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Zak phase and the existence of edge states in graphene
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We develop a method to predict the existence of edge states in graphene ribbons for a large class of boundaries.
This approach is based on the bulk-edge correspondence between the quantized value of the Zak phase Z(k‖),
which is a Berry phase across an appropriately chosen one-dimensional Brillouin zone, and the existence of
a localized state of momentum k‖ at the boundary of the ribbon. This bulk-edge correspondence is rigorously
demonstrated for a one-dimensional toy model as well as for graphene ribbons with zigzag edges. The range
of k‖ for which edge states exist in a graphene ribbon is then calculated for arbitrary orientations of the edges.
Finally, we show that the introduction of an anisotropy leads to a topological transition in terms of the Zak phase,
which modifies the localization properties at the edges. Our approach gives a new geometrical understanding of
edge states, and it confirms and generalizes the results of several previous works.
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I. INTRODUCTION

The physics of edge states in two-dimensional (2D) systems
has emerged as a very challenging problem in solid-state
physics. A beautiful illustration occurs in graphene, a mono-
layer crystal of carbon,1 where the existence of such states
was predicted2,3 in 1996 and confirmed experimentally later
in graphene4,5 and graphenelike structures.6 This remarkable
feature has led to strong research activity during the past few
years. For instance, edge states were predicted to give rise
to a novel type of magnetic ordering2 and may lead to the
realization of novel spintronic devices.7,8

In a broader context, edge states are also known to play an
important role in quantum Hall systems9,10 and topological
insulators.11,12 Because of their chiral character, the edge
states in quantum Hall systems are robust against all kinds of
disorders or interactions, while those in topological insulators
survive scattering that preserves the time-reversal symmetry.
This robustness against weak perturbations can be understood
from a correspondence between the number of edge states and
the value of a bulk topological number which is basically the
Berry curvature integrated over the space of parameters, that
is, the Brillouin zone of the 2D system.12,13

Edge states in graphene differ from those mentioned above,
the most important distinction being that their existence
depends on the boundary conditions fixed by the shape of
the edge.2,3 Two questions then naturally arise. The first
one is related to the bulk-edge correspondence:14–18 If the
localization of a state at the edge depends on the boundaries,
is it possible to relate its existence to a topological quantity
defined within the bulk? The second question is simply
whether we can predict the existence of edge states for an
arbitrary type of edge (see, e.g., some examples in Fig. 1).

These two stimulating questions have already led to many
works. In particular, Ryu and Hatsugai showed that edge
states in 2D systems with chiral symmetry can be related to

a bulk topological number defined in a reduced (1D) space
of parameters.14 More precisely, these authors were able to
characterize edge states for three simple types of boundaries,
namely the zigzag, armchair, and bearded edges (a bearded
edge is a zigzag edge with dangling bonds, also called Klein
defects).19,20 Of course, even without disorder, there is an
infinite number of different edge geometries in a honeycomb
lattice, and several recent theoretical works addressed the
existence of edge states for more sophisticated boundaries.
Several of these works consist in tight-binding calculations of
ribbon band structures.2,3,21–23 A general study including many
various shapes of edges was also conducted by Akhmerov and
Beenakker.24 Their work, performed within the continuous
(Dirac) approximation, notably provides an analytical formula
for the density of edge states.

The aim of this work is to precise the bulk-edge correspon-
dence in graphene and to address a new method to predict the
existence of edge states for a large class of edges. We show that
it is possible to define in an unambiguous way a topological
phase from the bulk Hamiltonian of graphene, which properly
takes into account the shape of the edges. For a 1D system,
this phase, called the Zak phase, is nothing but the integration
of the Berry connection over the first Brillouin zone25

Z = i

∮
dq〈uq |∂quq〉, (1)

where the |uq〉 are the Bloch wave functions. In a 2D system,
one difficulty is to define properly the path over which the
integration is performed and to relate this quantity to the nature
of the edge. In particular, for a translation invariant system in
one direction, the Zak phase depends on the crystal momentum
k‖ associated with this direction. Here, we show that Z(k‖)/π
gives the number of states localized at the edge of the system.

The outline of the article is as follows. As the Zak
phase is defined as a one-dimensional integral of the Berry
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FIG. 1. (Color online) Examples of edges of different ribbons
studied in this article. They are characterized by a translation vector
T(m,n); see Sec. III B. The values of the couples (m,n) are specified
in the figure. The edges of the ribbon (1, − 2) show dangling bounds
since mn < 0. Different ribbons can be obtained from the same vector
T(m,n) in two different ways. For instance, the lattice vectors C
connecting the left and right edges of the two ribbons defined by
T(3,3) differ. Another possibility is to draw a different “unit-cell”
pattern for the same vector T, as for the two ribbons defined by
T(2,5).

connection, we first focus in Sec. II on a one-dimensional
toy model for a chain of dimers. For this case, we give
a simple demonstration of the bulk-edge correspondence
between the Zak phase and the existence of edge states. Next,
in Sec. III, we turn to graphene where a similar demonstration
is performed for zigzag edges. By a formal analogy with
the chain of dimers, we assume the generalization of this
bulk-edge correspondence for the other boundaries. Then, we
show how to define in an unambiguous way the Zak phase in
graphene according to the nature of the edge and propose a very
simple graphical method to evaluate it. This information then
directly gives us the range of k‖ for which edge states exist.
The analytical results are in perfect agreement with those of
Akhmerov and Beenakker24 and reproduce many numerical
works. Finally, in Sec. IV, we extend our approach by
considering nonequal hopping parameters in the honeycomb
lattice. We discuss the existence of edge states in this case
and explain recent numerical calculations in terms of the Zak
phase.26

FIG. 2. (Color online) Chain of dimers A-B. The chain starts
with an atom A and ends with an atom B. t and t ′ are the hopping
parameters and a0 is the lattice spacing. The unit cell m is represented
by a rectangle.

II. THE ZAK PHASE AND THE EDGE STATES IN THE
CHAIN OF DIMERS

To illustrate the relation between the Zak phase and
boundary states, we consider in this section a simple model, a
one-dimensional chain of dimers A-B as shown in Fig. 2. The
two atoms of the dimers are coupled by a hopping parameter t ′
and the chain is obtained by coupling periodically the dimers
with a hopping parameter t . The lattice spacing (between two
consecutive identical atoms) is a0.

The aim of this section is to show in a simple way that
the Zak phase Z is governed by the ratio t ′/t and that the
topological transition (Z=0) → (Z=π ) corresponds to the
emergence of edge states in the finite system.

A. The bulk Hamiltonian

The Hamiltonian of the dimer chain is given by

Ĥ =
M∑

m=1

t ′b†mam + ta
†
m+1bm + H.c., (2)

where a
†
m (respectively b

†
m) creates a particle on the site A

(respectively B) of the mth dimer.
For periodic boundary conditions, we can use the Bloch

theorem and rewrite Ĥ as

Ĥ =
∑

kn≡ 2πn
a0

�
†
kn
HB(kn)�kn

(
−M

2
< n <

M

2

)
, (3)

with �
†
k = (ψ†

A,k,ψ
†
B,k) = M−1/2 ∑M

m=1 eia0mk(a†
m,b

†
m) and

HB(k) = −t

[
0 ρ(k)

ρ∗(k) 0

]
, (4)

where ρ(k) = t ′/t + e−ika0 . Introducing σ = (σx,σy) the vec-
tor of Pauli matrices, HB(k) can be expressed in the form

HB(k) = −t g(k) · σ, (5)

with g(k) = (Re ρ, − Im ρ) = (t ′/t + cos ka0, sin ka0). Di-
agonalizing HB(k) we obtain the eigenvalues

εk,± = ±t |g(k)| = ±t |ρ(k)|
= ±

√
t2 + t ′2 + 2t t ′ cos(ka0), (6)

and writing ρ(k) = |ρ(k)|e−iφ(k), we have

g(k) = |ρ(k)|
[

cos φ(k)
sin φ(k)

]
, (7)

with the phase φ(k) given by

cot φ(k) = t ′/t

sin ka0
+ cot ka0. (8)
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FIG. 3. (Color online) Two trajectories of the vector g(k) with
different topologies when k runs across the Brillouin zone. When
t ′/t < 1 (t ′/t > 1) the curve g(k) does (not) wind around the origin.

The winding of the vector g(k) as k varies across the
Brillouin zone is shown in Fig. 3 for two values of t ′/t .
When t ′/t > 1, the curve g(k) does not enclose the origin and
|φ(k)| < π/2 for all k. When t ′/t < 1, the loop encloses the
origin and the phase φ(k) can take any value. This topological
behavior of the phase φ(k) is, furthermore, closely related to
the value of the Zak phase. Indeed, the eigenvectors of HB(k)
are of the form

|uk,±〉 = 1√
2

(
e−iφ(k)

±1

)
, (9)

and the definition Eq. (1) of the Zak phase gives

Z = 1

2

∮
dk

dφ

dk
= 
φ

2
, (10)

where 
φ is the variation of φ(k) when k varies across the
full Brillouin zone. The Zak phase Z is π times the winding
number of the curve g(k) around the origin and is, therefore,
zero if this curve does not enclose the origin and π if it does.
Thus,

Z = 0 when t ′/t > 1
(11)

Z = π when t ′/t < 1.

Equation (11) shows that tuning the ratio t ′/t induces a
topological transition (at t ′/t =1) characterized by the Zak
phase Z = 0 ←→ Z = π .

B. Open boundary conditions

1. The missing bulk states and the Zak phase

Consider now a finite chain of M dimers with open
boundary conditions. We impose that the wave function
vanishes at the nearest site outside the chain, that is, on the
B site at m = 0 and the A site at m = (M + 1). Most of the
eigenvectors can be constructed as linear combinations |vk,±〉
of the bulk eigenfunctions with opposite momentum |uk,±〉
and |u−k,±〉. Writing |uk,±〉 as

|uk,±〉 =
√

1

2M

M∑
m=1

eika0m

(
e−iφ(k)

±1

)
(|m,A〉,|m,B〉), (12)

where |m,A/B〉 denotes the orbital A/B in the cell m,
we obtain from the condition 〈0,B|vk,±〉 = 0 that |vk,±〉 =

1√
2
[|uk,±〉 − |u−k,±〉]. Thus, using φ(−k) = −φ(k), we have

|vk,±〉 = i√
M

∑
m

[
sin[ka0m − φ(k)]

± sin(ka0m)

]
(|m,A〉,|m,B〉). (13)
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FIG. 4. (Color online) Variation φ(k) for t ′/t = 1.1 (bottom
curve), t ′/t = 0.8 (upper thick curve), and t ′/t = 0.95 (thick dashed
curve). The straight lines are lines of equation fκ (k) = (M + 1)ka0 −
κπ . Here, we have chosen M = 10, for which (t ′/t)c = 0.9091. The
extreme values of κ are indicated on the figure. In the latter case
t ′/t = 0.95 > (t ′/t)c, so there are M bulk states although the Zak
phase Z = π .

Finally, the boundary condition 〈(M + 1),A|vk,±〉 = 0 im-
poses the quantization condition

k(M + 1)a0 − φ(k) = κπ, κ = 1, . . . ,M, (14)

which has to be solved in the range 0 < k < π/a0 (the wave
functions corresponding to k = 0 and k = π/a0 are identically
zero). The function φ(k) is plotted in Fig. 4, and the solutions
of Eq. (14) correspond to the intersection of φ(k) with the M

lines fκ (k) = (M + 1)ka0 − κπ .
From this figure, we see that the Zak phase controls the

number of bulk states and, therefore, the existence of edge
states. Indeed, when t ′ > t , φ(π/a0) = 0 and Eq. (14) has
M solutions. When t ′ < t , φ(π/a0) = π and in this case
there are M or M − 1 solutions depending on the value of
t ′/t . By comparing the slopes of the curves φ(k) and fM (k),
we immediately obtain that the number of bulk states |vk,±〉
depends on the critical value of the ratio t ′/t(

t ′

t

)
c

= 1 − 1

M + 1
. (15)

Including the factor 2 associated with negative and positive
energies for each solution of the quantization condition (14),
the number Nbulk of bulk states is:

Nbulk = 2M when t ′/t > (t ′/t)c
(16)

Nbulk = 2(M − 1) when t ′/t < (t ′/t)c.

As we show below, the missing states are edge states localized
at the ends of the chain. In the large M limit, the number of bulk
states is related to the value of φ(π/a0) since, in this limit, there
are 2M bulk solutions when φ(π/a) = 0 and 2(M − 1) bulk
solutions when φ(π/a) = π . This criterion can be rewritten in
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terms of the Zak phase: Since φ(k) is an odd function of k, we
have simply

Z = 1

2

∮
dk

dφ

dk
=

∫ π/a0

0
dk

dφ

dk
= φ(π/a0) = 0 or π. (17)

As a result, by comparing Eqs. (11), (15), and (16), we
conclude that in the large M limit,27

Nbulk = 2M when Z = 0
(18)

Nbulk = 2(M − 1) when Z = π.

2. The edge states

We now briefly describe the structure of the edge state for
t ′/t < (t ′/t)c. We search for a solution k of the form k =
π/a0 + iλ, where ξ = 1/λ is the localization length of the
edge state. The solution vanishing on the B site at m = 0 is of
the form

|ve
λ,±〉 = 1√

M

M∑
m=1

(−1)m+1

(
χA

m

χB
m

)
(|m,A〉,|m,B〉), (19)

where(
χA

m

χB
m

)
=

{[
t ′
t

sinh λa0m − sinh λa0(m − 1)
]/|ρ(λ)|

± sinh λa0m

}
, (20)

and has an energy

ελ,± = ±
√

t2 + t ′2 − 2t t ′ cosh λa0 ≡ ±t |ρ(λ)|. (21)

The inverse localization length λ is fixed by the condition that
the wave function on the site A at m = (M + 1) vanishes,
leading to

t ′ sinh λ(M + 1)a0 = t sinh λMa0. (22)

Inserting (22) into (21), we find

ελ,± = ±t
sinh λa0

sinh λ(M + 1)a0
, (23)

and the components of the edge states wave functions can be
rewritten as(

χA
m

χB
m

)
=

[
sinh λa0(M + 1 − m)

± sinh λa0m

]
, (24)

which satisfy properly the boundary conditions. Far from the
transition, that is, when the localization length ξ = 1/λ is
much smaller than the size of the chain Ma0, Eq. (22) reads

t ′

t
� exp(−λa0). (25)

This implies cosh(λa0) � (t2 + t ′2)/2t t ′ and, thus ,ελ,± � 0.
More precisely, from Eq. (23), the energy vanishes as ελ,± �
exp(−λMa0). The dependence λ(t ′/t) for a chain of M =
10 dimers is shown in Fig. 5, together with the approximate
expression Eq. (25). The energy spectrum of the same chain is
displayed in Fig. 6.
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t' t
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Λa0

FIG. 5. Inverse localization length λ as a function of the parameter
t ′/t , for a chain of M = 10 dimers. The full curve is the solution
of Eq. (22). As expected, it diverges as the ratio t/t ′ reaches the
critical value given by Eq. (15). The dashed line corresponds to the
approximation (25) valid far from the transition and corresponding to
ε = 0.

C. Remarks on the chiral symmetry

We finish this section with a few brief remarks concerning
the Zak phase and symmetries. As first stressed by Ryu and
Hatsugai,14 the fact that the edge states have zero energy is
associated with the existence of a chiral symmetry of the
bulk Hamiltonian.28 From an algebraic point of view, a chiral
symmetry is represented by an operator C that anticommutes
with the bulk Hamiltonian and that satisfies C2 = 1. As the
Bloch Hamiltonian of the chain of dimers can be written
as a linear combination of the Pauli matrices σx and σy , it

0.5 1.0 1.5 2.0
t' t

3

2

1

0

1

2

3
E t

FIG. 6. (Color online) Energy levels as a function of the parameter
t ′/t , for a chain of M = 10 dimers. There is an edge state with
an energy close to 0 when t ′/t < 1 − 1/(1 + M). The dashed lines
correspond to the gap ±(t ′ − t) in the limit M → ∞. The thick
(light-purple) curve is the energy of the lowest energy state, which
becomes an edge state (light-green curve) when t ′/t < (t ′/t)c.
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is clear that C = σz fulfills these properties. We now note
that the Zak phase measures the solid angle drawn by the
pseudospinor in the Bloch sphere when k spans the Brillouin
zone. As long as the Hamiltonian does not have a component
proportional to σz, the pseudospinor is forced to evolve on the
equator of the Bloch sphere, and the Zak phase is necessarily
a multiple of π . We note that breaking the inversion symmetry
of the chain,25 for instance, by adding a staggered potential,
would add a term proportional to σz in the Hamiltonian and,
therefore, would break the chiral symmetry. As a consequence,
the Zak phase is no longer expected to be a multiple of
π in this case and the energy of the edge states can differ
from zero.

Adding a term proportional to the identity trivially breaks
the chiral symmetry and shifts the energy while leaving
the pseudospinor on the equator so the Zak phase is still
quantized as a multiple of π . A configuration where this
simple mechanism leads to an interesting physics is obtained
by coupling chains of dimers (assumed oriented along the x

direction) by a hopping parameter t ′′ along the y direction, as
displayed in Fig. 7.

For periodic boundary conditions, the bulk Hamiltonian of
the coupled chains reads

HB
cc = −t ′′ cos(kyb0)1 + HB, (26)

with b0 the distance between two chains. We see that the term
proportional to 1 involves a dispersion along the y direction
and does not change the properties of the Zak phase which
are encoded in HB . Therefore, two distinct topological phases
(Z = 0 and Z = π ) arise when the criteria given in Eq. (16)
is satisfied. This means that when Z = π , a ribbon of finite
width in the x direction and invariant by translation in the y

direction supports dispersive edge states along its edges, as
shown in Fig 8.

This example shows that the Zak phase may help char-
acterizing the edge states even in the absence of a chiral
symmetry. In addition, it also illustrates that the Zak phase,
which until now we have defined for a one-dimensional system,
may provide informations about the edge states in systems of
higher dimension. In the following of the paper, we investigate
the more complex case of a monolayer of graphene.

FIG. 7. Chains of dimers coupled in the y direction by a hopping
parameter t ′′.

FIG. 8. (Color online) Energy levels of a ribbon built from chains
of M = 20 dimers. The chains are coupled to one other in the
y direction with a hopping parameter t ′′ = 0.1, and the ribbon is
invariant by translation along this direction. We took t = 1, (left)
t ′ = 1,5, and (right) t ′ = 0,5. In the first case the Zak phase is Z = 0
and there is no edge state. In the other case, the Zak phase is Z = π

and dispersive edge states have emerged in the gap.

III. THE ZAK PHASE AND THE EDGE STATES OF
GRAPHENE RIBBONS

Turning now to graphene, we demonstrate in this section
that the Zak phase, introduced in Sec. II for a one-dimensional
system, has a natural generalization for a large class of two-
dimensional graphene ribbons. In the particular case of zigzag
edges, following the same lines as in the 1D case, we prove
that it is possible to relate the Zak phase to the existence of
edge states. We then consider the case of ribbons with arbitrary
orientations and show that, computing the Zak phase, we can
predict the presence or absence of edge states according to the
nature of the edge.

A. The bulk Hamiltonian

We describe the electronic spectrum of graphene by a tight-
binding model on the triangular Bravais lattice with two atoms
(A and B) per unit cell, as illustrated in Fig. 9. The parameters
t1, t2, and t3 represent the three hopping integrals between
nearest neighbors and for now we consider the isotropic case
t1 = t2 = t3 (the anisotropic case is treated in Sec. IV). The
vectors a1 and a2 form a basis of the Bravais lattice, and
we note (a∗

1,a
∗
2) (with a∗

i · aj = 2πδij ) the associated basis of
the reciprocal space.

For periodic boundary conditions in both the x and y

directions, Bloch theorem leads to the bulk Hamiltonian

HB(k) = −t3|ρ(k)|
(

0 e−iφ(k)

eiφ(k) 0

)
(27)

in the basis of the two sublattices A and B, with

ρ(k) = 1 + t1

t3
exp (−ik · a1) + t2

t3
exp (−ik · a2)

= |ρ(k)|e−iφ(k). (28)

The eigenenergies of the bulk Hamiltonian HB (k) consist in
two bands, given by ε±(k) = ±t3|ρ(k)|, and the corresponding
eigenvectors have the form,

|uk,±〉 = 1√
2

(
e−iφ(k)

±1

)
. (29)
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FIG. 9. (Color online) (Left) Unit cell (dimer) A-B of the
graphene sheet with the basis vectors of the Bravais lattice a1 and
a2 and the hopping parameters t1, t2, and t3. (Right) Example of an
edge obtained by translating the dimer along a1 and then twice along
a2. This edge is characterized by the periodicity vector T = a1 + 2a2.

The positive and negative bands touch linearly at two inequiv-
alent points D and D′ (the Dirac points) which, in the isotropic
case considered in this section, are located at the corners K
and K′ of the first Brillouin zone.

The Hamiltonian (27) can be written in the same form
HB(k) = −t3 g(k) · σ as for the chain of dimers (5), the
difference being that k is now a two-dimensional vector and
that the k dependence of g(k) is, of course, not the same. As in
our 1D toy model, topological properties of the wave function
as well as some characterization of the edge states are expected
to be encoded in the loops drawn by g(k) as k varies across the
Brillouin zone. This connection was actually already suggested
by Ryu and Hatsugai14 in the broader context of systems with
chiral symmetry (and more recently by Mong and Shivamoggi
in a general study of Dirac Hamiltonians).15 Their approach,
which basically consists in the graphical evaluation of the
Zak phase in the same way as in Fig. 3, was applied for three
different regular types of edges (zigzag, armchair, and bearded
edges). Comparing with numerical calculations, they showed
that the Zak phase could correctly predict the existence of
edge states in these cases. However, their approach relied on
the construction of a specific bulk Hamiltonian [i.e., a vector
g(k)] for each type of edge considered and is, therefore, not
convenient to consider arbitrary boundary conditions. Here, we
keep the same bulk Hamiltonian but we associate a specific 2D
Brillouin zone to each type of edge. This allows us to predict
the existence of edge states for different ribbon geometries and,
therefore, to address a significantly larger class of ribbons.

B. Edges of graphene ribbons

Turning now to graphene ribbons, we assume that both
edges of the ribbon are parallel (i.e., that one edge can be
deduced from the other by translation of a lattice vector C) and
constructed as illustrated in Fig. 9, i.e., by connecting dimers
A-B (or unit cells) of fixed orientation (vertical orientation in
Fig. 9).

More precisely, considering two positive or negative inte-
gers m and n, an edge is built as (|m| + |n|) translations of

the dimer, |m| of which are along a1 (−a1 if m negative)
and |n| of which are along a2 (−a2 if n negative), in an
arbitrary order, and by repeating the pattern obtained in this
way. Therefore, the edges are invariant under the translation
vector T = ma1 + na2 which characterizes the type of edge.
Noting θ the angle between T and the y axis, this angle is
related to (m,n) through

tan θ = 1√
3

n − m

n + m
. (30)

When m and n have the same sign, the class of edges
constructed in this way exactly corresponds to the “minimal
boundary conditions” defined by Akhmerov and Beenakker.24

In the other case, the edges exhibit dangling bonds. Figure 1
gives some examples of such edges. It is easy to see that the
vectors T(m,n) and T(n,m) describe the same kind of edge.
We also notice that the same vector T can describe edges with
different shapes; see the example of T = (2,5) in Fig. 1.

We stress that choosing the “unit-cell” dimer A-B with a
different orientation (i.e., rotated from ±2π/3 with respect
to the vertical one used in Fig. 9) leads to a different set
of boundaries. These latter are, of course, just deduced from
the former by a ±2π/3 rotation, and, thus, considering only
the vertical unit-cell dimer, as we shall do in the following,
does not restrict the type of edge to be studied. We insist,
however, that if one wanted to consider another orientation of
the unit-cell dimer for the edges, it would be essential to modify
accordingly the dimer orientation in the definition of the bulk
Hamiltonian [which basically fixes the zero of the phase φ(k)
in Eqs. (27) or (29)]. This is a necessary condition to derive a
bulk-edge correspondence for the edge states in terms of the
Zak phase.

C. The Zak phase in graphene ribbons

For one-dimensional models such as the one considered in
Sec. II, the Zak phase is defined as the integral of the Berry
connection across the Brillouin zone. To generalize this notion
to two-dimensional systems such as graphene, this integration
should be taken on a cut of a 2D Brillouin zone in a direction
transverse to the ribbon orientation. More precisely, as the
ribbon is assumed to be invariant under translation by the
vector T, Bloch theorem guarantees that k‖, the component
of the crystal momentum parallel to T, is a good quantum
number. We expect, therefore, the Zak phase Z(k‖) to be a
function of k‖ and to correspond to an integration of the Berry
connection across the 2D Brillouin zone along a perpendicular
direction k⊥.

Let us assume for now that m and n are coprime integers (we
will return below to the case where they are not). We choose the
Brillouin zone from which the Zak phase will be computed as
the one generated by two orthogonal vectors of the reciprocal
space, �‖ and �⊥, obtained as follows. The first of these vector
�‖ ≡ 2πT/|T|2 is parallel to the direction T of the ribbon
and merely defines the one-dimensional Brillouin zone of the
ribbon. The second vector �⊥ is taken perpendicular to T, and
its norm is fixed by the constraint that �‖ × �⊥ = a∗

1 × a∗
2

(where, as mentioned above, a∗
1 and a∗

2 are the reciprocal lattice
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vectors defined by ai · a∗
j = 2πδij ). This leads to

�‖(m,n) = (n + 2m)a∗
1 + (m + 2n)a∗

2

2(n2 + m2 + nm)
(31)

�⊥(m,n) = na∗
1 − ma∗

2. (32)

For the sake of completeness we remind briefly in Appendix
why (�‖,�⊥) constructed in this way actually defines a
Brillouin zone when (m,n) are coprime integers (and only
in this case).

For an arbitrary edge characterized by the vector T(m,n),
we introduce the unit vectors e‖ = �‖/|�‖| and e⊥ = �⊥/|�⊥|
and write the momentum as k = k‖e‖ + k⊥e⊥. The Zak phase
Z(k‖) can thus be defined as:

Z(k‖) = i

∮
dk⊥〈uk,±|∂k⊥uk,±〉, (33)

which, by using the expression of the Bloch function (29),
simply reads

Z(k‖) = 1

2

∮
dk⊥∂k⊥φ(k). (34)

Note that as �⊥ is a vector of the reciprocal lattice, the
integration can indeed be seen as taken on a closed path.

Let us consider now the situation where m and n are not
coprime, in which case (�‖,�⊥) obtained from Eqs. (31)
and (32) do not form a basis of the reciprocal lattice (see
Appendix). Writing m = lm̃ and n = lñ with l integer and
m̃ and ñ coprime and following exactly the same line of
argument as above, we can construct a basis (�̃‖,�̃⊥) of the
reciprocal lattice corresponding to (m̃,ñ) and define the Zak
phase Z(m̃,ñ)(k̃‖) accordingly from Eq. (34). An example of
such a construction will be shown in Sec. III E [see the case
(m,n) = (2,0) in Fig. 13]. However, as T(m̃,ñ) = T(m,n)/l,
we now have �̃‖ = l�‖. As a consequence, to a given value
k‖ of the quantum number of the ribbon corresponds l values
(k̃(0)

‖ , . . . ,k̃
(l−1)
‖ ) in the Brillouin zone (k̃(j )

‖ = k‖ + j |�̃‖|) and,
therefore, l Zak phases. The prescription we shall use for
noncoprime integers (m,n) is, therefore, that, for a given value
k‖ of the ribbon quantum number, the Zak phase is defined as

Z(m,n)(k‖) ≡
l∑

j=1

Z(m̃,ñ)(k̃
(j )
‖ ). (35)

This prescription merely corresponds to a folding of the
Brillouin zone.

D. Zigzag boundary conditions

Before we address general orientations for the graphene
ribbon, let us, first, consider in detail the simple case of zigzag
boundary conditions. In that case, and as illustrated in Fig. 10,
the two edges of the ribbon, (β1) and (β2), are constructed as
the vertical dimer A-B translated periodically with the vector
T = a1 (see Fig. 9). We define C, the vector that connects the
two edges, and C′ = C + 2a2 − a1 is the vector connecting β ′

1
and β ′

2, the lines of empty-site nearest neighbors to the edges
β1 and β2.

FIG. 10. (Color online) Schematic representation of a zigzag
ribbon. The zigzag edge is obtained by translating the dimer A-B
(represented by a rectangle) with the periodicity T = a1. The two
edges β1 and β2 are represented by thick lines. The first vacant sites
outside of the ribbon where we impose the wave function to vanish
are represented by circles. C is the vector of the Bravais lattice that
connects two sites on both edges, and C′ connects the first vacant site
on one side of the ribbon to the first vacant site on the other side.

Noting �k± = (�A
k±,�B

k±)T , the Bloch state of momentum
k, we have

�k,±(r) = 〈r|�k±〉 ∝ eik·r
√

2

(
e−iφ(k)

±1

)
. (36)

Following the approach used for the one-dimensional chain
of dimers of Sec. II B, we construct eigenstates of the ribbon
as a linear combination � of two Bloch states �k± and �k′±
at the same energy. From Fig. 10, we see that the boundary
conditions read

�A(C′ + νT) = 0 [on B′
2], (37)

�B(νT) = 0 [on B′
1], (38)

with ν ∈ Z.
The boundary condition Eq. (38) implies that the wave

functions � are combinations of the form � = �k − �k′ with
k · T = k′ · T (here T = a1). Since we need εk = εk′ , we have
to consider momentum pairs (k,k′) such that (k + k′) · a2 =
k · a1 = k′ · a1. For a given value of k‖, it can be checked that
this is satisfied if

k = k‖ + k⊥, (39)

k′ = k‖ − k⊥, (40)

where we have introduced k‖ = k‖e‖ and k⊥ = k⊥e⊥. Note
that k⊥ = 0 or k⊥ = �⊥/2 correspond to �k − �k′ ≡ 0.

The boundary condition Eq. (38) then imposes

(k−k′) · C′ − (φ(k) − φ(k′)) = 2κπ (41)

(for integer κ) or, in term of the phase φ(k‖,k⊥) = 1
2 [φ(k‖ +

k⊥) − φ(k‖ − k⊥)],

k⊥ · C′ − φ(k‖,k⊥) = κπ, (42)

which is the strict equivalent of the quantization condition
(14) obtained for the 1D chain. We note, furthermore, that
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(�⊥ · C′) = 2π (M + 1), with M the number of dimers in the
transverse direction of the ribbon and, thus, half the number of
bands. Using the same arguments as in Sec. II B, we see that
the number of edge states depends on the value of φ(k‖,�⊥/2)
and, more precisely, that the quantity∣∣∣∣Z(k‖)

π

∣∣∣∣ =
∣∣∣∣ 1

2π

∮
dk⊥

dφ(k‖,k⊥)

dk⊥

∣∣∣∣ (43)

gives the number of pairs of edge states (with opposite
energies) for a given k‖.

E. General orientation

We consider now graphene ribbons characterized by an
arbitrary translation vector T(m,n). Based on similar argu-
ments as in the previous section we conjecture that the relation
between the Zak phase and the number of edge states holds
in this general case. We then use this relation to predict
the existence of edge states in graphene ribbons of general
orientation. We also check that for every case for which edge
states has been computed (numerically or otherwise) their
appearance is correctly predicted by the Zak phase.

In Eq. (34), the phase φ(k) should be understood as a
multivalued function. The single-valued function φ̃(k) corre-
sponding to the restriction of φ(k) to the interval [−π, + π ] is
displayed on Fig. 11. It shows lines of discontinuity connecting
pairs of Dirac points. The location of the discontinuities (i.e.,
which Dirac points are connected by them) depends on the
choice made for the unit-cell dimer A-B (oriented along the y

D

D

DD'

D'

D'

6 4 2 0 2 4 6

6

4

2

0

2

4

6

kxa0

k y
a 0

FIG. 11. (Color online) Density plot of the phase φ̃(k). The
discontinuities of the phase are shown by horizontal white lines
connecting pairs of Dirac points. These singularities separate the
values φ̃ = +π (light region) to the value φ̃ = −π (dark region).
Consequently, the only paths �⊥ that contribute to a nonvanishing
Zak phase are those that cross these singularities. The black lines,
thick lines, and dashed lines represent the iso-φ̃ lines, respectively,
for φ̃ = 0, φ̃ = −π/2, and +π/2.

axis in this paper; see Fig. 9). Therefore, the phase φ(k) is not
invariant by a rotation of an angle ±2π/3.

Let us start again by considering ribbons of period T(m,n)
with coprime (m,n). The discontinuities of φ̃(k) are extremely
convenient to determine the Zak phase since paths that lead
to a nonvanishing Zak phase necessarily cross a discontinuity
line. Actually, the Zak phase Z(m,n)(k‖) is given by the number
of discontinuities d(k‖) intersected by the path P(m,n)(k‖) =
[k‖,k‖ + �⊥] along which Z(m,n)(k‖) is computed, that is,

Z(k‖) = ±π d(k‖). (44)

In other words, d(k‖) is just the number of pairs of edge states
(of opposite energies) for a given k‖.

These considerations make it possible to compute graphi-
cally the Zak phase in a rather straightforward way. For a given
choice of edge characterized by the vector T(m,n) = ma1 +
na2, we first represent the vector �⊥(m,n) = na∗

1 − ma∗
2

[Eq. (32)]. This is done in Fig. 12, where we plot the vectors
�⊥(m,n) from the left extremity of the discontinuity (0,0)
to the left extremity of the discontinuity (n, − m). Next, in
Fig. 13, we translate perpendicularly �⊥ until the left extremity
of an another discontinuity is reached (dashed line), which
gives �‖(m,n). The rectangle defined by �⊥ and �‖ is the
Brillouin zone we want to associate with the ribbon. For a
given value of the momentum k‖, Z(k‖) is then deduced from
Eq. (44) by simply counting the number of intersections of the
segment [k‖,k‖ + �⊥] with the discontinuity lines of φ̃(k).

If m and n are not coprime, as, for instance, in Fig. 13(d),
�‖(m,n) and �⊥(m,n) cannot be obtained in this way as they do
not define a Brillouin zone. Writing, however, (m,n) = l(m̃,ñ)
with (m̃,ñ) coprime, the Brillouin zone corresponding to

1, 1 0, 1

0, 1

0, 0 0, 0

1, 0

1, 1

2, 01, 1

a2 a1

5 10 15 20

5

0

5

kxa0

k y
a 0

FIG. 12. (Color online) On top of the density plot of the phase
φ̃(k), we have represented several values of the vector �⊥(m,n) =
na∗

1 − ma∗
2. The left extremity of a discontinuity of φ̃(k) is taken

as the origin. We have explicitly plotted the vector �⊥(1,0) as an
example.
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FIG. 13. (Color online) Surfaces |�‖ ∧ �⊥| associated with dif-
ferent ribbon vectors T(m,n). �⊥ is obtained as �⊥(m,n) = na∗

1 −
ma∗

2 = (n, −m); see text for the construction of �‖. (a) �⊥(m =
1,n = 2) = (2, −1), (b) �⊥(−2,3) = (3,2), and (c) �⊥(0,1) = (1,0).
In these three cases, m and n are coprime, and the surfaces |�‖ ∧ �⊥|
represented by a shaded rectangles are Brillouin zones. (d) For T(0,2)
the surface obtained by �‖ and �⊥ is not a Brillouin zone because
m and n are not coprime. The corresponding Brillouin zone (shaded
rectangle) is given by �⊥(0,1) = �⊥(0,2)/2 and �‖(1,0) = 2�‖(2,0).

(m̃,ñ) can be constructed as above, and one has simply
�‖(m,n) = �̃‖(m̃,ñ)/l and �⊥(m,n) = l�̃⊥(m̃,ñ), which ba-
sically amounts to a folding of �̃‖ by a factor l. For a given
value of k‖, the Zak phase in then given by Eq. (35).

F. Range of existence and density of edge states

In this section we derive the range 
k‖ for which edge
states exist, as well as the density of edge states for arbitrary
boundary conditions thanks to the bulk-edge correspondence
in terms of the Zak phase.

In the last section, we showed that the number of pairs of
edge states for a given value of k‖ is given by the number d(k‖)
of crossings between the pathP(m,n)(k‖) and the discontinuities
of φ̃(k). Since a Brillouin zone always contains exactly one
line of discontinuities, the total range


k‖ ≡
∫ 2π/|T|

0
d(k‖)dk‖ (45)

over which the ribbon exhibits edge states, is obtained by
projecting the line of discontinuities onto the k‖ axis, as
illustrated in Fig. 14. This leads to


k‖ = 4π

3a0
| sin θ |, (46)

ky

D' D

Θ

Θ

k

k

FIG. 14. (Color online) Projection of the discontinuity of φ̃(k)
onto the k‖ axis. This projection gives the range 
k‖ for the existence
of edge states.

where θ is the angle between the direction T of the ribbon and
the vertical axis y of the dimers [see Fig. 9 and Eq. (30)].
Therefore, there is no edge state for edges parallel to the
armchair edge (θ = 0) and 
k‖ is maximum and equal to
4π/3a0 for bearded edges.19,20

Then, from Eq. (30) we have the relation between the range

k‖ of existence of edge states in graphene and the integers
(m,n) characterizing the edge:


k‖(m,n) = 2π

3a0

|n − m|√
n2 + m2 + nm

. (47)

We note that 
k‖(m,n) = 
k‖(lm,ln), which means that
T(m,n) and lT(m,n) support the same number of local-
ized states. A relevant quantity to study is the ratio R ≡

k‖/|�‖| = 
k‖|T|/(2π ), which gives the relative range of
the 1D Brillouin zone where edge states exist. We find

R = |n − m|
3

. (48)

We now comment on Eqs. (47) and (48). First, we apply
these formulas to several types of edges as listed in Table I.

The three general types of edges mentioned in this table
represent a zigzag profile extending over, respectively, three,
five, and eight unit cells followed by an armchair defect [see,
for example, Fig. 1 for the case (1,5)]. These results are in
good agreement with the size of the edge states energy bands
obtained by numerical tight-binding calculations in different
previous works.2,3,14,21–23 We also note that in the limit |n| �

TABLE I. Applications of Eqs. (47) and (48) for some edge
geometries studied in previous works.

(m,n) 
k‖ R

Armchair (1,1) 0 0
Zigzag (1,0) 2π/3a0 1/3
Bearded zigzag (1, −1) 4π/3a0 2/3
Bearded armchair (2, −1) 2π/

√
3a0 1

(1,3) 4π/3
√

13a0 2/3
General types (1,5) 2π/3

√
31a0 4/3

(1,8) 14π/15
√

3a0 7/3
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FIG. 15. (Color online) Schematic band structures of graphene
ribbons that exhibit edge states. Edge states are represented as zero-
energy flat bands as expected in the large width limit within the
tight-binding model (assuming the chiral symmetry is preserved).
The number of pairs of edge states is indicated on the three figures
(a), (b) and (c). In Fig. (a), the parameterR < 1 and in Fig. (b)R > 1.
Our analysis based on the Zak phase predicts that the configuration
(c) is not allowed.

|m| (or the other way), we recover 
k‖ → 2π/3a0 which is
the expected result for the zigzag edge.

Equations (47) and (48) directly lead to the important result
that edge states exist for most types of ribbons with a periodic
pattern, which is in agreement with a previous analytical
approach within the Dirac framework.24 More precisely, we
find that there is no edge state if and only if n = m. As already
mentioned, this class of ribbons includes all the vectors T
parallel to the y axis of the dimers A-B [see, for instance,
the case (3,3) displayed in Fig. 1. Similar ribbons have been
synthesized recently].29 The well-known particular armchair
case corresponds to the smallest |T| that obeys this condition.

The case R � 1 also deserves some attention. It implies
that two or more pairs of localized states may correspond to
the same k‖. This situation happens when, as illustrated in the
example of Fig. 13(b), several discontinuities are intersected by
the path P(m,n)(k‖). Such a situation is automatically achieved
for m and n coprime when θ (m,n) > θ (4,1) = arctan(

√
3/5).

Moreover, by construction, the projection of the line of
discontinuity of φ̃ spans R times the Brillouin zone, which
implies that the number of localized states cannot differ by
more than one unit for any two k‖ (see Fig. 15).

Therefore, for m and n coprime, there is either [R] or
[R] + 1 edge states for each k‖ ([x] is the floor function). In
the particular case where R is an integer there are exactly R
edge states for each k‖.

Finally, we can define the quantity ρ = R/|T| which
corresponds to the “density of edge states per unit length”
introduced by Akhmerov and Beenakker. We get

ρ = 
k‖
2π

= 1

3a0

|n − m|√
n2 + m2 + nm

, (49)

which was first obtained in Ref. 24 for “minimal boundary
conditions” (m and n have the same sign) by a different
method.

IV. EMERGENCE AND DESTRUCTION OF EDGE STATES:
A TOPOLOGICAL APPROACH

In this section, we generalize the formula (47) for nonequal
hopping parameters t1 �= t2 �= t3 and establish a criterion for
the existence of edge states for an anisotropic honeycomb

D'
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FIG. 16. (Color online) Density plot of the phase φ̃(k) for t2 =
1.5t1 = 1.5t3. The discontinuities of the phase are shown by curved
white lines that pair the Dirac points. The black lines, thick lines,
and dashed lines represent the iso-φ̃ lines, respectively, for φ̃ = 0,
φ̃ = −π/2, and +π/2.

lattice. We show that the manipulation of these parameters
leads to a topological transition described in terms of Zak phase
that affects the range 
k‖ of existence of edge states. We stress
that breaking the isotropy of the hopping parameters preserves
the chiral symmetry, and, therefore, the topological character
of the Zak phase. As a consequence the analysis developed in
the previous section generalizes straightforwardly to the case
considered below.

A. Effect of an anisotropy on the existence of edge states

Several previous works dealing with the tight-binding
model in the honeycomb lattice showed that the Dirac points
move when modifying the ratio of the parameters ti/tj .30–33

As the lines of discontinuities of φ̃(k) connect pairs of Dirac
points, the modification of the ratio ti/tj changes the Zak phase
and, therefore, leads to new ranges 
k‖ of existence of edge
states. This is clearly shown in Fig. 16.

To determine these new ranges, we, first, have to specify
the position of the Dirac points for any ti . To a vector of the
reciprocal lattice, they are given by

D = −π − d1

2π
a∗

1 + π − d2

2π
a∗

2,

(50)

D′ = π − d1

2π
a∗

1 − π − d2

2π
a∗

2,

with

d1 = Re

[
arccos

(
t2
3 + t2

2 − t2
1

2t2t3

)]
,

(51)

d2 = Re

[
arccos

(
t2
3 + t2

1 − t2
2

2t1t3

)]
,
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FIG. 17. (Color online) Projection of the discontinuity line of
φ̃(k) onto the k‖ axis. The asymmetry of the hopping induces a
modification of the discontinuity locations as compared with Fig. 14.

whereRe(x) takes the real part of x. The Cartesian coordinates
od the Dirac points D(′) = (D(′)

x ,D(′)
y ) are given by

D = [(d1 + d2 − 2π )/a0,(d1 − d2)/
√

3a0]
(52)

D′ = [(−d1 − d2 + 2π )/a0,(d2 − d1)/
√

3a0].

Then, since the Dirac points D(′) are not located anymore at the
corner K(′) of the Brillouin zone, the range 
k‖ of existence
of edge states is modified as


k‖ = |D − D′|| sin(θ + β)|, (53)

where β is the angle between the line [D′D] and the kx axis
(see Fig. 17), which is then given by

cos β = 2
2π/a0 − D′

x

|D − D′| ,

(54)

sin β = 2
D′

y

|D − D′| .

Using Eqs. (30) and (54), the range for the edge states reads:


k‖ =
∣∣(n − m)

(
2π
a0

− D′
x

) + √
3(n + m)D′

y

∣∣
√

n2 + m2 + mn
. (55)

Next, by using the expression of the positions D′
x and D′

y given
in Eq. (52), one finds:


k‖ = 2|nd2 − md1|
a0

√
n2 + m2 + nm

(56)

as well as

R = |nd2 − md1|
π

, (57)

where d1 and d2 are given by Eqs. (51). These results give
a criterion for the existence of edge states that links the
anisotropy of the hopping parameters encoded in d1 and d2 with
the nature of the edge characterized by (m,n). In the isotropic
case, we have d1 = d2 = π/3, and we recover the result
[Eq. (47)] discussed in the previous section. Equation (56)
means that an edge state exists in graphenelike structures if
|nd1 − md2| �= 0.

An interesting consequence is that, for a given type
of ribbon, edge states can emerge or collapse when an

6 4 2 0 2 4 6

1.5
1.0
0.5
0.0
0.5
1.0
1.5

kxa0

k y
a 0

FIG. 18. (Color online) (Left) Density plot of the phase φ̃(k)
for t1 = 1, t2 = 1.5, and t3 = 1 represented in the Brillouin zone
corresponding to armchair edges. The two horizontal lines delimit
the region where Z(k‖) = π . (Right) Band structure of an armchair
ribbon with the same hopping parameters. In this case, k‖ = ky . The
two vertical lines delimit the same range as in the left panel, which is
such that edge states at zero energy, clearly separated from the bulk
bands, have emerged.

anisotropy is applied. For instance, edge states can emerge
for armchairlike boundary conditions (m = n) when either
t1/t3 �= 1 or t2/t3 �= 1 (see Refs. 26, 34, and 35 for the case
n = m = 1). This is clearly displayed in Fig. 18.

In the same way, edge states can collapse by manipulating
the asymmetry of the hopping in such a way that |nd1 −
md2| = 0.

B. Merging of Dirac points and edge states

As one increases the anisotropy of the system, for instance,
by modifying one of the ratio ti/tj , one may eventually reach
a point where t1 = t2 + t3 (or the equivalent up to a cyclic
permutation of the indices). From Eq. (51), this condition
implies that d1 and d2 take the values 0 or π , which, from
Eq. (52), corresponds to a merging of the Dirac points. By
increasing further the anisotropy, a gap opens at the merging
point. This merging is a topological transition since the Berry
phases ±π associated to the two Dirac points annihilate at the
transition.31,33

This topological transition is a bulk property and is, thus,
independent of the orientation of the anisotropy. On the other
hand, the existence of edge states at the merging transition and
beyond depends on the orientation of the ribbon with respect
to this anisotropy, and this information is still contained in the
Zak phase. Indeed, the anisotropy of the hopping parameters
controls the size and the location of the lines of discontinuities
of φ̃(k). It is, therefore, essential to distinguish which pair of
Dirac points merges. There are three possibilities as follows:
(i) t3 � t1 + t2

In this configuration, the Dirac points that merge are the end
points of the same discontinuity line. The discontinuities
then disapper at the merging point (t1 + t2 = t3) and the
Zak phase vanishes. This leads to

R = 0, (58)

whatever m and n (see top panel of Fig. 19), implying that
edge states never exist in this case. As an illustration, we
plot in Fig. 19 the band structure of a zigzag ribbon exactly
at the merge point: The zero energy edge states2 of the
isotropic case have collapsed because the Zak phase is zero
for all k‖.
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FIG. 19. (Color online) Density plot of the phases φ̃(k) at the
merging of the Dirac points, and the band structure for a zigzag
ribbon with θ = π/6 [that is, T(m = 0,n = 1) → �⊥(m = 0,n =
1) = (1,0)]. (Top) t1 = 1, t2 = 1, and t3 = 2; (center) t1 = 2, t2 = 1,
and t3 = 1; (bottom) t1 = 1, t2 = 2, and t3 = 1. The scale is given in
units of 1/a0.

The situation differs totally when the two merging Dirac
points are attached to two distinct discontinuity lines, which
occurs when t1 − t2 = ±t3. In this case, the two discontinuity
lines themselves merge, implying that R is an integer, as we
discuss now.

(ii) t1 � t2 + t3
In this case we have d2 = 0 and d1 = π , which leads to

R = |m| (59)

for all n. For instance, there is no edge state for zigzag
edge at θ = +π/6 (see center panels of Fig. 19), but there
is one over the whole ribbon Brillouin zone for armchair
edges and for zigzag edges at θ = −π/6. We note that
the existence of edge states now depends only on the
orientation of the edge given by θ but no longer on k‖.

(iii) t2 � t1 + t3
In this case d1 = 0 and d2 = π and we find

R = |n|, (60)

whatever the value of m. Of course, this case is equivalent to
the one discussed previously with the substitution m ↔ n,
that is, θ → −θ . The phase φ̃(k) and the corresponding
band structure for zigzag ribbons at θ = +π/6 are repre-
sented in Fig. 19 (bottom panels).

In summary, we note that in all three cases, at the merging
point, the Zak phase becomes independent of k‖ and remains
unchanged in the gapped phase. This implies that at the
merging transition and beyond, R is, necessarily, an integer.
This is obvious from Figs. 19: the merging of the Dirac points
implies either a disparition of the discontinuity lines or their
transformation into an infinite line.

V. CONCLUSION

In this paper, we have investigated the correspondence
between the Zak phase and the existence of edge states for
arbitrarily oriented graphene ribbons with a large class of edge
shapes. We have proposed a definite prescription to compute
the Zak phase in order to predict the number of edge states.
The approach we have developed consists in constructing
the appropriate 2D Brillouin zone associated with the vector
T(m,n) that defines the edge. The Zak phase Z(k‖) giving the
number of edge states for each k‖ is then directly obtained by
integrating the Berry connection along a path fixed by T(m,n)
and k‖ in this 2D Brillouin zone.

We stress that this bulk-edge correspondence is, beyond
the 1D chain of dimers case, only rigorously proven here for
zigzag edges. It is, therefore, so far a conjecture for the class of
edges we have defined. This conjecture is, however, supported
by the fact that it reproduces all the known previous results
obtained (numerically or otherwise) in the literature for various
specific types of edges.2,3,14,21–23

In practice, the value of the integral defining the Zak phase is
easily obtained graphically. Our approach, therefore, requires
no sophisticated formalism or calculation and gives an elegant
understanding of the origin of the edge-dependent edge states
in terms of a topological bulk quantity. In particular, it provides
a simple understanding of the appearance and disappearance of
edge states by manipulating the anisotropy of the tight-binding
hopping parameters. Such a manipulation may be induced in
graphene by applying an uniaxial stress or bending of the
sheet36 or in photonic crystals which mimic the same physics
by changing the distance between the confining mirrors.6

We finish with a few comments concerning the connection
between Zak phase and edge states.

First, this bulk-edge correspondence differs from the ones
in quantum Hall systems37–40 or Z2 topological insulators40,41

since here the existence of edge states precisely depends on
the orientation of the edge. This difference with the usual bulk
topological numbers originates from the fact that the Zak phase
is a 1D (rather than 2D) integral of the Berry connection.

Second, we stress that within our approach, the vector
T(m,n) defining the periodicity of the ribbon entirely deter-
mine the Zak phase. As many different shapes may correspond
to the same vector T(m,n), the Zak phase and, therefore, the
number of edge states are expected to be independent of the
variation of the edge geometries as long as they correspond to
the same T(m,n).42

Finally, our description of edge states in terms of the Zak
phase is a priori not restricted to graphene but, in principle,
should be also applicable to other 2D systems like d-wave
superconductors,14 a square lattice with half a quantum flux
per unit cell,35 or bilayer graphene,17 for instance.
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APPENDIX: CONSTRUCTION OF THE BRILLOUIN ZONE

In this Appendix, we give a brief reminder of the reason
why the vectors �‖ and �⊥ defined by Eqs. (31) and (32)
actually generate a Brillouin zone when n and m are coprime
integers.

This latter condition indeed implies that one can find two
integers (m′,n′) such that mn′ − nm′ = 1, in which case the
couple of vector (T,N), with N = m′a1 + n′a2, form a basis

of the Bravais lattice. The choice of (m′,n′), and, thus, of N, is
not unique, but this is irrelevant for our purpose.

From (T,N), one deduce a basis (�N,�⊥) of the reciprocal
lattice,

�N = n′a∗
1 − m′a∗

2, (A1)

�⊥ = na∗
1 − ma∗

2, (A2)

which is such that �⊥ ⊥ T. A Brillouin zone can, thus, be
obtained from the parallelogram generated by (�N,�⊥). More
generally, however, any vector � such that (� − �N ) ‖ �⊥ is
such that the parallelogram generated by (�,�⊥) is a Brillouin
zone. A natural choice is to take for � the vector �‖ that
is parallel to T (and, thus, orthogonal to �⊥). Since T ·
�N = 2π (mn′ − nm′) = 2π , one has |�‖| = 2π/|T|, which
is nothing but the size of the (1D) Brillouin zone of the
ribbon.
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