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Bonding and pressure-tunable interfacial thermal conductance
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Stiffness of interfacial bonding between two materials plays a major role in controlling the thermal conductance
of the interface. We use nonequilibrium molecular dynamics simulations to study interfacial thermal conductance
at an epitaxial interface between two fcc crystals with interatomic interactions described by Lennard Jones (LJ)
potentials. The interface stiffness was varied by two different methods: (i) application of pressure and (ii) direct
change of the interfacial bonding strength by varying the depth of potential well parameter of the LJ potential.
Our results show that when the interfacial bonding strength is low, interfacial stiffness increases linearly with
pressure due to the anharmonicity of atomic interactions. Consequently, the interfacial conductance increases,
first proportionally to interfacial stiffness, and then it saturates at a high value. Quantitatively similar behavior
is observed when the stiffness of the interfacial bonding is increased by directly varying the depth of the
potential well parameter of the LJ potential. By contrast, when the interfacial bonding strength is high, thermal
conductance is almost pressure independent and in fact slightly decreases with increasing pressure. This decrease
can be explained by the change of overlap between the vibrational density of states (DOS) in the two crystalline
materials.
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I. INTRODUCTION

Resistance to heat flow posed by the presence of interfaces
is important in nanostructured materials characterized by high
density of interfaces. In fact interfaces can limit thermal con-
ductivity of nanostructured materials. For example, because
of weak thermal coupling between nanotubes (CNT) and a
polymer matrix, CNT-polymer composites are characterized
by relatively small increases in thermal performance due to
introduction of highly conductive fibers, as compared with
their pure polymer counterparts.1 The thermal resistance of
interfaces can be affected by the mechanical properties of the
materials on each side of the interface,2 the atomic-level details
of the interfacial structure,3 and the stiffness of interfacial
bonds.4

The role of interfaces on thermal transport can be quantified
by the interfacial thermal resistance R, or its inverse, the
interfacial thermal conductance σ . This quantity is defined via

JQ = σ�T, (1)

where �T is a discontinuous temperature drop at the interface,
and JQ is the heat flux across the interface.2 The importance
of the interfacial resistance can be most easily gauged via
the concept of the Kapitza length (lK ), i.e., the equivalent
thickness of a bulk material forming the interface that has the
same overall thermal resistance as the interface. For carbon
nanotubes surrounded by surfactants and dispersed in water,
GK , measured by transient laser-heating methods, as well as
modeled via molecular dynamics (MD) simulations, can be as
low as 10–20 MW/m2 K corresponding to lK = 30–60 nm.5 In
this context it is imperative to design approaches to decrease
interfacial thermal resistance.

The acoustic mismatch model (AMM) and diffusive mis-
match model (DMM) have traditionally provided a basis
for understanding the interfacial thermal resistance. These

models provide prescriptions for calculating the transmission
coefficient of a phonon with which the interfacial conductance
can be evaluated via2,6

σ (T ) = 1

2

∫ ∞

0
D(ω)h̄ω

∂n(ω,T )

∂T
〈νz(ω)〉〈t(ω)〉dω, (2)

where σ (T ) is thermal conductance, D(ω) is the frequency-
dependent vibrational phonon density of states (DOS) per
unit volume, n(ω,T ) is the Bose-Einstein occupation number,
〈νz(ω)〉 is the average value of phonon-group velocity at
frequency ω in the cross-plane direction, and 〈t(ω)〉 is the
transmission coefficient of phonons.6 While both AMM and
DMM provide values for transmission coefficients, neither of
the models explicitly accounts for the effect of the stiffness of
interfacial bonding on the interfacial heat transfer.

The importance of the stiffness of the interfacial bonding
on the transmission coefficients can be easily demonstrated
by a theoretical treatment of a simple model of an infinite
one-dimensional chain of masses connected by springs.6,7 In
this simple model half of the chain is composed of masses m1

connected by springs with stiffness k11, and the other half is
composed of masses m2 connected by springs with stiffness
k22. The stiffness of the “interfacial” spring is k12. Using the
Caroli formula,7 the transmission coefficient can be calculated
as4

α(ω) = 4k2
12k11k22 sin(q) sin(q ′)/|d|2, (3)

where t(ω), as before, is the transmission coefficient at
frequency ω; kij is the generalized spring constant between
an atom of type i and an atom of type j ; q and q ′ are the wave
numbers on each side of the interface; and d is a function of
spring constants, frequency, and the wave number given by4

d = [ω2 − k12 + k11(eiq − 1)][ω2 − k12 + k22(eiq′ − 1)].

(4)
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FIG. 1. Energy transmission coefficient as a function of normal-
ized interfacial bonding, k12/k11 for a chain model with m1 = 2m2
and k11 = k22 for a phonon with frequency ( = 0.532 (k/m1)1/2.

A calculation based on this model shows that the inter-
facial phonon-transmission coefficient for a typical phonon
representing those carrying the majority of the heat strongly
increases with increasing interfacial stiffness,4 as shown in
Fig. 1. Furthermore, the transmission coefficient saturates at
strong bonding at the value of 0.970, which is the same as
given by the prediction of the AMM. This result shows that the
interfacial conductance is strongly affected by the interfacial
bonding and only when the bonding is sufficiently strong
does the interfacial conductance reach values predicted by
AMM. Alternatively, one can tune interfacial conductance by
controlling interfacial bonding strength instead of controlling
bulk properties.

In the context of fully three-dimensional models, Prasher
and coworkers8 developed an analytical extension of the
AMM that includes the effects of weak interface bond-spring
constants; in this model an increase of the conductance is
observed with increasing bond stiffness and then saturation.
Similar observations were made for three-dimensional lattice
models by Young and Maris who studied the effect of
interfacial bonding and the phonon DOS on the interfacial
thermal conductance between two FCC lattices using lattice-
dynamics calculation.6

Motivated by the fact that interfacial bonding plays an
important role in interfacial transport, we use MD simulations
and model epitaxial interfaces to systematically investigate the
role of interfacial stiffness on the interfacial conductance. We
define here interfacial stiffness S as normal to the interface
elastic constant S = ∂Pzz/∂εzz, where Pzz is the normal to
interface stress and εzz is interfacial strain. MD simulations
can be easily adjusted by changing the strength of bonds across
the interface.6,9 However, we will also use pressure to tune
interfacial stiffness—this is motivated by the fact that such an
approach can be realized in experiment.

The remainder of this paper is organized as follows. In
the next section the model and the simulation methods are
described; in Sec. III simulation results are presented and
discussed. A summary and conclusion are presented in the
last section.

II. MODEL AND SIMULATION METHODOLOGY

Our simulation structure is composed of two crystalline-
cubic fcc blocks, as shown in Fig. 2(a). All interatomic
interactions are modeled with the 12-6 Lennard Jones (LJ)
potential:

E = 4ε

[(σ

r

)12
−

(σ

r

)6
]
, (5)

where ε is the depth of the potential well and σ is the distance
parameter. The LJ potential is used because it is simple, it sta-
bilizes fcc structure, and its anharmonicity allows the stiffness
of the interface to be tunable by pressure. LJ potential and a
similar interfacial model were used to study the anharmonic
effects in heat transfer from metal to nonmetal substrates by
Stoner and Maris.9 In our studies the same LJ parameters, ε1 =
ε2 = 1.0, σ 1 = σ 2 = 1.0 (in LJ units) are used for both blocks,
and consequently each block has the same number density.
Using ε for the interfacial interactions can be different from
the corresponding bulk value. In some simulations we will use
ε of the interface as an adjustable parameter to study the effect
of the interfacial bonding strength on the interfacial transport.
The ratio of atomic masses is 2:1 in all simulations.

Periodic boundary conditions are used in all three dimen-
sions, leading to two epitaxial interfaces in the simulation cell.
Each block of atoms is comprised of 5 × 5 × 5 cubic unit cells,

FIG. 2. (Color online) (a) Atomic structure of the simulation cell.
A constant power heat source is applied to all atoms in one block of
atoms and equal power heat sink is applied to all atoms in the other
block of atoms. (b) Steady-state temperature profile (in reduced LJ
unit T∗ = kBT/ε11). A temperature drop at the interfaces allows us
to determine interfacial thermal conductance.
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and each block contains 500 atoms. We performed several
simulations on a system 40% larger in all three dimensions,
and values of the interfacial conductance are within ±5% of
those obtained in simulations of the primary system.

The direct method10 for computing thermal conductance by
MD is used to study the thermal conductance at the interface.
One of the blocks is set as heat source and another as heat
sink, as illustrated in Fig. 2(a). Constant heat power is added
to the heat source and removed from the heat sink by scaling
velocities of the atoms in the heat source and heat sink regions
at every time step. The temperature profiles of the two blocks
are monitored to calculate the temperature drop at the interface
difference and hence the thermal conductance [see Fig. 2(b)].

Before the heat flux is imposed, the system is equilibrated
at constant pressure and has a temperature of 300 K for
100,000 MD steps (each step is 0.00333 τ , where τ is LJ
reduced-time unit). Then, the global thermostat is turned off,
the volume of the simulation cell is fixed, and the local heat
source and sink are applied. A steady state is established after
∼100,000 MD steps, and the temperatures of the blocks are
obtained by time averaging over ∼800,000 MD steps.

Interfacial conductance G is calculated from the following
equation:

G = P

2A�T
, (6)

where P is the heating power, A the cross-sectional area of
the interface, and �T is the temperature drop at the interfaces.
The factor of 2 results from the presence of two interfaces due
to use of periodic-boundary conditions. We report interfacial
conductance in units of ετ−1σ−2T ∗, where ε is reduced LJ
energy, τ reduced LJ time, σ reduced LJ length, and T ∗ the
reduced LJ temperature, as defined in the caption of Fig. 2(b).

III. RESULTS AND DISCUSSION

A. Effect of pressure on interface conductance

We first explore the effect of system pressure on interfacial
conductance. We consider both weak and strong interfaces.
For the weakly bonded interface we use εinterface = 1/30 ε1.
Calculated thermal conductance as a function of pressure in
this case is shown in Fig. 3 (open circles). As can be seen,
conductance increases approximately linearly with the applied
pressure and then gradually saturates. As we subsequently
show, the increase of the interfacial conductance is due to an
anharmonicity-related increase of the interfacial stiffness.

The interfacial stiffness is defined as the slope of the
normal-to-interface pressure versus interfacial-strain curve,
obtained as follows. In equilibrium simulations (without
heat sources and sinks), we monitor interfacial strain versus
pressure, as shown in Fig. 4(a). The strain is calculated
from the change in the separation of the two atomic planes
adjacent to the interface. In fact, as shown in Fig. 4(b),
the interfacial stiffness increases more or less linearly with
pressure, which demonstrates that the underlying reason for
the increasing interfacial conductance is the increase of the
interfacial stiffness.

The simulations described previously were performed with
the interfacial bonding much weaker than the bulk bonding. To
model a stronger interface we performed simulations where

FIG. 3. Interfacial conductance versus pressure for weak interface
(open circles) and strong interface (solid circles).

εinterface = ε1. The calculated conductance as a function of
pressure for this is shown in Fig. 3 (solid circles). For this
case interfacial conductance does not increase with pressure
as for the weak interface (see Fig. 3, open circles) but is
approximately constant and, in fact, decreases slightly with
pressure.

This decrease is puzzling considering that for this system
both interfacial modulus and modulus of materials 1 and 2

FIG. 4. (a) Pressure versus interfacial strain for the weak inter-
face. (b) Interfacial stiffness as a function of pressure.
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FIG. 5. (Color online) Stiffness versus pressure of material-1 (|),
material-2 (−), weak interface (·), and strong interface (×).

increase with pressure due to anharmonicity of the interatomic
potential. In fact interfacial stiffness and bulk modulus are
exactly the same for the strong interface at all pressures (see
Fig. 5) as the atomic potential for the interfacial interactions
is the same as the bulk interactions. Therefore, since all
interactions become progressively stiffer at the same rate, both
the phonon frequencies and their group velocities increase with
increasing pressure. At first sight, this implies, according to
Eq. (2), that pressure should increase interfacial conductance.
One possible explanation is that phonon transmission coeffi-
cients are decreasing with increasing pressure; this possibility
will be discussed in Sec. III C.

B. Effect of interface bonding on conductance

Since we demonstrated previously that the pressure change
is effectively changing the stiffness of the interatomic bonds,
we also performed MD simulations in which we maintained
zero-hydrostatic pressure and varied stiffness of the interfacial
bonding by changing ε for the interfacial interactions. This
approach mimics change of interfacial interactions by change
of interfacial chemistry. It also allows for independent explo-
ration of the role of interfacial interactions versus bulk ones,
while in the case of pressure-induced stiffness, both stiffness
of the interface and the bulk stiffness change at the same time.
Therefore, to separate bulk and interfacial effects and compare
against results obtained in pressure simulations, we performed
two sets of simulations in which we vary ε. In the first set, only
the interfacial ε is changed; in the second set, both the bulk
and interfacial ε are changed, as prescribed by the interfacial
stiffness data shown in Fig. 5.

The simulation results are summarized and compared with
pressure simulation data in Figs. 6(a) and 6(b). In the case of
the weak interface [Fig. 6(a)], an increase of the bond stiffness,
either via pressure or via bonding-energy parameter, always
makes the interfacial conductance increase. The change in the
data induced by pressure and the change in the data induced by
changes in the stiffness produced directly by changes in both
the interfacial and bulk-bonding parameters collapse onto each
other up to pressures of 1.58 LJ units, indicating that the two
methods for modifying the interface stiffness are equivalent.
At larger stiffness both bulk and interfacial bonding-increased
stiffness results in a lower conductance increase than the

FIG. 6. (Color online) Interfacial conductance as a function of
stiffness for (a) weak and (b) strong interfaces. Three data sets in
each case correspond to pressure-induced change (solid squares),
corresponding bulk modulus, and interfacial stiffness-induced change
(solid triangles) and interfacial bonding-only induced change (solid
circles).

pressure-increased stiffness. This might be associated with the
fact that at higher pressures the interatomic distances across the
interface become significantly shorter, thus enhancing energy
transport. In the case when only interfacial bonding stiffness
increases, the increase of the conductance is the largest. This
implies that while the increasing interfacial bonding stiffness
increases the conductance, an increase of the bulk modulus
decreases the conductance.

For strong interfaces [Fig. 6(b)], the interfacial conductance
increases when the interfacial ε alone is increased; it decreases
when both the stiffness of the interfacial bonding and the bulk is
increased either via pressure or directly via the bonding energy
parameters. This is consistent with the fact that an increase
of the bulk modulus tends to reduce interfacial conductance
for our model system, and in the case of a strong interface,
this effect dominates. By contrast, in the case of the weak
interface, the rapidly increasing stiffness of the weak interface
dominates the overall behavior, leading to increased interfacial
conductance.

C. Phonon DOS overlap and interfacial conductance

Results presented in the previous section indicate that for
the weak interface changes in bulk modulus with increasing
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FIG. 7. (Color online) Normalized DOS for the two types of
atoms at (a) zero pressure and (b) pressure of 9.22 (LJ units). DOS
for the lighter atoms extends to higher frequency and there is less
overlap at lower frequencies.

pressure [Fig. 6(a)] produce a smaller increase in interfacial
conductance rather than only changing interfacial stiffness
[Fig. 6(a)]; for the strong interface, changes in bulk properties
even produce a slight decrease in interfacial conductance
[Fig. 6(b)]. This behavior is most likely due to changes
in phonon-transmission coefficients. For harmonic phonon-
scattering processes, the overlap of phonon DOS of the
materials on two sides of the interface dominate thermal
transport across the interface. To analyze the relationship
between DOS overlap and the interfacial conductance, we
evaluated phonon DOS in each block as a function of pressure.
Phonon DOS is calculated by Fourier transform of the atomic
velocity autocorrelation function.11 The resulting phonon DOS
for atoms of both blocks are shown for both zero pressure
[Fig. 7(a)] and the highest pressure studied [Fig. 7(b)]. Since
the only difference between the two blocks is the atomic mass,
the DOS for heavy atom regions is a scaled-down version of
the light mass region with the highest frequency proportional
to the inverse of the square root of mass.

In the harmonic approximation the interfacial conductance
depends on the overlap of the DOS from each sides of the
interface.12 The overlap of the DOS is given by the integral

FIG. 8. Integral of the product of DOS versus pressure for the
strong interface.

of the product of the DOS of the two bulk regions over the
frequency with nonzero overlap value:

I =
fh∫

0

D1(ω)D2(ω)dω, (7)

where D1(ω) and D2(ω) are phonon DOS for block 1 and 2,
respectively, and fh is the cutoff frequency of the DOS for the
heavier atom region.

Figure 8 shows the value of the overlap integral as a
function of pressure for the strong interface. The integral value
decreases with pressure indicating a decrease in the overlap of
DOS. Therefore, the number of harmonic-conductance chan-
nels between vibrations with the same frequency decreases
with increasing pressure. This is a likely explanation of why, in
this case, the interfacial conductance decreases with increasing
pressure, despite the fact that with increasing pressure, the
stiffness of both interfacial and bulk interactions increases.

To provide a further demonstration that the overlap in the
DOS is an important factor for predicting the behavior of the

FIG. 9. (Color online) Normalized interfacial conductance of
weak interfaces (open squares) and strong interfaces (open triangles)
as a function of mass ratio (m1/m2) computed from MD and from
overlap of DOS (solid circles). The weak interface data is normalized
with G weak, m1, m1 and the strong interface data with the same factor
multiplied by the ratio of the interfacial bonding energy parameters,
ε strong/ε weak.
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interfacial thermal transport, we perform simulations where LJ
force-field parameters for the bulk materials and the interface
are kept constant (weak interface: ε12 = 1/30 ε1, σ 12 = σ 1;
strong interface: ε12 = ε1, σ 12 = σ 1), while the atomic mass
ratio for the two blocks is varied. Mass affects atomic-vibration
frequencies, therefore overlap between the DOS depends on
the mass ratio. Normalized interface conductance obtained
from these simulations as a function of mass ratio is shown
(weak interface: open squares; strong interface: open triangles)
in Fig. 9. The conductance of weak interface is normalized to
the value of the conductance of weak interface with mass
ratio of unity; the strong interface data with the same factor
is multiplied by the ratio of the interfacial bonding-energy
parameters εstrong/εweak. As the mass ratio increases toward
unity, the two materials become more similar, and the thermal
conductance of the interface increases.

In Fig. 9 we also show the overlap of the DOS normalized by
the overlap for the case of the mass ratio of 1 (solid circles). The
data for normalized DOS overlap clearly follow the data for
the normalized interfacial conductance. These results demon-
strate the quantitative relationship between the DOS overlap
and the interfacial conductance.

IV. CONCLUSION

We investigated the effect of interfacial stiffness on the
interfacial thermal conductance using nonequilibrium MD
simulations applied to a simple LJ system. We modified
bonding at the interface in two ways: application of pressure
to the entire system and directly varying bonding across the
interface by modification of the LJ force field.

Both weakly and strongly bonded interfaces were investi-
gated as a function of applied pressure. In the case of weak
interfaces the interfacial bonding dominates the change in
interfacial conductance with pressure. The interfacial stiffness
increases with increasing pressure; consequently, interfacial
conductance initially increases proportionally to interfacial
stiffness and then saturates. We believe that this result is
very general and not limited to our model structure based
on the following reasoning: (i) the soft bonds will become stiff
with application of pressure; (ii) the interfacial conductance

with increasing bonding strength was reported in many
pulications.6,9 Furthermore, we conducted preliminary studies
of two hetero-junctions, including a system of diamond-
silicon and a system of aluminum-silicon carbide weakly
bonded interfaces. Both systems exhibit similar behavior of
conductance increasing with pressure at low and moderate
pressures. At high pressures (∼10 GPa) the situation can be
more complicated as, e.g., silicon exhibits bulk structure-
phase change. These results will be described in detail
elsewhere.

For the strongly bonded interface, thermal conductance
of the interface is almost pressure independent and in fact
slightly decreases with increasing pressure. By evaluating the
overlap of DOS of the two materials forming the interface,
we demonstrated that this small decrease of conductance
can be explained by decreasing overlap between vibrational
DOS. Therefore, changes of bulk modulus with pressure in
each half of the structure dominate the changes in interfacial
conductance for the strong interface. The conclusion that
the interfacial thermal conductance of the strongly bonded
interfaces decreases with pressure is likely potential and/or
model-structure sensitive, as the overlap of the vibrational
spectra can in principle increase or decrease with increasing
pressure. However, the fact that for strong interfaces the
pressure dependence is weak is likely a general behavior.

We also directly varied the interfacial bonding as well as
bulk and interfacial bonding at zero pressure and determined
that pressure-induced changes are essentially equivalent to
bonding-induced changes. Our results are consistent with
numerical calculations based on Green’s function formalism
and the Caroli formula. Finally, we verified the importance of
DOS overlap in controlling interfacial thermal conductance by
computing the effect of variation of mass ratio on conductance,
showing it is correlated with the extent of DOS, which is fully
consistent with lattice-dynamics calculations by Stoner and
Maris.9
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