the energy range where they are applicable
is limited to E ∼ 0.1 eV. To calculate the spectra for a wider
energy range, we extract the effective potential barrier and
perform a model calculation according to the prescription
by Hörmandinger and Pendry.41 A first-principle calculation
appears to be more straightforward, but we have adopted the
present approach because this gives us an better insight into
the physics behind. Another advantage is that the effective
potential barrier obtained in the course of this analysis can be
compared to those in other systems.

For simplicity, the potential barrier at the fractional step is
assumed to be that of rectangular shape with constant potential
W within the barrier and a width of a [see the inset of Fig. 5(b)]:

V (x) =
{
W, for − a/2 < x < a/2,

0, elsewhere.
(4)

Because the potential barrier should be concentrated at a very
narrow region along the fractional step, we consider the limit of
a → 0 while the product Wa is kept constant, i.e., a δ-function
type potential. By solving the Schödinger equation, one can
obtain the reflection coefficient r at an energy E as follows:41

r = P − P −1

Pρ − (Pρ)−1
e−iKa, (5)

P = eiQa, (6)

ρ = K − Q

K + Q
, (7)

K =
√

2m∗E/h̄2, (8)

Q =
√

2m∗(E − W )/h̄2, (9)

where K and Q are the wave numbers outside and inside the
potential barrier, respectively. E is measured from the band
onset E0 and m∗ is the effective mass of the band (m∗ = 0.4m0

is adopted as earlier). The reflection amplitude R and the phase
shift φ at the potential barrier are given by R = |r| and φ =
arg(r). In the present analysis, W is taken to be complex to
account for the fact that electrons can be scattered into the bulk
states at the fractional step. The requirement of complex W

is also necessary to treat R and φ independently. Conversely,
W can be determined if R and φ are given for a certain E.
From R = 0.85,φ = −0.87π for E = 0.1 eV determined in
Sec. III C, Wa = 0.41 − 0.07i eVnm is obtained for a → 0.
The real and imaginary parts of Wa change only by −7% and
−16%, respectively, when a is increased up to 0.1 nm.

Now that Wa has been determined, reflection amplitude
R and phase shift φ can be calculated using Eq. (5) as a
function of E. The results are plotted as solid lines in Figs. 5(a)
and 5(b), together with the values determined by independent
methods.20 The solid circles represent R (for both descending
and ascending fractional steps), which were determined from
electron lifetimes in quantum boxes bounded by fractional
steps. The dashed lines in Fig. 5(a) and the closed squares
in Fig. 5(b) show values obtained by a theoretical calculation
based on a tight-binding method. Here the atomic structure
of the fractional step shown in Fig. 1(b) was adopted and
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FIG. 5. (Color online) (a) Reflection amplitude at the fractional
steps R calculated using Eq. (5) based on the effective potential
barrier (solid line). The solid circles and the dashed line show the
previous experimental result and the tight-binding calculation on R,
respectively (Ref. 20). (b) Phase shift at the reflection φ calculated
with the same method as in (a). The closed squares show the result
of the tight-binding calculation. Inset: Schematic diagram of the
potential barrier used in the model calculation.

the tight-binding parameters were determined to reproduce a
band structure of a Ag(111) thin film obtained by a density-
functional method (for details, see Refs. 20 and 28). We note
that R and φ determined here are in reasonable agreement
with the independent experiment and calculation, supporting
the present analysis. We therefore adopt the effective potential
barrier Wa = 0.41 − 0.07i eVnm in the following analysis.

B. Calculation of the density of states on single-unit stripes

Having determined the effective potential barrier of the
fractional step, we can now calculate the DOS of single-unit
stripes. We consider here two simple models: single quantum
well (SQW) and Kronig-Penney (KP) models. The SQW
model consists of two identical potential barriers with a height
of W and a width of a and of a well region with a width of d − a

[see Fig. 6(a)]. The KP model consists of the potential barriers
with the same W and a, which are infinitely repeated with
a periodicity of d [see Fig. 6(b)]. In both cases, the potential
outside the barriers is constant (=E0) and the electron effective
mass is set to be m∗. We consider the limit a → 0 again.

The eigenenergies En(n = 0,1) of the SQW model can be
analytically calculated by matching the wave functions at the
boundaries. En are obtained by solving the following equation:

ei2Qaρ
ρ ± eiK(d−a)

ρeiK(d−a) ± 1
= ±1, (10)

(c)

(d)

T

T+L

SQW

KP

SQW

KP
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(a) (b)
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a
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d-a
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W
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FIG. 6. (Color online) (a), (b) Schematic diagrams for (a) the
single quantum well (SQW) and (b) the Kronig-Penney (KP) models.
(c) DOS for the transverse direction calculated for the SQW and
KP models. (d) DOS including the longitudinal degree of freedom
calculated for the SQW and KP models. Averaged spectra taken on
the arrayed and isolated stripes are also shown as open squares and
crosses, respectively.

where ρ, K , and Q are defined by Eqs. (7)–(9) and
the signs −,+ corresponds to n = 0,1, respectively. For
Wa = 0.41 − 0.07i and d = 1.3 nm, one obtains E0 =
0.32 − 0.08i eV and E1 = 1.44 − 0.43i eV. The eigenenergies
En are complex because of finite lifetimes of the electron due
to escaping from the well region. Since the second lowest level
(n = 1) is already quite high and has a large imaginary part
(i.e., the energy level is broadened), we do not consider higher
levels. Based on these results, the DOS in the well is calculated
using a Lorentzian function:

ρT(E) = 1

π

∑
n

Im(En)

[E − Re(En)]2 + Im(En)2
. (11)

The subscript “T” indicates that only the transverse motion
of electrons is considered here. The actual stripe on the Ag
film has an additional degree of freedom in the longitudinal
direction. The DOS including this contribution is calculated
as follows:

ρT+L(E) =
∫ E

0
ρT(Ex)

1√
E − Ex

dEx, (12)
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where the subscript “T + L” indicates that both the transverse
and longitudinal motions are considered. The results for ρT(E)
and ρT+L(E) are shown as solid lines in Figs. 6(c) and 6(d).
Since E0 is close to 0 eV for the present Ag(111) surface
states, ρT+L(E) can be directly compared to the experimental
results. We note that the DOS calculated this way is not
locally resolved; however, since the n = 0 level (the lowest
subband) is dominant here, they can be compared to the spectra
taken in the middle of the stripe [#1, #3, #5 in Fig. 3(b) and
Fig. 3(c)]. The line shape and the peak position (E = 0.37 eV)
reproduce the experiment at least qualitatively. In addition, the
lowest quantized level in the transverse direction Re(E0) =
0.32 eV [equal to the peak energy in ρT(E)] is consistent
with the band onset E0,stripe = 0.30 ± 0.03 eV found in
Sec. III A.

To compare them in more detail, the spectra on the arrayed
stripes [#1, #3, #5 of Fig. 3(b)] are averaged and displayed
as open squares in Fig. 6(d). Before averaging, each spectrum
was normalized by the peak intensity and was rigidly shifted
in energy in such a way that the peak positions were aligned.
This is a reasonable treatment if we assume that the deviation
of the peak position is only due to misalignment of the
transversely quantized levels as discussed later. To account
for the bulk contribution, a constant value was subtracted
from the averaged spectra and then the peak intensity was
adjusted to that of the calculated DOS. The spectrum on the
isolated stripe [Fig. 3(c)] was processed in a similar way and
is displayed as crosses in Fig. 6(d). Evidently, the averaged
spectra on the stripes are in good agreement with calculated
DOS except at the high-energy region. The deviation may
be explained by a site-dependent contribution of the second
lowest subband, which has a node at the center of the
stripe.

Considering that the stripes are usually in the form of an
array, the KP model might be more appropriate to describe
the DOS in stripes. To investigate this possibility, we also
performed a similar calculation using the KP model. In this
case, the Bloch wave vector k is determined by the following
equations:41

cos(kd) = 1

2t
[(t2 − r2)eiKd + e−iKd ], (13)

t = ρ − ρ−1

Pρ − (Pρ)−1
e−iKa, (14)

where t is the transmission coefficient of the barrier, and r ,
P , ρ, and K are given by Eqs. (5)–(8). A periodic potential
such as the one in the KP model induces energy gaps where k

becomes complex. Energy E permitted for band formation is
determined by the condition of real k, i.e., Im[cos(ka)] = 0.
If W is complex, E also generally becomes complex. For the
transverse direction, ρT(E) is calculated by Eq. (11) where the
summation is replaced by an integral. ρT+L(E) including the
longitudinal degree of freedom is obtained by the Eq. (12) as
previously. The result is shown as the dashed lines in Figs. 6(c)
and 6(d). Because of the band formation, the peak found in
the SQW model is spread and, for ρT+L(E), only a small peak
is visible near the upper edge of the band. This spectral shape
is apparently different from the experimental data [#1, #3, #5
in Fig. 3(b) and Fig. 3(c)]. Although the actual stripes are not

in an infinite array, they should exhibit qualitatively the same
features even for a low number of the array. We hence conclude
that the KP model is not appropriate to describe the present
stripe array.

C. Discussion

The conclusion in the preceding section indicates that the
surface states on the striped Ag film should be viewed as
decoupled 1D states rather than as anisotropic 2D Bloch
states. This may be explained in terms of energy-level
misalignment among stripes and resultant electron localization
in the transverse direction. As mentioned earlier, the surface
states of stripes have energy levels that are misaligned within
a range of �E ∼ 0.15 eV. Assuming that all stripes have
the same electronic states in the longitudinal direction, this
is ascribed to a variation in the transversely quantized levels.
For the tight-binding model, the transfer energy γ between
the neighboring states is given by γ = Wband/4, where Wband

is the band width.42 Wband = 0.31 eV is estimated from the
KP model calculation in Fig. 6(c), which gives γ = 0.077 eV.
Since this is comparable to or even smaller than the level
misalignment �E mentioned above, it can prevent individual
levels from forming a band, making them more independent.
Namely, for |γ | < �E, the probability Pn for an electron to
hop over n sites is estimated to be Pn = (|γ |/�E)n, which
exponentially decreases as n → ∞. Thus electrons become
localized within each stripe.43

The origin of the level misalignment can be attributed to
spatially inhomogeneous strains in the film.3,20 The strain in
a Ag(111) film epitaxially grown on Si(111) is about −1%,3

but the mismatch between the transverse periodicities of Ag
stripes and the Si(111)-(4×1)-In is −3.8%.14 As mentioned
above, a tensile strain of 0.95% is sufficient to increase the
energy levels of the Ag(111) surface states by 0.15 eV.3 The
enhanced tensile strain due to this mismatch can be locally
relaxed by annihilation of a SF plane. Since this relaxation is
expected to occur rather randomly, the strain in the film and the
surface-state levels should become spatially inhomogeneous.
This trend can be further enhanced by creation of wider
stripes because of resultant variations in quantized energy
levels.

As mentioned above, electrons can be incoherently scat-
tered (i.e., absorbed) from surface to bulk states due to the
presence of a fractional step, which is regarded as a structural
imperfection. A possible important role of such an absorption
process is worth mentioning. In the present model calculation,
the probability of absorption to bulk states is estimated to
be 14% at E = 0.3 eV, which is significantly smaller than
the transmission probability of 35% at the same energy.
However, if this absorption is sufficiently stronger than the
transmission to the neighboring stripes, the Bloch-type 2D
band is not formed even if the energy levels are aligned;
consequently, the surface states on the stripes remain inde-
pendent. As observed in many STM experiments, phase shifts
of wave functions at surface scatterers such as monatomic
steps,33 adatoms,44 or molecules37 are generally −π . Together
with rather small reflection amplitudes, this suggests that
the process of absorption to bulk states is dominant.33,44

Although the present study deals with different scatterers, i.e.,
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SF-induced fractional steps, the above scenario could not be
ignored. This motivates us in future to reexamine the present
KP model calculation and replace it by a theory that takes
into account the actual surface and bulk electronic states.
We note, however, that our approach should be valid for
the SQW model because the energy-level calculation involves
only electron reflection processes, regardless of the degree of
absorption.

It is worthwhile to mention related studies on vicinal
surfaces of noble metals using angle-resolve photoemission
spectroscopy (ARPES) and STM. Ortega et al. studied the
surface states on a series of vicinal Au(111) surfaces by
ARPES.45–47 They revealed that the surface states were
well confined within a narrow terrace bounded by parallel
monatomic steps, as long as the terrace width d is equal to or
larger than 3.8 nm [Au(887), Au(23 23 21)]; i.e., they feature
the 1D character. However, as d decreased down to 1.2 nm
[Au(223)], the energy levels of the surface states became
broader and their dimensionality changed continuously from
1D to 2D. This was explained as a consequence of an increase
in the surface miscut angle α. As α increases beyond a critical
value of αc = 10.2◦ for Au(111), the energy gap of surface-
projected bulk states disappears in the momentum space and
the surfaces states become mixed with bulk states. Since they
are not localized on the surface anymore, the effective potential
barrier of the step is reduced and the surface states (strictly
speaking, surface resonances) extend over the steps as 2D
Bloch states.46,47 At the same time, a level broadening occurs
due to mixing with bulk states.

Similar experiments were performed on vicinal Cu(111)
surfaces by Boumberger et al.48 They found a delocalization
crossover in the transverse direction, i.e., a transition from 1D
to 2D states around d = 2 nm. They attributed the formation
of 1D states on wider terraces to electron localization resulting
from terrace width distribution, which is essentially the same
mechanism discussed for our result. As for an STM study,
Bürgi et al. quantitatively analyzed dI/dV spectra taken on
Ag(111) terraces bounded by parallel monatomic steps. They
found that the surface states are confined within the terrace
and decoupled from the surrounding region for d > 5 nm.
Hansmann et al. observed that Cu(554) surfaces partially
exhibit 1D electronic states.49 Even narrow terraces with
d = 2 nm exhibit peak structures in dI/dV spectra and standing
wave patterns propagating along the steps, indicating the
presence of 1D states. However, these surface states are rather
complicated because 2D delocalized states coexist near the
surface onset energy. In summary, noble metal vicinal surfaces
exhibit the 1D character when the terrace width d is large, but
they gradually become delocalized and approach 2D states as
d decreases below 2 nm.

Let us compare these results with our present study. In
contrast to the monatomic-step bounded terraces, single-unit
stripes bounded by SF planes retain a clear 1D character
even for a very narrow width of d = 1.3 nm. The level
broadening δE of the transverse quantization is also small.
Here we define δE as the full width at the half maximum
of the relevant energy level originating from a finite lifetime.
Considering the good agreement between the SQW model
calculation and the experimental spectra [Fig. 6(d)], δE at
the lowest subband is estimated to be 2Im(E0) = 0.16 eV.

In constrast, δE = 0.330 eV was obtained for the band
bottom of a Au vicinal surface with d = 1.2 nm [Au(223)],
after subtraction of energy widths due to a terrace width
distribution and an experimental resolution;47 similarly, δE =
0.143 eV was obtained for d = 3.8 nm [Au(887)]. Our result of
δE = 0.16 eV for stripes with d = 1.3 nm is closer to the latter
than to the former. These indicate that SF-induced striped
surfaces are more suited for realizing 1D surface than vicinal
surfaces with monatomic steps.

The above statement can be rationalized by a stronger
electron confinement by SF planes than by monatomic steps.
This is evidenced by difference in effective potential barrier
height in two cases. Re(Wa) = 0.41 eVnm obtained in
Sec. IV A is significantly higher than those reported for
monatomic steps on vicinal Au(111) and Cu(111) surfaces,
which are between 0.1 and 0.2 eVnm for d = 1–3 nm.47 The
reason for this difference can be twofold. First, the present
striped surface is tilted only by 3.4◦ due to a small step
height, which is equivalent to 1/3 of the monatomic step
height. This is sufficiently smaller than the critical angle
αc = 7.3◦ for the Ag(111) surface.47 Second, in contrast to
the monatomic step, the fractional step of the stripe has a SF
plane continuing to the bulk region. This should help to confine
the surface states within a stripe even if they penetrate deeper
and approach surface resonance states.20 We note, however,
that these effects are not sufficient for realizing the observed
1D states as discussed in Sec. IV B. The trend for electron
localization into stripes must be enhanced by the spatial
inhomogeneities in energy levels and/or by the bulk-absorption
process.50

V. CONCLUSION

We have shown that 1D electronic states originating
from the Ag(111) surface states are formed within a single-
unit stripe bounded by SF-induced fractional steps. Despite
an imperfect confinement at the boundaries, the surface
states can be described by decoupled 1D states rather
than by extended 2D Bloch states. This may be explained
by electron localization in the transverse direction due
to strain-induced inhomogeneities and absorption to bulk
states.

Let us briefly mention a possible application of these 1D
surface states. They may be used to mediate electronic and
magnetic interactions between surface adsorbates via spatial
charge and spin modulations (Friedel/RKKY oscillations), if
the surface states can be tuned to the Fermi level.51–54 This
is in principle possible, for example, by substituting the Ag
stripes by Au stripes.55,56 Since the striped metal surface
can be used for self-assembling of organic molecules in the
form of a 1D array, they will be utilized for manipulating
the spatial and magnetic ordering for organic molecules.57

Our present study will be the basis for such a forthcoming
study.
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