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Starting from symmetry considerations and the tight-binding method in combination with first-principles
calculation, we systematically derive the low-energy effective Hamiltonian involving spin-orbit coupling (SOC)
for silicene. This Hamiltonian is very general because it applies not only to silicene itself but also to the
low-buckled counterparts of graphene for the other group-IVA elements Ge and Sn, as well as to graphene when
the structure returns to the planar geometry. The effective Hamitonian is the analog to the graphene quantum spin
Hall effect (QSHE) Hamiltonian. As in the graphene model, the effective SOC in low-buckled geometry opens
a gap at the Dirac points and establishes the QSHE. The effective SOC actually contains the first order in the
atomic intrinsic SOC strength ξ0, while this leading-order contribution of SOC vanishes in the planar structure.
Therefore, silicene, as well as the low-buckled counterparts of graphene for the other group-IVA elements Ge and
Sn, has a much larger gap opened by the effective SOC at the Dirac points than graphene, due to the low-buckled
geometry and larger atomic intrinsic SOC strength. Further, the more buckled is the structure, the greater is the
gap. Therefore, the QSHE can be observed in low-buckled Si, Ge, and Sn systems in an experimentally accessible
temperature regime. In addition, the Rashba SOC in silicene is intrinsic due to its own low-buckled geometry,
which vanishes at the Dirac point K , while it has a nonzero value with deviation of �k from the K point. Therefore,
the QSHE in silicene is robust against the intrinsic Rashba SOC.
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I. INTRODUCTION

Silicene, the counterpart of graphene for silicon, with
slightly buckled honeycomb geometry, has been synthesized
through epitaxial growth.1 This novel two-dimensional ma-
terial has attracted considerable attention both theoretically
and experimentally recently, due to its exotic electronic
structure and promising applications in nanoelectronics as
well as its compatibility with current silicon-based electronic
technology.2–5 The structure of silicene is shown in Fig. 1. In
the absence of spin-orbit coupling (SOC), the band structure
of silicene shows a linear energy spectrum crossing the Fermi
level around the Dirac points K and K∗ of the hexagonal
Brillouin zone,2,3,5,6 which is similar to the case of graphene.

The quantum spin Hall effect (QSHE), a new quantum
state of matter with nontrivial topological properties, has
garnered great interest in the fields of condensed matter
physics and materials science due to its scientific importance
as a novel quantum state and its technological applications
in spintronics.7–9 This electronic state with time-reversal
invariance is gapped in the bulk and conducts charge and
spin in gapless edge states without dissipation at the sample
boundaries. The existence of the QSHE was first proposed
by Kane and Mele in graphene, in which SOC opens a
band gap at the Dirac points.10 Subsequent work, however,
showed that the SOC is rather weak; it is in fact a second-
order process of the atomic intrinsic spin-orbit interaction
for graphene, and the QSHE in graphene can occur only at
unrealistically low temperature.11,12 So far, there is only one
system, two-dimensional HgTe-CdTe quantum wells, where
the QSHE has been demonstrated,13,14 in spite of some other
theoretical suggestions.15,16 Recently, experimental evidence
has been presented for helical edge modes in inverted

InAs-GaSb quantum wells.17,18 Nevertheless, HgTe quantum
wells and other systems have more or less serious limitations
such as toxicity, difficulty in processing, and incompatibility
with current silicon-based electronic technology. Therefore,
it is worthwhile to look for the true realization of the
QSHE in silicene. Silicene and two-dimensional low-buckled
honeycomb structures of germanium and tin with the QSHE
are promising candidates for constructing novel spintronic
devices.

Using a first-principles method, we have recently
demonstrated,5 by exploiting adiabatic continuity and the
direct calculation of the Z2 topological invariant,19 that silicene
and the two-dimensional low-buckled honeycomb structure
of germanium can realize the QSHE, with a sizable gap
opened at the Dirac points due to SOC and the low-buckled
structure. Although the electronic structure, especially the
linear energy spectrum of silicene, at low energy is similar
to that of graphene,20,21 the low-buckled geometry makes the
derivation of a low-energy effective model Hamiltonian not as
clear as in graphene; and the effective Hamiltonian is different
from the effective Hamiltonian of surface states and thin films
of a three-dimensional topological insulator.22 Motivated by
the fundamental interest associated with the QSHE and SOC
in silicene, we attempt to give a low-energy effective model
Hamiltonian to capture the main physics.

The paper is organized as follows. In Sec. II we briefly
describe SOC in silicene from symmetry arguments. Thus, we
introduce a next-nearest-neighbor tight-binding lattice model
Hamiltonian to include time-reversal-invariant spin-orbit in-
teraction. Section III presents the derivation of our low-energy
effective model Hamiltonian step by step. We investigate in
detail the effective spin-orbit interaction including intrinsic
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FIG. 1. (Color online) The lattice geometry of low-buckled
silicene. (a),(b) The lattice geometry from the side view and top view,
respectively. Note that the A sublattice (red or gray) and B sublattice
(yellow or light gray) are not coplanar. (c) Definition of the angle θ

as between the Si-Si bond and the z direction normal to the plane. (d)
The relativistic band structure of low-buckled silicene. Inset: Zoom
of the energy dispersion near the K point and the gap induced by
SOC.

Rashba SOC. In Sec. IV, a comparison of the gap opened
by SOC obtained from our previous first-principles results
and that in the current tight-binding method is made. As
an application of our model Hamiltonian, we also study the
counterparts of graphene for the other group-IVA elements
Ge and Sn, which are low-buckled structures according to
first-principles calculations. We conclude in Sec. V with a
brief discussion and summary.

II. LATTICE MODEL HAMILTONIAN INCLUDING
SPIN-ORBIT COUPLING IN SILICENE FROM

SYMMETRY CONSIDERATIONS

In general, SOC in the Pauli equation can be written as

Hso = h̄

4m2
0c

2
( �∇V × �p) · �σ = − h̄

4m2
0c

2
( �F × �p) · �σ , (1)

where V ( �F ) is the potential energy (force), �p is the
momentum, h̄ is Plank’s constant, m0 is the mass of a free
electron, c is the velocity of light, and �σ is the vector of Pauli
matrices.

For graphene as shown in Fig. 2(a), the nearest-neighbor
SOC is zero due to the structure’s mirror symmetry with re-
spective to an arbitrary bond, while the next-nearest-neighbor
SOC is nonzero. According to symmetry,

Hso = iγ2( �F‖ × �dij ) · �σ = it2νijσz, (2)

where νij = �di×�dj

| �di×�dj | , γ2 and t2 are undetermined parameters, and

�di and �dj are the two nearest bonds connecting the next-nearest
neighbors �dij .

For silicene, the nearest-neighbor SOC is zero, while the
next-nearest-neighbor SOC is nonzero and can be divided into
two parts, namely, those parallel with and perpendicular to the
plane, respectively, according to the two components of the

0F ≠
1 0F =

B AF F⊥ ⊥= −

0AF⊥ ≠

(a) (b)

0F ≠
1 0F =

B AF F⊥ ⊥= −

0AF⊥ ≠

B AF F⊥ ⊥= −

0AF⊥ ≠

(a) (b)

⎪⎪

FIG. 2. (Color online) The atomic intrinsic spin-orbit interaction
from symmetry considerations. (a) The nearest-neighbor force F1

vanishes, while the next-nearest-neighbor force �F‖ is nonzero in the
horizontal plane. (b) The next-nearest-neighbor nonzero force F A

⊥
equals negative F B

⊥ in the perpendicular direction.

electric field force (see Fig. 2). The perpendicular component
is due to the A and B sublattices being noncoplanar.

For the first part, the force parallel with the plane is taken
into account. This case is similar to that of graphene:

Hso1 = iγ2( �F‖ × �dij ) · �σ ≡ it2νijσz. (3)

For the second part, the force perpendicular to the plane is
taken into account as shown in Fig. 2(b):

Hso2 = iγ1
(�σ × �d 0

ij

) · FA
⊥ �ez ≡ it1μij

(�σ × �d 0
ij

)
z
, (4)

where �d 0
ij = �dij /| �dij |, γ1 and t1 are undetermined parameters,

and μij = ±1 for the A (B) site.
Finally, we introduce a second-nearest-neighbor tight-

binding model:

H = −t
∑
〈ij〉α

c
†
iαcjα + it2

∑
〈〈ij〉〉αβ

νij c
†
iασ z

αβcjβ

−it1
∑

〈〈ij〉〉αβ

μij c
†
iα

(�σ × �d 0
ij

)z

αβ
cjβ . (5)

The first term is the usual nearest-neighbor hopping term.
The second and third terms are the effective SOC and the
intrinsic Rashba SOC. The three parameters t,t2,t1 are given
explicit expressions in the following derivation by use of the
tight-binding method.

By performing Fourier transformations, we obtain the low-
energy effective Hamitoniam around the Dirac point K in the
basis {|A〉,|B〉} ⊗ {↑ , ↓}:

H eff
K ≈

(
h11 vF (kx + iky)

vF (kx − iky) −h11

)
, (6)

vF =
√

3

2
at, h11 = −3

√
3t2σz − 3

2
t1a(kyσx − kxσy).

Around the Dirac point K∗ in the basis {|A〉,|B〉} ⊗ {↑ , ↓},
we have

H eff
K∗ ≈

( −h11 vF (kx − iky)

vF (kx + iky) h11

)
. (7)
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The two effective Hamiltonians Eqs. (6) and (7) should be
related by the time-reversal operation.

From the symmetry aspect analysis, we obtain the effective
Hamiltonian for silicene shown as Eqs. (5)–(7). However,
the magnitude of the parameters in the effective model and
microscopic mechanisms such as geometry-enhanced effective
SOC,5 etc., are quite unclear. In order to study these effects, we
need to construct the effective Hamiltonian from the atomic
tight-binding Hamiltonian.

III. LOW-ENERGY EFFECTIVE HAMILTONIAN FROM
TIGHT-BINDING THEORY

A. Low-energy effective Hamiltonian without SOC

The outer shell orbitals of silicon, namely, 3s, 3px ,
3py , and 3pz, are naturally taken into account in our
analytical calculation. As shown in Fig. 1, there are
two distinct sites A and B in the honeycomb lattice
unit cell of silicene. Therefore, in the representation
{|pA

z 〉,|pB
z 〉,|pA

y 〉,|pA
x 〉,|sA〉,|pB

y 〉,|pB
x 〉,|sB〉} (for simplicity,

the Dirac ket is omitted in the following) and at the K point,
the total Hamiltonian in the Slater-Koster frame reads

H0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 V
′

3 −iV
′

3 0

0 0 V
′

3 iV
′

3 0 0 0 0

0 V
′

3 0 0 0 −V
′

1 −iV
′

1 V
′

2

0 −iV
′

3 0 0 0 −iV
′

1 V
′

1 −iV
′

2

0 0 0 0 	 −V
′

2 iV
′

2 0

V
′

3 0 −V
′

1 iV
′

1 −V
′

2 0 0 0

iV
′

3 0 iV
′

1 V
′

1 −iV
′

2 0 0 0

0 0 V
′

2 iV
′

2 0 0 0 	

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(8)

where V
′

1,V
′

2,V
′

3 are related to bond parameters (Vssσ , etc.). The
detailed derivations are shown in Appendix A. To diagonalize
the total Hamiltonian, we take two steps.

First, silicene has C3 rotational symmetry around the z axis.
In order to better reflect the system’s symmetry and utilize
the C3 symmetry operator, it is natural to choose spherical
harmonic functions as the basis, since spherical harmonic
functions are the common eigenfunctions of the Hamiltonian
and the C3 symmetry operator. Therefore, we perform the
following unitary transformation:

ϕA
1 = − 1√

2

(
pA

x + ipA
y

) = |pA
+〉,

ϕB
2 = 1√

2

(
pB

x − ipB
y

) = |pB
−〉,

(9)

ϕ3 = 1√
2

[
− 1√

2

(
pA

x − ipA
y

) − 1√
2

(
pB

x + ipB
y

)]
,

ϕ4 = 1√
2

[
1√
2

(
pA

x − ipA
y

) − 1√
2

(
pB

x + ipB
y

)]
.

We rewrite the total Hamiltonian in the new basis
{pA

z ,sA,ϕB
2 ,pB

z ,sB,ϕA
1 ,ϕ3,ϕ4}:

H0 −→ H1 = U
†
1H0U1,

H1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 −iV3 0 0 0 0 0
0 	 iV2 0 0 0 0 0

iV3 −iV2 0 0 0 0 0 0

0 0 0 0 0 −iV3 0 0

0 0 0 0 	 −iV2 0 0

0 0 0 iV3 iV2 0 0 0

0 0 0 0 0 0 V1 0

0 0 0 0 0 0 0 −V1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(10)

where U1 is the unitary matrix that connects the new basis and
the original basis, V1 = 2V

′
1, V2 = √

2V
′

2, and V3 = √
2V

′
3.

Second, the new Hamiltonian H1 can be separated into three
decoupled diagonal blocks, which are called HA, HB , and HC ,
respectively. HA reads in the basis {pA

z ,sA,ϕB
2 }

HA =

⎛
⎜⎝

0 0 −iV3

0 	 iV2

iV3 −iV2 0

⎞
⎟⎠ . (11)

Its eigenvalues ε1, ε2, and ε3 satisfy the eigenequation

E3 − 	E2 − (
V 2

2 + V 2
3

)
E + 	V 2

3 = 0. (12)

Since this is a cubic equation, the eigenvalues and eigenvectors
of HA can be analytically obtained. We perform the unitary
transformation {φ1,φ2,φ3} ≡ {pA

z ,sA,ϕB
2 }UA, where

UA =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

α1

1

α2

1

α3

V2ε1

α1(	 − ε1)V3

V2ε2

α2(	 − ε2)V3

V2ε3

α3(	 − ε3)V3

iε1

α1V3

iε2

α2V3

iε3

α3V3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(13)

with the normalization factors

αi =
√

1 +
[

V2εi

(	 − εi)V3

]2

+
(

εi

V3

)2

.

For simplicity, UA is expressed as UA = {uij }, where uij is
the matrix element of UA. We rewrite HA in the new basis
{φ1,φ2,φ3},

HA → H
′
A = U

†
AHAUA =

⎛
⎜⎝

ε1 0 0

0 ε2 0

0 0 ε3

⎞
⎟⎠ . (14)

The above technique in HA can also be applied to the second
diagonal block HB , which is read in the basis {pB

z ,sB,ϕA
1 }. HB
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satisfies the same eigenequation (12). Its eigenvalues ε4,ε5,ε6

satisfy

ε4 = ε1, ε5 = ε2, ε6 = ε3. (15)

The eigenvectors UB of HB are a little different from those of
HA:

UB =

⎛
⎜⎝

u11 u12 u13

−u21 −u22 −u23

u31 u32 u33

⎞
⎟⎠ , (16)

where uij is the matrix element in the unitary matrix UA as
presented in Eq. (13). We define the unitary transformation
{φ4,φ5,φ6} = {pB

z ,sB,ϕA
1 }UB . Obviously, HB is diagonal in

the new basis. HC itself is diagonal. We define φ7 ≡ ϕ3 and
φ8 ≡ ϕ4.

From Eq. (13) to Eq. (16), we have found a
unitary transformation U2 that connects the original
basis {pA

z ,sA,ϕB
2 ,pB

z ,sB,ϕA
1 ,ϕ3,ϕ4} and the new basis

{φ1,φ4,φ2,φ5,φ3,φ6,φ7,φ8}. Under such a unitary transforma-
tion, H1 will be diagonal.

Combining the above two steps, we finally find the new ba-
sis {φ1,φ4,φ2,φ5,φ3,φ6,φ7,φ8} and the unitary transformation
matrix U = U1U2 which diagonalize the original Hamiltonian
H0. The results are summarized as

{φ1,φ4,φ2,φ5,φ3,φ6,φ7,φ8}
= {

pA
z ,pB

z ,pA
y ,pA

x ,sA,pB
y ,pB

x ,sB
}
U, (17)

H0 → H
′
0 = U †H0U,

H
′
0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ε1 0 0 0 0 0 0 0

0 ε1 0 0 0 0 0 0

0 0 ε2 0 0 0 0 0

0 0 0 ε2 0 0 0 0

0 0 0 0 ε3 0 0 0

0 0 0 0 0 ε3 0 0

0 0 0 0 0 0 V1 0

0 0 0 0 0 0 0 −V1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (18)

So far, the diagonal Hamiltonian has been obtained. Notice
that the interesting structure is only slightly buckled, which
means that V3 is small due to the angle θ approaching 90◦.
When V3 is small, the three roots of the eigenequation (12)
read

ε1 ≈ 	
V 2

3

V 2
2

,

ε2 ≈
	 +

√
	2 + 4V 2

2

2
, (19)

ε3 ≈
	 −

√
	2 + 4V 2

2

2
.

Next, we determine the Fermi energy of silicene. Due to its
half filling, there are four eigenvalues below the Fermi energy.
According to Eqs. (18) and (19), the eigenvalues ε3 and V1 are
below ε1 while the others are above ε1, so the Fermi energy

is located around ε1. Thus, φ1 and φ4 are low-energy states
which have the explicit forms

φ1 = u11p
A
z + u21s

A + u31

[
1√
2

(
pB

x − ipB
y

)]
,

(20)

φ4 = u11p
B
z − u21s

B + u31

[
− 1√

2

(
pA

x + ipA
y

)]
.

In order to study the low-energy physics near the Dirac K

point, we perform a small-�k expansion around K via �k → �k +
K and project the Hamiltonian to the representation {φ1,φ4}.
We keep the first-order term in �k,

HK = ε1I2 +
(

0 vF k+
vF k− 0

)
, (21)

with the Fermi velocity vF ,

vF = −√
3a

2

[
u2

11(Vppπ sin2 θ + Vppσ cos2 θ ) − u2
21Vssσ

+ 2u11u21 cos θVspσ − 1

2
|u31|2 sin2 θ (Vppσ − Vppπ )

]
,

k+ = kx + iky, k− = kx − iky, (22)

where a is the lattice constant and θ is the angle between
the Si-Si bond and the z direction. Notice that we have set
h̄ = 1. So when we calculate the Fermi velocity vF , h̄ should
be considered.

Equations (21) and (22) represent the final low-energy
effective Hamiltonian without SOC. Two important results can
obtained from these two equations. First, similar to graphene,
low-buckled silicene remains gapless with linear dispersion.
Second, vF here comes originally from all the parameters
Vppπ ,Vppσ ,Vssσ ,Vspσ , while the Fermi velocity vF in graphene
is determined only by the parameter Vppπ (when θ = π

2 ,

vF = −
√

3
2 Vppπa).

B. Low-energy effective Hamiltonian with SOC

The form of the SOC Hamiltonian Hso is given in
the representation {pA

z ,pB
z ,pA

y ,pA
x ,sA,pB

y ,pB
x ,sB} ⊗ {↑ , ↓}

(Appendix B). We know that the Hamiltonian without SOC in
the basis set {φ1,φ4,φ2,φ5,φ3,φ6,φ7,φ8} ⊗ {↑ , ↓} is diagonal
from the above depiction. The two representations are related
by the unitary transformation [Eq. (17)]

Uso = U ⊗ I2, (23)

where I2 is the 2 × 2 identity matrix for the spin degree of free-
dom. In the representation of {φ1,φ4,φ2,φ5,φ3,φ6,φ7,φ8} ⊗
{↑ , ↓}, the SOC Hamiltonian H

′
so and the total Hamiltonian

H
′
read

H
′
so −→ H

′
so = U †

soHsoUso,
(24)

H
′ −→ H

′ = H
′
0 ⊗ I2 + H

′
so.
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The first 4 × 4 diagonal block in the SOC Hamiltonian H
′
so

is no other than the first-order SOC, which reads at the Dirac
point K in the basis {φ↑

1 ,φ
↓
1 ,φ

↑
4 ,φ

↓
4 }

H 1st
so =

⎛
⎜⎜⎜⎝

−λ1st
so 0 0 0

0 λ1st
so 0 0

0 0 λ1st
so 0

0 0 0 −λ1st
so

⎞
⎟⎟⎟⎠ , (25)

λ1st
so ≡ ξ0

2
|u31|2, (26)

where u31 is the corresponding matrix element in UA. In the
following, we explain the microscopic mechanism leading to
the above equation. The intrinsic effective first-order SOC can
be summarized as

∣∣pA
z↑

〉 V−→ |pB
−↑〉 − ξ0

2−→ |pB
−↑〉 V−→ ∣∣pA

z↑
〉
,

∣∣pA
z↓

〉 V−→ |pB
−↓〉

ξ0
2−→ |pB

−↓〉 V−→ ∣∣pA
z↓

〉
,

(27)∣∣pB
z↑

〉 V−→ |pA
+↑〉

ξ0
2−→ |pA

+↑〉 V−→ ∣∣pB
z↑

〉
,

∣∣pB
z↓

〉 V−→ |pA
+↓〉 − ξ0

2−→ |pA
+↓〉 V−→ ∣∣pB

z↓
〉
,

where V means the nearest-neighbor direct hopping and ξ0

represents the atomic intrinsic spin-orbit interaction strength.
The whole process can be divided into three steps. Take pA

z for
example. First, due to the low-buckled structure, pA

z couples
to pB

− [see Eqs. (11) and (20)]. The carrier in the pA
z orbit

directly hops to the nearest-neighbor pB
− orbit. Second, when

the atomic intrinsic SOC is introduced, the energy of pB
− splits,

with the spin-up carrier shifting by − ξ0

2 while the spin-down
carrier shifts by ξ0

2 . Third, the carrier in pB
− directly hops to

another nearest-neighbor pA
z orbit. The SOC process in pB

z is
analogous to that of pA

z except that the pB
z orbit couples to the

pA
+ orbit. The difference leads to the opposite magnitude of

the effective SOC. During the whole SOC process, the atomic
intrinsic SOC takes effect only once. Therefore, the effective
SOC is proportional to ξ0. A brief sketch of the process is
shown in Fig. 3(b). We mainly focus on the low-buckled
geometry with small V3. According to Eqs. (13), (19), and
(26), λ1st

so reads

λ1st
so = ξ0

2

ε2
1

α2
1V

2
3

≈ ξ0

2

2

9

	2(Vppπ − Vppσ )2

V 4
spσ

× cot2 θ

1 + cos2 θ(Vppπ −Vppσ )2

V 2
spσ

(
1 + 2

9
	2

sin2 θV 2
spσ

) . (28)

In particular, when the low-buckled geometry returns to a
planar structure such as graphene (θ = 90◦), the above formula
becomes λ1st

so = 0 and the first-order SOC vanishes. Physically,
when θ = 90◦, the pA

z orbit is orthogonal to the pB
x and

pB
y orbits. Therefore, the direct hopping from pA

z to pB
− is

completely forbidden. The SOC process described in Eq. (27)
cannot happen.

We also deduced the effective second-order spin-orbit
interaction, whose detailed derivation is described in

π
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π
σ σsoc

soc

π

π

π
σ σsoc

soc

π

π

π
σ σsoc
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π
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π
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soc
π

π

π
σ

σ

soc

(a) (b)

(c)

90 95 100 105 110
0

2

4

6

8

10

12

14

G
ap

 (
m

eV
)

 (degree)

low-buckeld

FIG. 3. (Color online) (a) The variation of the gap opened by
SOC at the Dirac point with the angle θ for silicene. Black line marks
the total gap. Red or gray line and dotted line mean gaps opened by
the first- and second-order SOC, respectively. (b),(c) Sketches of the
intrinsic effective first- and second-order spin-orbit interactions.

Appendix C. Here, we do not intend to repeat the derivation
but just quote some expressions there [Eq. (C9)]:

H 2nd
so = −Hn (Hσ − ε1)−1 H †

n , (29)

where Hn comprises the first to the fourth row and the fifth to
the sixteenth column of H

′
so above, Hσ is the direct product

matrix between the lower right 6 × 6 diagonal matrix of
H

′
0 [Eq. (18)] and the 2 × 2 identity matrix, and ε1 is the

eigenvalue of HA mentioned above. When V3 is small, the
effective second-order SOC Hamiltonian reads at the Dirac
point K in the basis {φ↑

1 ,φ
↓
1 ,φ

↑
4 ,φ

↓
4 }

H 2nd
so � −λ2nd

so +

⎛
⎜⎜⎜⎝

−λ2nd
so 0 0 0

0 λ2nd
so 0 0

0 0 λ2nd
so 0

0 0 0 −λ2nd
so

⎞
⎟⎟⎟⎠ , (30)

λ2nd
so ≡

(
ξ0

2

)2 [ |u11u32 − u31u12|2
ε2 − ε1

+ |u11u33 − u31u13|2
ε3 − ε1

+ u2
11ε1

ε2
1 − V 2

1

]

≈
(

ξ0

2

)2 2

9

−	

sin2 θV 2
spσ

. (31)

We analyze the microscopic mechanism for λ2nd
so . Without

SOC, the low-energy Hπ and the high-energy Hσ are decou-
pled. However, in the presence of the atomic intrinsic SOC,
Hπ and Hσ are coupled together. A detailed analysis shows
that λ2nd

so can be summarized as the process

∣∣pA
z↑

〉 ξ0/
√

2−→ |pA
+↓〉 V−→ |sB

↓ 〉 V−→ |pA
+↓〉 ξ0/

√
2−→ ∣∣pA

z↑
〉
,

(32)∣∣pB
z↓

〉 ξ0/
√

2−→ |pB
−↑〉 V−→ |sA

↑ 〉 V−→ |pB
−↑〉 ξ0/

√
2−→ ∣∣pB

z↓
〉
,
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where V means the nearest-neighbor direct hopping and ξ0

represents the atomic intrinsic spin-orbit interaction strength.
During the process, the atomic intrinsic SOC takes effect twice.
Thus, the effective SOC is in the second order of ξ0. A brief
sketch of the process is shown in Fig. 3(c). We note that, in
graphene, the second-order λ2nd

so is the leading order of effective
SOC and was studied in Refs. 11, 12, 21 and 23.

C. Intrinsic Rashba SOC in silicene

The extrinsic Rashba SOC in graphene is due to a per-
pendicular electric field or interaction with a substrate which
breaks the mirror symmetry, while the intrinsic Rashba SOC
in silicene is due to its own low-buckled geometry. Around
the K point, the Hamiltonian containing �k deviation from the
K point in the representation {pA

z ,pB
z ,pA

y ,pA
x ,sA,pB

y ,pB
x ,sB}

reads

H0(k) = δH0(k) + H0, (33)

where H0 is given in Eq. (8).

δH0 (k) =
(

δh11 δh12

δh
†
12 δh22

)
, (34)

δh11 =

⎛
⎜⎜⎜⎝

0 −v4k+ 0 0

−v4k− 0 v3k+ −iv3k+
0 v3k− 0 0

0 iv3k− 0 0

⎞
⎟⎟⎟⎠ ,

δh22 =

⎛
⎜⎜⎜⎝

0 −v6k− −iv6k− v7k+
−v6k+ 0 0 0

iv6k+ 0 0 0

v7k− 0 0 0

⎞
⎟⎟⎟⎠ ,

δh12 =

⎛
⎜⎜⎜⎝

0 v3k− iv3k− v5k+
−v5k− 0 0 0

0 v2k+ − v1k− iv1k− v6k−
0 iv1k− v2k+ + v1k− iv6k−

⎞
⎟⎟⎟⎠ ,

v1 ≡
√

3

8
sin2 θ (Vppπ − Vppσ )a,

v2 ≡
√

3

4
[sin2 θ (Vppπ − Vppσ ) − 2Vppπ ]a,

v3 ≡
√

3

4
sin θ cos θ (Vppπ − Vppσ )a,

v4 ≡
√

3

2
(Vppπ sin2 θ + Vppσ cos2 θ )a,

v5 ≡
√

3

2
cos θVspσ a, v6 ≡

√
3

4
sin θVspσ a,

v7 ≡ −
√

3

2
Vssσ a.

Through the unitary transformation matrix U [Eq. (17)], in the
representation

{φ1,φ4,φ2,φ5,φ3,φ6,φ7,φ8}, we have

H ′
0(k) → H ′

0(k) = U †H0(k)U = δH
′
0(k) + H

′
0, (35)

where H
′
0 is given in Eq. (18). We mainly focus on the terms

containing �k deviation from the K point,

H
′
(k) → H

′
(k) ≡ H

′
0(k) ⊗ I2 + H

′
so, (36)

where H
′
so is given in Eq. (24). According to Eq. (C9), the total

second-order Hamiltonian reads

H
′
eff(k) = −Hnon(k)(Hσ − ε1)−1H †

non(k), (37)

where Hnon(k) comprises from the first to the fourth row and
the fifth to the sixteenth column of H

′
(k). The Hamiltonian

H
′
eff(k) can be divided into two parts:

H
′
eff(k) = H 2nd

so + HR(k), (38)

where H 2nd
so is given in Eq. (30). HR(k) is the intrinsic Rashba

SOC in silicene, which can be written around the Dirac point
K in the basis {φ↑

1 ,φ
↓
1 ,φ

↑
4 ,φ

↓
4 } as

HR(k) =

⎛
⎜⎜⎜⎝

0 −iλRak− 0 0

iλRak+ 0 0 0

0 0 0 iλRak−
0 0 −iλRak+ 0

⎞
⎟⎟⎟⎠ ,

(39)

where the purely real λR reads

λR = iξ0√
2

u11u32 − u31u12

(ε2 − ε1)a
[(u12u21 + u22u11)v5

+ u22u21v7 + u12u11v4 − 2u32u31v1]

+ iξ0√
2

u11u33 − u31u13

(ε3 − ε1)a
[(u13u21 + u23u11)v5

+ u23u21v7 + u13u11v4 − 2u33u31v1]

+ ξ0

u11
(
u11v3 − u21v6 − i√

2
u31v2

)
2(V1 + ε1)a

− ξ0

u11
( − u11v3 + u21v6 − i√

2
u31v2

)
2(V1 − ε1)a

. (40)

From the above equations, we know that HR(k) is exactly zero
at the Dirac point K , while HR(k) has a nonzero value when
�k deviates from the K point. Moreover, when the structure
returns to the planar structure, θ = 90◦,λR = 0, the intrinsic
Rashba SOC vanishes even when �k deviates from K . Therefore
the intrinsic Rashba is entirely caused by the low-buckled
geometry. The intrinsic Rashba SOC is quite different from
the extrinsic Rashba SOC, which arises from a perpendicular
electric field or interaction with a substrate leading to breaking
of mirror symmetry in some direction, and thus has finite
magnitude at the Dirac point K .

IV. RESULTS AND DISCUSSION

Finally, taking into account Eqs. (21), (25), (30), and (39),
we obtain the entire low-energy effective Hamiltonian around
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TABLE I. An application of the low-energy effective Hamiltonian [Eq. (41)]. The terms of this general low-energy effective Hamiltonian
are given for these different systems corresponding to the different angles θ of the lowest-energy geometry. The lattice constants a and angles
θ for the lowest-energy geometry are obtained from first-principles calculation. The values of λ1st

so , λ2nd
so , and λR caused by the low-buckled

geometry and SOC at the Dirac point K are obtained from our tight-binding model using the hopping parameters in Table II. The gap opened
by SOC at the Dirac point K is obtained from first-principles and the current tight-binding method. We also give the carrier Fermi velocity vF

around the Dirac point K from first-principles and the current tight-binding method.

System a (Å) θ (deg) λ1st
so (meV) λ2nd

so (meV) λR (meV) Gap (TB) (meV) Gap (FP) (meV) vF (TB) (105 m/s) vF (FP)(105 m/s)

Graphene 2.46 90 0 1.3×10−3 0 2.6×10−3 0.8×10−3a 9.80 8.46
Silicene 3.86 101.7 3.9 7.3×10−2 0.7 7.9 1.55b 5.52 5.42
Ge(licene) 4.02 106.5 43 3.3 10.7 93 23.9b 4.57 5.24
Sn(licene) 4.70 107.1 29.9 34.5 9.5 129 73.5 4.85 4.70

aReference 11.
bReference 5.

the Dirac K point acting on the low-energy states φ1 and φ4:

H eff
K (θ ) = HK ⊗ I2 + H 1st

so + H 2nd
so + HR(k)

= (
ε1 − λ2nd

so

)
I4 +

(
h11 vF k+

vF k− −h11

)
, (41)

h11 ≡ −λsoσz − aλR(kyσx − kxσy),

where I2 is the 2 × 2 identity matrix for the spin degree of
freedom, I4 is the 4 × 4 identity matrix, λso = λ1st

so + λ2nd
so , and

vF is given in Eq. (22). Through the time-reversal operation,
the entire low-energy effective Hamiltonian around the Dirac
K∗ point reads

H eff
K∗ (θ ) = (

ε1 − λ2nd
so

)
I4 +

(−h11 vF k−
vF k+ h11

)
. (42)

The effective Hamiltonian deduced from the atomic tight-
binding method has asimilar formula to that derived from
symmetry considerations. Comparing Eqs. (41) and (6), we
obtain

t = 2
√

3vF

3a
, t2 = λso

3
√

3
, t1 = 2

3
λR. (43)

The parameters t,t2,t1 are undetermined in the second-nearest-
neighbor tight-binding model [Eqs. (5) and (6)] from the
symmetry analysis. Here, from Eqs. (22), (28), (31), (40), and
(43), we can not only give their explicit expressions, but also
specify the magnitudes of the three parameters through vF ,
λso (λso = λ1st

so + λ2nd
so ), and λR , whose values are presented in

Table I. In the following, we discuss the physical meaning
of our low-energy effective Hamiltonian. First of all, the
low-energy effective Hamiltonian is analogous to the first
proposal of the QSHE in graphene except for the intrinsic
Rashba SOC term HR(k).19 The SOC-inducing mass term in
the Hamiltonian opens a gap at the Dirac points. Moreover,
from K to K∗ the mass term changes its sign and the band
is inverted. Therefore, the low-buckled silicene is also a
QSHE system. The QSHE can be observed experimentally
when the Fermi energy is located inside the gap and the
temperature is below the minimal gap energy. The existence
of the QSHE in silicene has been studied in our recent work
using the first-principles method combined with a direct Z2

calculation.5

Second, the energy gap in low-buckled silicene is much
larger than that in graphene. Equation (41) results in a spectrum
E(�k) = ±√

(v2
F +a2λ2

R)k2+λ2
so. Therefore, the energy gap is 2λso

at the Dirac points. Due to the low-buckled geometry, not
only the second-order SOC λ2nd

so but also the much larger
first-order SOC λ1st

so exists. In Fig. 3, we show the variation
of the gap with the angle θ . When θ deviates from 90◦, the
gap induced by λ2nd

so for silicene is nearly unchanged while
the gap induced by λ1st

so increases rapidly. The larger is the
angle, the greater is the gap. In particular, the gap can reach
several meV for just a little buckling, and therefore the QSHE
can be observed in an experimentally attainable temperature
regime. It is noted that this paper mainly focuses on the
intrinsic properties of free-standing silicene while the effects
of the environment, especially a substrate, are not considered.
When silicene is on a substrate or in a perpendicular electric
field, extrinsic Rashba SOC may appear due to the broken
mirror symmetry. The Rashba SOC caused by interaction
with a substrate is more complicated to estimate. However,
if one assumes that the interaction is a weak van der Waals
interaction, the Rashba SOC can be expected to be much
smaller than intrinsic SOC. Moreover, the extrinsic Rashba
SOC due to a perpendicular electric field may be written as
λR = eEzz0

3Vspσ
ξ0,12 where z0 is proportional to the atomic size of

silicon. Its magnitude is about 0.2 meV if we assume a
typical electric field10 Ez ∼ (50 V)/(300 nm) and use the
value z0 ∼ 4.5aB . Therefore, in silicene, the magnitude of
the intrinsic SOC at 1.55 meV is much larger than that of the
extrinsic Rashba SOC. Through comparing the strength of the
extrinsic Rashba SOC to that of the intrinsic SOC, one can
verify that extrinsic Rashba SOC will not affect the survival
of the QSHE.

Third, due to the low-buckled geometry, the effective
Hamiltonian also contains the intrinsic Rashba SOC term. This
term leads to interesting properties. On the one hand, since it
vanishes at the Dirac point, the minimal bulk energy gap 2λso

will not be affected by the intrinsic Rashba SOC. Therefore,
it does not diminish the temperature window for experimental
observation of the QSHE in silicene. On the other hand, due
to the nonzero values of the Rashba SOC term, spin is not
a good quantum number. Thus, the spin Hall conductance is
no longer quantized in silicene. The intrinsic Rashba SOC is
entirely different from the extrinsic Rashba SOC, which has
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TABLE II. The magnitudes of hopping parameters. The energy units are eV. The strength of SOC ξ0 is obtained from first-principles
calculation except for Sn.

System Vssσ Vspσ Vppσ Vppπ 	 ξ0

Graphene − 6.769 5.580 5.037 − 3.033 − 8.868a 9×10−3c

Silicene − 1.93 2.54 4.47 − 1.12 − 7.03b 34×10−3d

Ge(licene) − 1.79 2.36 4.15 − 1.04 − 8.02b 0.196
Sn(licene) − 2.6245 2.6504 1.4926 − 0.7877 − 6.2335e 0.8f

aReference 25.
bReference 26.
cReference 11.
dReference 5.
eReference 27.
fReference 28.

a finite value at the Dirac point K . The presence of intrinsic
Rashba SOC may provide a way to manipulate the spin in
silicene without destroying its QSHE state.

Fourth, the entire low-energy effective Hamiltonian applies
not only to the silicene itself but also to the low-buckled
counterparts of graphene for the other group-IVA elements
Ge and Sn, as well as to graphene with planar geometry. These
different structures correspond to different angles θ . Therefore,
in this sense, the effective Hamiltonian is quite general.

The values in Table I of λ1st
so , λ2nd

so , λR , the gap, and vF caused
by SOC at the Dirac point K in graphene, silicene, gelicene,
and snlicene (corresponding to two-dimensional low-buckled
Ge and Sn) are obtained from the tight-binding method by
using the typical parameter values from Table II. Notice that
λ2nd

so is slightly larger than λ1st
so in snlicene due to the huge SOC

strength with the magnitude of eV, while λ2nd
so is much smaller

than λ1st
so in the other systems. For comparison, we present

the corresponding gaps from the first-principles method too,
which agree with our tight-binding method results in order of
magnitude. We also give the carrier Fermi velocity vF around
the Dirac point K from first principles and from the current
tight-binding method. Since we only focus on the low-buckled
geometry, our calculation shows that the carrier Fermi velocity
does not significantly change with θ .

Notice that those bond parameters presented in Table II
and used in Table I come from the corresponding diamond
structure (sp3 hybridization) except for the graphene (sp2)
case. However, considering that low-bulk structures are closer
to sp2 hybridization and the bond parameters of sp2 hybridiza-
tion will be a little different from those of sp3 hybridization,
through slight improvement of these bond parameters we
expect that the tight-binding gap would better match the
first-principles results.

V. SUMMARY

In summary, based on symmetry aspects and the tight-
binding method combined with first-principles calculation,
we derived the low-energy effective Hamiltonian for silicene,
which is very general because this Hamiltonian applies not
only to silicene itself but also to the low-buckled counterparts
of graphene for the other group-IVA element Ge and Sn,
as well as to graphene where the structure returns to the
planar geometry. The low-energy effective Hamiltonian does

indeed exhibit the QSHE, with a form similar to that of
Kane and Mele’s first graphene QSHE Hamiltonian except
for the intrinsic Rashba SOC term HR(k). However, the
effective SOC in low-buckled geometry is actually first order
in the atomic intrinsic SOC strength ξ0, while the planar
structure in graphene leads to the vanishing of the leading-
order contribution. Therefore, silicene and the low-buckled
counterparts of graphene for the other group-IVA elements Ge
and Sn have much larger gaps opened by the effective SOC at
the Dirac point than graphene due to the low-buckled geometry
and larger atomic intrinsic SOC strength. Further, the larger
is the angle, the greater is the gap. Therefore, the QSHE can
be observed in an experimentally accessible low-temperature
regime in these low-buckled systems. In addition, the Rashba
SOC in silicene is intrinsic due to its own low-buckled
geometry, which vanishes at the Dirac point K , while it has a
nonzero value when �k deviates from the K point. As a result,
although the spin Hall conductance is not quantized, the QSHE
in silicene is robust against such intrinsic Rashba SOC. This
is entirely different from the extrinsic Rashba SOC due to
a perpendicular electric field or interaction with a substrate,
which is independent of �k, has finite value at the Dirac points,
and is detrimental to the QSHE.
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APPENDIX A: H0 MATRIX

In the representation {pA
z ,pB

z ,pA
y ,pA

x ,sA,pB
y ,pB

x ,sB} the
total Hamiltonian reads

H0 =
(

Hπ Hn

H†
n Hσ

)
,

(A1)

Hσ =
(

E T
T† E

)
.
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Here, Hπ and Hσ are 2 × 2 and 6 × 6 matrices, respectively.
The nondiagonal block Hn coupling Hπ and Hσ is a 2 × 6
matrix. In the following derivation, the energy level of the 3p

orbital is set as the energy zero point. The matrix E describing
the on-site energy of different atomic orbitals can be written
as

E =
⎛
⎝0 0 0

0 0 0
0 0 	

⎞
⎠ , (A2)

where 	 is the energy difference between the 3s and 3p

orbitals. Actually, for the sake of simplicity, here we have
assumed that these bases are orthogonal when centered on
different sites. We choose the coordinate system in which the
unit cell has primitive vectors

�a1 = a

(
1

2
,

√
3

2

)
, �a2 = a

(
−1

2
,

√
3

2

)
. (A3)

The lattice constant a is defined as the nearest distance
between lattice points in the same sublattice, which is
3.86 Å for silicene from our first-principles calculation.5 The
three nearest-neighbor translation vectors are

�d1 = a√
3

(√
3

2
,
1

2
, cot θ

)
,

�d2 = a√
3

(
−

√
3

2
,
1

2
, cot θ

)
, (A4)

�d3 = a√
3

(0, − 1, cot θ ).

As shown in Fig. 1, the angle θ is defined as being between
the Si-Si bond and the z direction normal to the plane. The
corresponding reciprocal lattice vectors are

�b1 = 2π

a

(
1,

√
3

3

)
, �b2 = 2π

a

(
−1,

√
3

3

)
. (A5)

The Dirac point K is chosen to be �K = 1
3 (�b1 − �b2) = ( 4π

3a
,0),

and K∗ = −K . The matrix T describes the hopping between
two sublattices, which is given in Table III by the Slater-Koster
formula.24 In Table III, the four bond parameters Vssσ , Vspσ ,
Vppσ , and Vppπ correspond to the σ and π bonds formed by
3s and 3p orbitals, whose numerical values given in Table II
specify our model quantitatively. The hopping matrix elements
in the momentum space read

t(k) =
3∑

i=1

t( �di)e
i�k · �di . (A6)

TABLE III. The matrix elements for the nearest-neighbor hopping
between s and p orbitals are considered as functions of the direction
cosine l, m, and n of the vector from the left orbital to the right orbital.
Other matrix elements are found by permuting indices.

ts,s Vssσ tx,x l2Vppσ + (l − l2)Vppπ

ts,x lVspσ tx,y lm(Vppσ − Vppπ )
tx,s −lVspσ ty,z mn(Vppσ − Vppπ )

Therefore, the matrices T and Hn at the Dirac point K can be
written as

T =

⎛
⎜⎝

−V
′

1 −iV
′

1 V
′

2

−iV
′

1 V
′

1 −iV
′

2

−V
′

2 iV
′

2 0

⎞
⎟⎠ , (A7)

Hn =
(

0 0 0 V
′

3 −iV
′

3 0

V
′

3 iV
′

3 0 0 0 0

)
, (A8)

V
′

1 ≡ 3

4
sin2 θ (Vppπ − Vppσ ),

V
′

2 ≡ 3

2
sin θVspσ ,

V
′

3 ≡ 3

2
sin θ cos θ (Vppπ − Vppσ ).

The matrix Hπ at the Dirac point K reads

Hπ =
(

0 0

0 0

)
. (A9)

Consequently, the Hamiltonian H0 is obtained.

APPENDIX B: Hso MATRIX

When in center field, Eq. (1) reads

Hso = ξ0 �L · �s. (B1)

The above equation can also be written as

Hso = ξ0

(
L+s− + L−s+

2
+ Lzsz

)
, (B2)

where s± = sx ± isy denote the positive (negative) operator
for spin and L± = Lx ± iLy denote the positive (negative)
operator for the angular momentum in the selected basis. The
SOC on the same atom is taken into account. The concrete SOC
term can be obtained by calculating the mean value of Eq. (B2).
For example, the SOC term between |pz ↑〉 and |px ↓〉 reads
〈pz ↑ |Hso|px ↓〉 = − ξ0

2 , etc.29 During the derivation we may
take advantage of the following expressions:

L+|l,m〉 = [l(l + 1) − m(m + 1)]1/2|l,m + 1〉,
L−|l,m〉 = [l(l + 1) − m(m − 1)]1/2|l,m − 1〉, (B3)

Lz|l,m〉 = m|l,m〉,
where l and m represent the azimuthal and magnetic
quantum numbers, respectively. A straightforward calcu-
lation leads to the on-site SOC in the representation
{pA

z ,pB
z ,pA

y ,pA
x ,sA,pB

y ,pB
x ,sB} ⊗ {↑ , ↓}:

Hso = ξ0

2
× hso. (B4)

All elements in hso can be found in Table IV.

APPENDIX C: THE SECOND-ORDER EFFECTIVE
HAMILTONIAN

In general, the Hamiltonian reads

H =
(

Hπ Hn

H
†
n Hσ

)
. (C1)
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TABLE IV. The values of SOC among atomic orbitals that are
used in hso. A,B denote the two distinct sites. The nonzero SOC
terms only exist at the same site. σx,y,z are Pauli matrices acting on
the spin space. O denotes the zero matrix.

pA/B
z pA/B

y pA/B
x sA/B

pA/B
z O iσx −iσy O

pA/B
y −iσx O iσz O

pA/B
x iσy −iσz O O

sA/B O O O O

We focus on the following case: (i) the eigenvalues of Hπ are
around energy ε while the eigenvalues of Hσ are far away
from ε; (ii) the energy scale of the nondiagonal block Hn

is much smaller than the eigenvalue value difference between
Hπ and Hσ . The effective Hamiltonian around energy ε (or the
second-order effective Hamiltonian for Hπ ) can be obtained
by the following method.30 H can be rewritten as

H ≡ εI + H0 + Hnon, (C2)

H0 =
(

Hπ − ε 0
0 Hσ − ε

)
, Hnon =

(
0 Hn

H
†
n 0

)
.

For simplicity, we omit the unitary matrix I in the above and
in the following derivation. In order to obtain the effective
Hamiltonian, one may perform a canonical transformation:

H → HS = e−SHeS,

S =
(

0 M

−M† 0

)
, (C3)

where the matrix M is determined by

[H0,S] + Hnon = 0. (C4)

Through a simple algebraic derivation, we have

(Hπ − ε)M − M(Hσ − ε) + Hn = 0. (C5)

Therefore, we can find a recursive expression for M ,

M = [Hn + (Hπ − ε)M](Hσ − ε)−1

= Hn(Hσ − ε)−1 + (Hπ − ε)Hn(Hσ − ε)−2 + · · · .

(C6)

We know that in silicene the eigenvalues of Hσ − ε determined
by the energy of Hσ separated from those of Hπ are of order
eV near the K point, while the energy scale of Hπ − ε is nearly
zero and Hn is of order meV for SOC. Therefore the above
recursive expression can be written as

M ≈ Hn(Hσ − ε)−1. (C7)

The transformed Hamiltonian has the following approximate
form:

HS = e−SHeS = H + [H,S] + 1
2! [[H,S],S] + · · ·

= εI + H0 + 1
2 [Hnon,S] + · · · . (C8)

Up to the second order, the final effective Hamiltonian for Hπ

can be written as

Heff � Hπ − 1
2 (HnM

† + MH †
n )

� Hπ − Hn(Hσ − ε)−1H †
n . (C9)
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