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Nonadiabatic electromigration along a one-dimensional gold chain
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We have investigated nonadiabatic processes of electromigration by theoretical calculation, taking the example
of a gold atom moving along a chain of gold atoms. The calculated electromigration rate showed almost linear
behavior beyond a threshold and rapidly increased with increasing applied bias voltage. It was found from the
detailed analysis that the electronic scattering takes place via the d orbitals of a migrating Au atom with larger
lobes in the migration direction, accompanied by an excitation of the atom vibration from the ground state to a
continuum state, leading to nonadiabatic electromigration. Through a comparison of the electromigration rates
between nonadiabatic and thermal migration, we clarified that the nonadiabatic contribution is dominant at low
temperature and low bias beyond the threshold voltage.
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I. INTRODUCTION

Electromigration is the directed migration of atoms caused
by a large electric current density, and it is one of the key
issues for nanoscale conductors since it is a major failure
mechanism in the operation of electronic devices with a larger
current density than their macroscopic counterparts. While
the study has quite a long history in both experiments1–7 and
theoretical calculations,1,8–13 the microscopic mechanisms are
not yet fully understood owing to the complexities of the
measurements and the underlying physics. It is commonly
believed that electromigration is driven by electrostatic forces,
momentum transfers by electrons to atoms (the electron wind
force), and local Joule heating around migrating atoms to
facilitate the atomic diffusion. There are many theoretical
studies about the above driving forces within the adiabatic
approximation which makes the problem tractable. Previously,
the present authors also investigated single-atom electromigra-
tion along a chain of gold atoms by first-principles calculations
within the adiabatic approximation from the viewpoint of
atomic diffusion processes.13 In the study, the potential-energy
surfaces of the migrating atom under applied bias voltages
were calculated, the migration pathway (oscillating curve in
the top panel of Fig. 1) was determined as a valley of the
potential-energy surface, and the electromigration rate on the
pathway was evaluated from the potential-energy curve to
estimate the local temperature around the migrating gold atom.

Recently, two groups reported the elemental process of
electromigration within the ballistic regime.4,6 Wu et al.
performed four-terminal measurements for electromigration
at gold nanojunctions and found that the junction resis-
tance depends only slightly on temperature.4 Umeno and
Hirakawa performed a feedback-controlled break junction
process at gold nanojunctions to fabricate nanogap electrodes
and observed a decrease of critical power dissipation causing
initiation of electromigration at the junctions.6 The remarkable
point from both experiments is that the origin of electromi-
gration at gold junctions is nonthermal within the ballistic
regime. This implies that additional contributions beyond the
adiabatic approximation are essential to clarify the migration
mechanisms within the ballistic regime. Accordingly, in this
study, we calculate the nonadiabatic contributions to the

electromigration rate with the same model as in the previous
study,13 and discuss whether the non-adiabatic contributions
are dominant compared with the thermal ones.

The arrangement of this paper is as follows. In Sec. II,
we elaborate on our theoretical model of nonadiabatic
electromigration. Several numerical results of single-atom
electromigration along a gold chain, using the model, are
presented in Sec. III. We compare the features and importance
of the nonadiabatic contribution with those of the thermal one
in Sec. IV. Section V is devoted to a summary and outlook.

II. THEORETICAL MODEL

A. Mathematical formulation

The nonadiabatic process we assumed is as follows: A gold
atom is occasionally kicked out from the local potential well
by ballistic electrons, and migrates in the descending direction
of the overall potential. The Au atom is kicked out by a
stimulation due to a quantum transition of an electron from
an initial higher to a final lower ballistic state accompanied
by an excitation of the Au atom vibration from the ground
state �ε0 (R) to a continuum state �ε(R) above the barrier.
Figure 1 shows a schematic diagram of the electromigration
of a single gold atom along a one-dimensional gold chain
within the nonadiabatic process. The excitation rate per unit
of time is given by the following equation:

�(V ) = 2π

h̄

∑
k,i

∑
k′,i ′

∫
dε

∣∣γ ε←ε0

k′,i ′←k,i

∣∣2

× [f (Ek,i) − f (Ek′,i ′ + eV )]

× δ(Ek′,i ′ + ε − (Ek,i + ε0)). (1)

In the above, f (E) is the Fermi-Dirac distribution function of
electrons, Ek,i and Ek′,i ′ are the electron energies of the initial
and final states, and γ

ε←ε0

k′,i ′←k,i
is the matrix element between

the initial and final states of the transition, [�Ek′ ,i′ (r),�ε(R) ←
�Ek,i

(r),�ε0 (R)],

γ
ε←ε0

k′,i ′←k,i
=

∫
d r �∗

Ek′,i′(r) �Ek,i
(r)Wε←ε0 (r). (2)
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FIG. 1. (Color online) Schematic diagram of nonadiabatic elec-
tromigration. The top panel shows the calculation model. Note that
the actually calculated number of gold atoms in the straight chain
is 14 and is the same as in Ref. 13. The green (oscillating) curve
is the migration pathway. The middle and bottom panels are energy
diagrams of the electronic and ionic systems. An electronic state
�Ek,i

comes into the scattering region from the right electrode, it is
scattered by the migrating atom with (without) the ionic excitation
from the ground �ε0 to continuum �ε states, and goes out to a state
�Ek′,i′ in the left electrode with (without) energy loss. The oscillating
curve in the bottom panel is the adiabatic potential-energy curve of
the migrating atom on the pathway subject to an applied bias voltage.
In the adiabatic case, the atom is confined in the potential and cannot
migrate without sufficient thermal energy.

In Eq. (2), �E(r) is an electron wave function with energy
E and Wε←ε0 (r) is the scattering potential for electronic
transitions,

Wε←ε0 (r) =
∫

d R �∗
ε(R)�ε0 (R)

×[V (r − R) − V (r − R0)], (3)

where R0 is the most stable position of the migrating atom
and V (r) is an individual atomic potential. After some
mathematical manipulations, we can rewrite Eq. (1) using the
Green function of the electron as

�(V ) = 4

h

∫∫∫∫
dE dε d r d r ′ Im[G∗(r,r ′; E)]W ∗

ε←ε0
(r)

× Im[G(r,r ′; E + ε0 − ε)] Wε←ε0 (r ′)
× [f (E) − f (E + ε0 − ε + eV )]. (4)

If the Green function is expanded using atomic basis functions
ϕμ(r), then Eq. (4) can be reduced to the matrix representation
as

�(V ) = 4

h

∫∫
dE dε Tr[Im[G†(E)]W†(ε)

× Im[G(E + ε0 − ε)]W(ε)]

× [f (E) − f (E + ε0 − ε + eV )], (5)

where G(E) is the matrix of G(r,r ′; E) expressed via the
atomic bases and W(ε) is the matrix of Wε←ε0 (r) whose
elements are defined as

Wμν(ε) =
∫

d r ϕμ(r)ϕν(r)Wε←ε0 (r). (6)

We considered no electronic excitation and no heat absorption
in our calculations. The microscopic mechanisms for our
nonadiabatic electromigration are quantum jumps. Then the
electromigration should take place at a finite voltage beyond
the threshold, even if the magnitude of the local electric field
around the migrating atom is negligibly small or the scattering
region is infinitely long. At the same time, the potential profile
around the atom is also the key factor controlling the magnitude
of �(V ) because the details of the potential variation have a
crucial influence on �(V ) via �(R), which can be estimated
from the potential.

The essential feature of the time-dependent perturbation
approach is the fully quantum treatment of ionic states, and
thus it is possible to capture the quantum transitions exactly.
Some dynamical approaches, as in Refs. 12 and 14, also
capture a part of the transitions. However, our interest in
the present study is the steady process of atomic diffusion in
electromigration, which may be detected by experiments. Then
our approach would be more beneficial than the dynamical
ones from the viewpoint of the computational effort. Although
the difficulty of our approach is attributed to the many building
blocks needing to be extracted from reliable calculations, the
numerical treatment is relatively straightforward.

B. Prescription for calculations

We use Eq. (5) to evaluate the electromigration rate as
a function of applied voltage, �(V ). For the purpose, we
need to obtain the matrices G and W. It is relatively easy
to calculate the matrix G because the calculation technique
for the Green function is currently established. We employ
the nonequilibrium Green function scheme15,16 based on the
self-consistent tight-binding method17 to obtain the matrix
G. On the other hand, it is difficult to calculate the matrix
W owing to the quantum mechanical treatment of the ionic
states. Although the ionic states18 �(R) can be evaluated
from the calculated potential-energy surfaces of the migrating
atom by numerical solution of the Schrödinger equation, it is
computationally demanding. Accordingly, we tackle it with
somewhat ad hoc but physically reasonable treatments as a
first step.

Following our previous results, we consider that an atom
migrates only along the migration pathway C on the x-z plane,
i.e., the plane including the Au atom chain and the adatom.
Therefore the coordinate R of the migrating Au atom is taken
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FIG. 2. (Color online) Definition of the coordinates in our
calculations. The dashed curve is the electromigration pathway C.
The circles are gold atoms. R0 is the stable position of the migrating
atom. s is the length along the pathway C from R0. The chain axis is
parallel to the z direction.

as R = (Rx,0,Rz) with Rx and Rz located only on C. In this
case, Eq. (3) becomes

Wε←ε0 (r) =
∫

C

ds �∗
ε(s) �ε0 (s) [V (r − R(s)) − V (r − R0)],

(7)

where s is the coordinate on the pathway C and the origin
is set to the most stable position of the migrating atom, R0

[= R(s = 0)], on the pathway C, as shown in Fig. 2. The ionic
wave function of the ground state �ε0 was simply assumed
to be a Gaussian function because the potential-energy curve
around the stable position of the migrating atom was well
approximated as a harmonic potential. The continuum states
�ε on the migration pathway can be determined from analogy
with the solutions of the Schrödinger equation for a particle
confined within a triangular potential, which are the Airy
functions Ai. Our case corresponds to the triangular-potential
case where the infinitely high barrier is positioned at s = −∞,
and the continuum states on the migration pathway were
represented by Airy functions orthogonalized by the ground-
state wave function. Accordingly they can be represented as18

�ε0 (s) =
(

Mω0

πh̄

)1/4

exp

[
−Mω0s

2

2h̄

]
, (8)

�ε(s) = N

[
Ai

(
eF s − ε

ε̃

)
− 〈

�ε0

∣∣Ai
〉
�ε0 (s)

]
, (9)

where

ε0 = 1

2
h̄ω0, ε̃ =

[
(eFh̄)2

2m

]1/3

, (10)

with M the atomic mass of gold. ε0 and F are the ionic
ground-state energy and the global gradient of the potential
experienced by the migrating atom as a function of applied
bias, which were obtained in previous work. The atomic
potential V (r) in Eq. (7) was also evaluated from ab initio
calculations. N is the normalization constant which can be
determined such that the local density of states in the zero-field
limit corresponds to that of free ions, as seen in the analysis
of a two-dimensional electron gas at a heterointerface.19 Once
Wε←ε0 (r) is obtained, we can evaluate the matrix W from
Eq. (6).

In the present study, we considered only one ionic state
confined in the potential well. However, the number of ionic
states in the potential well is not necessarily 1. If we take into
account multiple states, then there should be some climbing up
and down processes among the states. The climbing up process,
however, is expected to be dominant because the energy is
steadily supplied from the electron wind. Accordingly, the
results with multiple states would be qualitatively the same as
the present results. Also, we considered the electromigration
only on the migration pathway. This approximation becomes
better if the fluctuations around the migration pathway are
smaller when the atom migrates along the pathway. Actually,
the fluctuations can be expected to be small because the
migration pathway was defined as the bottom of the valley
of the potential-energy surface.

III. NONADIABATIC ELECTROMIGRATION RATE

Figure 3(a) shows the nonadiabatic contribution to the
electromigration rate of a Au atom on a Au atomic chain
as a function of applied bias voltage. We immediately find
from Fig. 3(a) that the calculated electromigration rate exhibits
almost linear behavior beyond a specific threshold voltage
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FIG. 3. (Color online) (a) Electromigration rate as a function of
applied bias voltage. The inset shows the magnification around the
threshold voltage. (b) Visual representation of the matrix W at the
lowest energy in the continuum states. In our calculations, a gold
atom has nine orbitals, namely, 6s, 6py , 6pz, 6px , 5dxy , 5dyz, 5d3z2−r2 ,
5dxz, and 5dx2−y2 in order. The matrix elements within orbitals 10–18
correspond to those of the migrating atom.
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(Vth ∼ 0.42 V). The monotonically increasing behavior can
be expected from the form of Eq. (1), (4), or (5) because
the electromigration rate depends explicitly on the width
of the bias window. A magnified figure around Vth is given in
the inset of Fig. 3(a). At the bias voltage V = Vth, the energy
difference between the ionic ground state and the height of
the lower barrier adjacent to R0 in the inset of Fig. 1 is about
0.42 eV. This means that the nonadiabatic transition by ballistic
electrons starts when the applied bias voltage becomes larger
than the activation barrier of thermal migration at that bias.

The correlation between Vth and the activation barrier
for thermal migration can be verified from a mathematical
formulation. We consider no electronic excitation and no heat
absorption in our calculations, namely, the electromigration
rate in Eq. (5) has a finite value when f (E) − f (E + ε0 −
ε + eV ) > 0, where E, ε, and ε0 are the energies of electrons,
the ionic continuum, and ground states, respectively. When
the energy origin of the ionic states at each bias voltage is
set to the top of the lower (left) barrier adjacent to R0 in
the inset of Fig. 1, then −ε0 can be basically considered as
the barrier height of the thermal migration at each voltage,
Ub(V ), and ε must be 0 < ε < ε0 + eV in order to meet
the condition f (E) − f (E + ε0 − ε + eV ) > 0. This means
that Vth = −ε0(Vth)/e ∼ Ub(Vth)/e. Therefore the electron-
mediated excitations from the ionic ground state toward the
continuum states are triggered above Vth.

To clarify the nature of the trigger of the nonadiabatic
transition, the elements of the matrix W represented in terms
of electron atomic orbitals located over three atoms in Fig. 2
are given in Fig. 3(b). The orbital indices μ and ν with
numbers in the range 10–18 indicate the atomic orbitals of
the migrating atom. We observe from Fig. 3(b) that the matrix
elements between orbitals on the migrating atom itself have
larger values. The scattering potential for electronic transitions
Wε←ε0 (r) in Eq. (3) is a short-ranged function because the
atomic potential V (r) in Eq. (3) has a finite value within a
few angstroms at most. As a result, the localized 5d orbitals
of the migrating atom are considerably overlapped with the
Wε←ε0 (r) compared with the valence orbitals and the orbitals
of the neighboring atoms, and the matrix elements of the 5d

orbitals become larger than the others. Although the presence
of the density of states originating from the 5d orbitals around
the Fermi energy is a requisite condition, the trigger is the
electronic scattering by the 5d orbitals.

IV. CROSSOVER BETWEEN NONADIABATIC AND
THERMAL MIGRATION

We have investigated the electromigration rate by thermal
activation associated with Joule heating around the migrating
atom.13 It was found from previous work that the gold atom
steadily migrates if the local temperature around the migrating
atom is higher than room temperature. The previous results
are summarized in Fig. 4. In the present work, we will focus
on the voltage or temperature dependence of the nonadiabatic
electromigration rate to discuss whether the nonadiabatic pro-
cess is dominant or not compared with the thermal activation
process.

We can clearly see in Fig. 4 that the thermal activation
contribution to the electromigration rate at each voltage
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FIG. 4. (Color online) Electromigration rate by thermal activation
associated with Joule heating around the migrating atom. The
electromigration rates at 0.0, 0.5, and 1.0 V are depicted by the
solid, dashed (blue), and dot-dashed (red) curves, respectively.

increases almost exponentially with temperature for a narrow
temperature range. An increase of the voltage also strongly
enhances the migration rate. Comparing the magnitude of the
electromigration rate contributed nonadiabatically in Fig. 3
and by local heating in Fig. 4, we can find the crossover
between the nonadiabatic and thermal migration regimes.

To clearly see the crossover, the nonadiabatic electromigra-
tion rates are given in Fig. 5, together with the electromigration
rate via thermal activation. Figure 5(a) shows the electromi-
gration rate at 0.5 V, which is a voltage slightly over Vth and
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FIG. 5. (Color online) Nonadiabatic electromigration rates to-
gether with the electromigration rate via thermal activation at
(a) 0.5 V and (b) 200 K. The solid (red) lines and dashed (blue) curves
are the nonadiabatic and thermal contributions to the electromigration
rates. The vertical dotted lines represent the thresholds.
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experimentally intriguing, especially in nanogap formation by
electromigration.6 We observe the crossover at about 360 K
in Fig. 5(a). Note that the nonadiabatic electromigration rate
at any voltage is independent of temperature in the present
formulation. An interesting finding is that the nonadiabatic
contribution predominates even in the range somewhat over
room temperature. Figure 5(b) represents the electromigration
rate at 200 K. We can see that the crossover appears at 0.89 V,
and the nonadiabatic contribution is dominant in this case. The
above observations indicate that the nonadiabatic contribution
has an advantage in electromigration at low temperature and
low bias beyond Vth. Electromigration with nonthermal origin
in gold junctions has been observed in recent experiments
also.4,6

V. SUMMARY AND OUTLOOK

Nonadiabatic electromigration of a gold atom along a
one-dimensional gold chain was theoretically investigated.
We observed that the calculated electromigration rate exhibits
almost linear behavior, and a nonadiabatic transition via the
electron wind starts when the applied bias voltage becomes
larger than the activation barrier of thermal migration at

that bias. It is found that inelastic electronic scattering to
a lower ballistic state, exciting vibrational states of the
migrating atom, works to kick the atom and induces the
migration. In this process the d orbitals with larger lobes in
the migration direction play a dominant role. Furthermore,
we compared the electromigration by nonadiabatic transitions
with that by thermal activation and found the crossover
between them. From the analysis of the crossover, we clarified
that the nonadiabatic contribution becomes dominant at low
temperature and low bias beyond Vth.

In this study, we considered nonadiabatic excitations from
an ionic ground state only. In the next stage, we will treat
multiple excitation and deexcitation processes. Our ultimate
goal is to deal with both nonadiabatic and thermal electromi-
gration on an equal footing and to simulate the process using
calculated electromigration rates.
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