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Lattice generalization of the Dirac equation to general spin and the role of the flat band
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We provide a setup for generalizing the two-dimensional pseudospin S = 1/2 Dirac equation, arising in
graphene’s honeycomb lattice, to general pseudospin S. We engineer these band structures as a nearest-neighbor
hopping Hamiltonian involving stacked triangular lattices. We obtain multilayered low-energy excitations around
half-filling described by a two-dimensional Dirac equation of the form H = vF S · p, where S represents an
arbitrary spin S (integer or half-integer). For integer S, a flat band appears, the presence of which modifies
qualitatively the response of the system. Among physical observables, the density of states, the optical
conductivity, and the peculiarities of Klein tunneling are investigated. We also study Chern numbers as well
as the zero-energy Landau-level degeneracy. By changing the stacking pattern, the topological properties are
altered significantly, with no obvious analog in multilayer graphene stacks.
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I. INTRODUCTION

Since the seminal work on monolayer graphene (a single
sheet of carbon atoms forming a honeycomb lattice) in 2004,1

a lot of attention has been focused on this material. Its low-
energy properties close to half-filling (i.e., pristine graphene)
are well described by a two-dimensional massless Dirac equa-
tion, with the speed of light replaced by the appropriate Fermi
velocity ∼106 m/s. Most of the unusual electronic properties
of this material can be traced back to the massless Dirac nature
of its quasiparticles and their unusual Berry phase. These
include its linearly vanishing density of states (DOS) around
half-filling, resembling a d-wave superconductor, unusual
Landau quantization in a perpendicular magnetic field, and
the anomalous half-integer quantum Hall effect. Additionally,
phenomena such as the universal optical conductivity and high
optical transparency Klein tunneling through electric barriers
are also distinguishing features.

The appearance of the massless Dirac equation has trig-
gered further research to find out whether other systems
can possess similar behavior or even generalizations of the
S = 1/2 Dirac physics to, e.g., higher dimensions, including
additional terms. In the context of ultracold atom in optical
lattices, several proposals have been put forward to realize a
generalization of graphene physics in terms of the S = 1 Dirac
equation.2–5 Generalizations to higher S with spin-dependent
hoppings6 as well as with artificial magnetic field7 are also
possible.

Here, we present a family of lattices, the low-energy
excitations around given fillings of which are described by
a generalized two-dimensional Dirac equation

H = vF S · p, (1)

where p = (px,py,0), and S = (Sx,Sy,Sz) is the matrix repre-
sentation of an arbitrary spin S (integer or half-integer), and
vF is the Fermi velocity. These lattices consist of stackings of
triangular layers, and include slabs of face-centered-cubic and
hexagonal close-packed lattices as special cases. Technically,
the notion Weyl Hamiltonian6 is more appropriate for Eq. (1)
for S > 1/2, although we refer to it as generalized Dirac

equation (sometimes omitting the ”generalized”) since our
motivation comes primarily from graphene and its pseudospin-
1/2 Dirac equation.

Our model is characterized by considerable simplicity
and tunability. Furthermore, it contains a unique feature,
absent from previous lattice realizations of higher spin-S
Hamiltonians: the possibility of (through a simple lateral
shift in the layer positions) changing the chiral properties of
individual interlayer hoppings, without changing the spectrum.
However, there are considerable changes on other properties,
for example, topological properties such as the multiplicity of
the zero-energy Landau level degeneracy in magnetic field.

The paper is organized as follows. In Sec. II, we introduce
the lattice and discuss some of its general features. We then
proceed to analyze the properties resulting from such a band
structure: density of states (Sec. III), optical conductivity
(Sec. IV), Chern numbers and spin Chern numbers of the band
structure (Sec. V), zero-mode degeneracy in both a uniform
as well as a nonuniform magnetic field (Sec. VI), and Klein
tunneling (Sec. VII) for the spin-1 case, focusing on tunneling
into the flat band. We also derive the general matching
condition for the wave function for arbitrary pseudospin S.
Finally, the relevant symmetry properties are highlighted in an
Appendix.

The S = 1/2 version is realized in graphene8 and on the
surface of three-dimensional (3d) topological insulators.9 Of
the recent proposals for the S = 1 case,2–5 our construction
includes the dice lattice. Our work in many respects is
complementary to Ref. 6, where diverse properties (topology,
transport) of the spin-S Dirac equation were studied using a
different lattice realization with spin-dependent hoppings.

II. BAND-STRUCTURE ENGINEERING

To set the stage, let us first cast the analysis of graphene’s
honeycomb lattice in a form that lends itself to generalization.
The bipartite honeycomb lattice has two atoms (A and B) per
unit cell; each sublattice forms a triangular lattice and the
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hopping Hamiltonian in Fourier space takes the form

H =
[

0 tf (k)
tf ∗(k) 0

]
, (2)

where t is the hopping amplitude and a the intercarbon
distance, while f (k) = 1 + 2 exp(i3kya/2) cos(

√
3kxa/2).

At half-filling, the Fermi surface consists of two
inequivalent Dirac points K and K ′ at momenta
±(2π/3

√
3a,2π/3a) = k±, respectively. Expanding around

these points leads to two copies of the two-dimensional
Dirac equation for S = 1/2, with the sublattice providing the
(pseudo)spin degree of freedom:

Sx = 1

2

(
0 1
1 0

)
, Sy = 1

2

(
0 −i

i 0

)
. (3)

vF = 3ta, the missing factor 1/2 as opposed to graphene8

arising since the eigenvalues of the spin are ±1/2.
If we now think of the honeycomb lattice as a layered

structure, with the A and B triangular sublattices offset in
height by an amount h, it is natural to ask what happens if one
adds a third, and then further, triangular layers (see Fig. 1).
For small h, the nearest neighbors of a given site are in the
layers directly above and below. When the layers are stacked
in the sequence of the face-centered-cubic lattice in a [111]
direction, one obtains a band diagonal hopping Hamiltonian
for a system of 2S + 1 layers:

HS

= t

⎡
⎢⎢⎢⎢⎢⎣

0 α01f (k) 0

α∗
01f

∗(k) 0 α12f (k)...
0

0 α∗
12f

∗(k)...
0...

α2S−1,2Sf (k)

0 α∗
2S−1,2Sf

∗(k) 0

⎤
⎥⎥⎥⎥⎥⎦ ,

(4)

where we have allowed for different interlayer hopping
strengths by introducing the α’s. Indeed, regardless of the
choice of αi,i+1, several properties of the spectrum of HS im-
mediately follow from the form of its characteristic polynomial
CS(λ,k) = det(HS − λ1), which reads as

CS(λ,k) = |tf (k)|2S+1 det[(α+ + α−) − λ̃1], (5)

where λ̃ = λ/|f (k)| is independent of k, and so is α+
ij =

(α−
ji)

∗ = αi,i+1δj,i+1. First, near the Dirac points (K and K ′),
all bands are linearly dispersing simply because |f (k)| ∝ |k −
k±|. Second, for integer S, the Hamiltonian must display a flat
band. The matrix α+ + α− possesses a symmetric spectrum (if
λ̃ is an eigenvalue, then so is also −λ̃). The Hamiltonian also
possesses this symmetry, which can be phrased as a chiral
symmetry �H (k)�† = −H (k) with � a unitary operator,
as further discussed in the Appendix. For an odd number
2S + 1 of bands, the chiral symmetry implies that (at least)
one eigenvalue λ̃ must be zero, which translates into a flat
band λ = |f (k)|λ̃ = 0.10

If now, in addition, we choose the interplane hopping am-
plitudes so that α+ = S+, where S+ = Sx + iSy is the raising
operator for spin S, we obtain a spectrum En(k) = nt |f (k)|,
where n = −S, − S + 1, . . . ,S. This requires placing the
adjacent layers at certain distances from each other, so that the

(a)

(b)

FIG. 1. (Color online) The schematic representation of the family
of lattice models leading to the spin-S Dirac equation is shown from
the side (a) and from above (b). The dashed lines denote interlayer
hopping processes, while the intralayer thin solid lines are guides
to the eye, emphasizing the planar triangular structure, but do not
represent any hoppings. The lowest and highest A planes (blue)
are exactly on top of each other. For S = 1/2, only two adjacent
layers need to be considered (e.g., the red A, and green B layers),
for S = 1, three neighboring ABC layers (e.g., lower blue, red, and
green), for S = 3/2, all four layers, while for higher S’s, one needs
to continue upward or downward with ABCABC. . . stackings. Note
that the interlayer hoppings should be unequal to realize the perfect
Dirac equation [Eq. (8)].

overlap of the wave functions would produce the appropriate
hopping integrals between subsequent layers, the relative
strength of which is further specified in Eq. (9).

As a result, we obtain an effective Hamiltonian near the K

point

HS(p) = vF S · p. (6)

Here, p = k − k+ measures the (small) distance from the
Dirac point at K , and similarly for the K ′ point. If we finally
add a potential of strength �Sz, which can, in principle,
be generated straightforwardly via an electric field applied
perpendicular to the layers, representing distinct chemical
potentials for each layer, we have

En(p) = n

√
v2

F

(
p2

x + p2
y

) + �2. (7)

For integer S, n = 0 invariably corresponds to a flat band,
however, no longer due to chiral symmetry but due to a less
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general symmetry that is specific to the low-energy Dirac-type
Hamiltonians and that requires fine tuning of the parameters
αij . Fortunately for experimental realizations, rather natural
setups such as equidistant layers will satisfy the conditions for
a flat band, as discussed in the Appendix in more detail.

It can now be verified straightforwardly that the cases S =
1/2 and 1 correspond to the known instances of the honeycomb
and dice (or T3) lattices,2,8 respectively. The S = 3/2 case for
four layers reads as

H =

⎡
⎢⎢⎣

0
√

3tf (k) 0 0√
3tf ∗(k) 0 2tf (k) 0

0 2tf ∗(k) 0
√

3tf (k)
0 0

√
3tf ∗(k) 0

⎤
⎥⎥⎦ ,

(8)

which can be supplemented with an additional gap, coming
from �Sz with Sz = diag(3/2,1/2,−1/2,−3/2). A very sim-
ilar lattice structure has been proposed in Ref. 11.

Note that the simple form of the Hamiltonian also gives
immediate access to the wave functions in layer (pseudospin)
space, as its eigenfunctions are obtained from a simple rotation
in spin space: the quantization axis of S is given by an effective
field direction h, the components of which are given by
Ref (k), Imf (k), and �, respectively. The various α prefactors
above and below the diagonal are chosen according to the
conventional matrix representation of the spin matrices.12 For
example, above the diagonal, the matrix elements of the raising
ladder operator appear as

〈n′|S+|n〉 = δn′,n+1

√
S(S + 1) − n(n + 1), (9)

where Sz|n〉 = n|n〉. The resulting spectrum consists of
equidistant energy levels at each given momentum. As
mentioned above, with a different choice of α, the spectrum
would still be linear. The Dirac cones are robust in this sense.
Furthermore, although the bands at a given momentum would
not necessarily be equidistant anymore, the flat band will still
survive if certain symmetries are present, as discussed in the
Appendix.

For � = 0, the wave function corresponding to the flat band
is such that the probability of finding a particle in even layers is
exactly zero. For example, in an S = 1 trilayer, the red plane,
sandwiched between the blue and green ones (see Fig. 1), is
completely blocked for the flat-band wave function.

The stacking we propose here is of course quite familiar.
A succession of triangular planes ABCABC. . . , as displayed
in Fig. 1, is just the face-centered-cubic lattice viewed along
a [111] direction. Another stacking, ABABA. . . , corresponds
to the hexagonal close-packed lattice structure. The hopping
Hamiltonian [Eq. (4)] is simply modified to take into account
this stacking: f (k) is replaced by its complex conjugate for
hopping BA, CB, or AC. For example, the stacking ABCB
would result in

HS = t

⎡
⎢⎢⎢⎢⎣

0 α01f (k) 0 0

α∗
01f

∗(k) 0 α12f (k) 0

0 α∗
12f

∗(k) 0 α∗
23f

∗(k)

0 0 α23f (k) 0

⎤
⎥⎥⎥⎥⎦ .

(10)

We will say that the chirality between the third and the fourth
layers has been flipped.

The spectrum (and, in particular, Dirac cones and flat
bands) is not affected by this change, which affects only the
phase of the matrix elements. Indeed, a unitary transformation,
changing the ith spinor entry ψi(k) → exp[2i arg f (k)]ψi(k),
changes f ∗(k) → f (k) in HS,i−1,i .

Around half-filling, where the continuum description ap-
plies, this corresponds to flipping the chirality in the Hamil-
tonian between adjacent layers. This change of chirality is
at the origin of a change in the Berry curvature (detailed in
Sec. V). Note that one can successively “fix” the phases of the
off-diagonal terms to agree with a reference stacking without
altering diagonal terms that may be present.

Finally, we emphasize again that, for a layer separation h <

ã
√

2/3, where ã is the triangular lattice constant, our Eq. (4)
represents nearest-neighbor hoppings only. Having outlined a
path toward general lattices with Dirac physics, we next discuss
some of the basic properties of such electronic systems.

III. DENSITY OF STATES

The density of states (DOS) for � = 0 is given, using the
low-energy Dirac Hamiltonians, by

ρ(ω) =
S∑

p,n=−S

δ[ω − En(p)] = Ac

2π

|ω|
v2

F

S∑
n>0

1

n2

+ δ(ω)δS,integer (11)

per spin, valley, and unit cell, with Ac being the unit-cell area.
The DOS remains linear in energy, similar to graphene, but
exhibits a sharp peak due to the flat band2,13 for integer-spin
realizations. The DOS can be simplified to

ρ(ω) = Ac

2π

|ω|
v2

F

(
π2

6
− � ′ (S + 1)

)
+ δ(ω) (12)

for integer spins, and

ρ(ω) = Ac

2π

|ω|
v2

F

(
π2

2
− � ′ (S + 1)

)
(13)

for half-integer spins, where �(x) is Euler’s digamma func-
tion. Due to the momentum integral in Eq. (11), these results
are only valid for |k| 
 kc with kc the cutoff, which translates
to |ω| 
 vF kc. Note that, for large spin S � 1, the maximal
slope of the DOS right at the Fermi energy is π2/8 times larger
than for spin-1/2 for half-integer spins, and π2/6 times larger
than for spin-1 for integer spins. The S dependence of the
slope of the DOS is shown in Fig. 2, which changes very little
with S in the integer or half-integer sector. With increasing
S, additional Dirac cones appear with increasing slope, thus,
with a much reduced contribution to the DOS. As opposed to
that, these high-energy bands contribute more at high energies,
since their bandwidth also increases with S.

The original lattice model provides us with additional
features not captured by the low-energy approximation, such
as the presence of van Hove singularities around ω = nt

with n = −S, −S + 1 . . . S but n �= 0 as ρ(ω) ∼ ln(ω/|n|t).
In addition to the two peaks for graphene with S = 1/2, an
increasing number of additional pairs of peaks appear in the
DOS for S > 1.
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FIG. 2. (Color online) The slope of the linear in energy density of
states is plotted for various values of S; the dashed black lines denote
the asymptotic values π 2/6 and π 2/2 for integer and half-integer
spins, respectively.

IV. OPTICAL CONDUCTIVITY

Another characteristic quantity of Dirac fermions is the
optical conductivity, which, for S = 1/2 at half-filling and T =
0, is completely structureless and constant. In the presence of
additional Dirac bands, new interband transitions occur. The
current operator in the x directions is given by jx = vF Sx .
Its equation of motion as well as those of the other spin
components are

∂tSx = vF pySz, (14)

∂tSy = −vF pxSz, (15)

∂tSz = vF (pxSy − pySx) (16)

for a given momentum. This is easily solved for Sx(t) as

Sx(t) = Sx[sin2(ϕp) cos(vF pt) + cos2(ϕp)] + 1
2Sy sin(2ϕp)

× [1 − cos(vF pt)] + Sz sin(ϕp) sin(vF pt), (17)

where tan(ϕp) = px/py .
The current-current correlation function is evaluated from

this as

χJJ (t) =
∑
n,p

〈Sx(t)Sx − SxSx(t)〉

= 2i
∑
n,p

〈Sy〉 sin(ϕp) sin(vF pt)

= 2i
∑
n,p

np sin2(ϕp) sin(vF pt). (18)

After Fourier transformation, the optical conductivity contains
two parts as

σ (ω) = Dδ(ω) + σinter(ω) (19)

per electron spin and valley, and the Drude weight is

D = e2πT

h

S + 1/2� ln

[
2 cosh

(
μ

2kBT

)]
, (20)

0 0.5 1 1.5 2 2.5
0

1

2

3

4

5

ω/μ

σ
in

te
r
(ω

)4
h
/
e2

π

S = 1/2
S = 1

S = 3/2

S = 2

S = 5/2

FIG. 3. (Color online) The interband part of the optical conduc-
tivity for the spin-S Dirac equation is shown for kBT /μ = 0.0125 for
several values of S. The number of possible interband transitions is

S + 1/2�.

which agrees with that of graphene14 for S = 1/2, while the
interband part reads as

σinter(ω) = −e2π

4h

S∑
n=−S

nf (nh̄ω) , (21)

where f (x) = 1/{exp[(x − μ)/kBT ] + 1} is the Fermi func-
tion, μ the chemical potential, and 
x� denotes the integer part.
Since the particles residing on the flat band can not propagate,
their group velocity is zero, so that their contribution vanishes
to the Drude weight. This explains the integer part function.
On the other hand, they have a finite matrix element between
adjacent levels, and contribute to interband transport, which
contains all allowed 2S processes between 2S + 1 levels.

At the Dirac point (μ = 0) at T = 0, the Drude weight
disappears, and the interband conductivity reads as

σinter(ω) = e2π

4h

(
S(S + 1)

2
+

{
1
8 half-integer S

0 integer S

)
. (22)

Away from the Dirac point, 
S + 1/2� interband transitions
are allowed, as can be checked in Figs. 3 and 4.

The calculated intraband and interband optical conductiv-
ities differ significantly from those in graphene. First, the
interband part is sensitive to the number of bands and away
from half-filling, several steps are possible as opposed to
graphene, where only a single step is allowed. Second, the
universal value for the optical conductivity at half-filling and
finite frequencies is proportional to pseudospin-S value, which
should also affect the transparency as

T =
(

1 + 2π

c
σ (ω)

)−2

≈ 1 − παQED

[
S(S + 1) +

{
1
4 half-integer S

0 integer S

]
, (23)

where the lower line is obtained upon Taylor expanding
the upper line, and is only valid for S � 2. Here, valley
and physical spin degeneracies are included, αQED = e2/h̄c
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FIG. 4. (Color online) The band structure of S = 3/2, visualizing
the minimal frequency of the allowed optical transition. As opposed
to graphene, transitions well below ω = 2μ are possible.

is the fine-structure constant, and c the speed of light. For
S = 1/2, this reproduces the T � 97.7% optical transparency
of graphene. Therefore, the universal value of the optical
response immediately reveals the underlying pseudospin-S
structure, as shown in Fig. 5. Third, while the interband
response takes the contribution of the flat band into account,
the intraband one (Drude) is insensitive to its presence due to
the zero group velocity of the flat band.

V. TOPOLOGICAL PROPERTIES OF THE
BAND STRUCTURE

Here, we discuss the topological properties of our model
in the absence of a gauge field. It will turn out that there
can be topologically nontrivial ground states. The topological
invariant we study, i.e., the spin Chern number, depends on the
number of layers and on the band fillings. However, it does
not appear to depend on the stacking configuration, although
the Berry curvature, from which it is calculated, does.

0.5 1 1.5 2 2.5 3 3.5 4
60

65

70

75

80

85

90

95

100

S

T
(%

)

FIG. 5. (Color online) The universal optical transparency is
shown for half-filling as a function of S. The blue circles denote
the exact expression from Eq. (23) (upper line), while the black
squares show the approximate formula, valid for small S [lower line
in Eq. (23)].

We study the integral of the Berry curvature, where the con-
tribution to the Berry curvature from a given band is given by

Bn =
S∑

n = −S,

n′ �= n

2 Im[〈n,k|∂kx
H |n′,k〉〈n′,k|∂ky

H |n,k〉]
[(En(k) − En′ (k)]2

,

(24)

where n is a band index and |n,k〉 a single-particle eigenstate
of H with eigenvalue En(k). In the thermodynamic limit, the
summation over momentum turns into an integral. When this
integral goes over a compact manifold such as the Brillouin
zone (BZ), one obtains a topological invariant called the first
Chern number

Cn =
∫

BZ

d2k

2π
Bn . (25)

A nonzero Chern number requires breaking of time-reversal
symmetry (TRS). This can be accomplished by an external
magnetic field as in the integer quantum Hall effect,15 but
also by gap terms that break TRS.16 Settings of the latter
kind with flat bands with nonzero Chern number have been
reported.17–19 In this section, we only study gap terms that
preserve TRS, hence, the Chern number is zero. However,
the Chern number is integrated from a nontrivial Berry
curvature that derives mainly from the two singularities in the
Brillouin zone: the Dirac cones at the K and K ′ points. When
calculating the total vorticity of a configuration of quantized
vortices, it is usually enough to calculate the vorticity of the
individual vortices as if they were isolated, and then add up
the quanta (including the sign) to obtain the total vorticity.
Similarly, it is usually enough to calculate the integral of
the Berry curvature for individual Dirac cones, living not on
a Brillouin zone, but on the infinite plane of momenta and
then add up their contributions to obtain the same result,
which would originate from integrating the full band structure
over the Brillouin zone. We will use both approaches and
demonstrate explicitly (in Table I) that they match.

TABLE I. The integral of the Berry curvature for a single
pseudospin-S Dirac cone (CK

n ) and the spin-dependent Chern number
(C↑

n ) for the lattice model are shown for all possible, nonequivalent
stacking patterns for S < 5/2 and � > 0. These are evaluated
numerically for both the continuum and lattice models, and their
relation can be checked using Eq. (33). Note that C↑

n = −C↓
n .

S Stacking CK
n (single cone) C↑

n (lattice)

1/2 AB (1/2,−1/2) (1,−1)
1 ABC (1,0,−1) (2,0,−2)
1 ABA (1/2,−1,1/2) (0,0,0)
3/2 ABCA (3/2,1/2,−1/2,−3/2) (3,1,−1,−3)
3/2 ABAB (1/2,−1/2,1/2,−1/2) (1,−1,1,−1)
3/2 ABCB (5/4,−1/4,−5/4,1/4) (1,1,−1,−1)
2 ABCAB (2,1,0,−1,−2) (4,2,0,−2,−4)
2 ABCAC (15/8,1/2,−3/4,−3/2,−1/8) (2,2,0,−2,−2)
2 ABCBC (11/8,0,−3/4,0,−5/8) (2,0,0,0,−2)
2 ABCBA (5/4,−1/2,−3/2,−1/2,5/4) (0,0,0,0,0)
2 ABABA (1/2,−1/2,0,−1/2,1/2) (0,0,0,0,0)
2 ABACA (0,−1,0,1,0) (0,−2,0,2,0)
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Another topological invariant is the spin Chern number.
It is calculated from the contributions to the Chern number
individually for the two components of the physical spin, but
instead of adding up the two contributions to get the Chern
number, one takes the difference to obtain the spin Chern
number.

The charge Chern number is related to a topologically
quantized Hall current of charge15

σxy = e2

h

∑
n

Cn , (26)

with the summation taken over filled bands. Likewise, the spin
Chern number can be used to determine the quantized spin-
Hall conductivity. This is the case with the intrinsic spin-orbit
coupling (SOC) of graphene20

HSO = �τzSzσz, (27)

which preserves TRS. Here, τz and σz refer to the valley and
physical spin degrees of freedom. We will generalize this SOC
to arbitrary pseudospin S.

In addition, the different stacking configurations lead to
interesting changes in the integral of the Berry curvature in the
single-cone approximation, which calls for future research on
the role of stacking order on topological properties.

A. Single pseudospin-S Dirac cone

Let us first focus on the integral of the Berry curvature of
a single spin-S Dirac equation for spinless electrons. In itself,
it is usually not a topological invariant, but the topological
invariants can often be understood in terms of the contributions
for the single cones, and the latter can, in the simplest
case, be evaluated analytically. In some cases, these nonzero
contributions add up to zero, as must be the case for the Chern
number in the time-reversal symmetric setup that we consider.
However, we will also see that, for the spin Chern number,
another topological invariant, the contributions add up to an
invariant that can be nonzero.

For a given band in the spin-S Dirac equation, assuming
a gap of the form �Sz, the integral of the Berry curvature is
evaluated around the K point by assuming an isolated Dirac
cone in the momentum plane in the expression of Eq. (24).
Thus,

CK
n =

∫ ∞

0

n�v2
F p dp

[(vF p)2 + �2]3/2
= n sign(�), (28)

where n takes the allowed values of Sz, which also indexes
the bands. For the S = 1

2 Dirac equation, this reproduces the
known result21 C± = ± 1

2 sign(�) with the upper (lower) sign
corresponding to the upper (lower) Dirac cone.

The contribution to the transverse conductivity from an
individual cone at the Dirac point K is the sum of the above
CK

n ’s from the filled bands. In the Dirac-cone approximation,
a gap exists only around zero energy (between n = −1/2 and
1/2 for half-integer spin or between the bands n = −1, 0, and
1 for integer spin). Therefore, as long as the chemical potential
satisfies |μ| < �/2 for half-integer and 0 < |μ| < |�| for
integer spins, one obtains also in the low-energy approximation

a half-integer quantized transverse response (per spin and
valley)

σK
xy = e2

h

∑
n<0

CK
n = −e2

h

S(S + 1)

2
sign(�)

−e2

h

{
0 for integer S,

sign(�)
8 for half-integer S.

(29)

An increasing chemical potential will cut into some bands that
destroy the half-integer quantization of σK

xy .
By choosing a stacking different from ABCAB. . . , other

decompositions across the bands can be obtained for the Berry
curvature in the single-cone approximation, which leads to
a result different from Eq. (28). For example, for S = 1,
i.e., the trilayer with ABC stacking, we obtain for positive
� that (CK

1 ,CK
0 ,CK

−1) = (1,0,−1) per spin and valley. By
flipping the chirality between the second and third layers
(which correspond to an ABA stacking), we obtain instead
(1/2,−1,1/2) as integrals of the Berry curvature for the
successive bands. (These integrals were evaluated numerically,
in contrast to those related to the spin-S Hamiltonians.) Most
importantly, the 0 contribution of the flat band gets modified to
1. Various stacking patterns, the variety of which grows with
the number of layers, are listed in Table I. As we demonstrate
next, the integral of the Berry curvature around a single cone
can be used to determine the spin Chern number of the lattice
model.

B. Chern numbers on the lattice

To obtain a topological invariant, the full Brillouin zone
(including the K ′ point) has to be considered. For a setting
with TRS, which we consider here, the Chern number has to be
zero, even though the Berry curvature contributions around the
individual cones may be nonzero, in which case they cancel.
This cancellation can be avoided by involving the physical
spin: by generalizing the intrinsic SOC of graphene in Eq. (27)
to general spin-S, we can end up with nonzero spin Chern
number and, thus, finite spin-Hall conductivity.

By going back to the original lattice model and defining the
full lattice version of Eq. (27) following Ref. 22 as

HSO,lattice = 2�

3
√

3
σzSz[2 sin(

√
3kxa/2) cos(3kya/2)

− sin(
√

3kxa)], (30)

which should be added to Eq. (4), we get the spin Chern
numbers Cs

n from Eq. (24) (with a numerical integration over
the entire Brillouin zone) as

Cs
n = C↑

n − C↓
n = 4n sign(�) , (31)

where the factor 4 comes from the valley and physical spin
degrees of freedom, and Cσ is the Chern number for up (σ =↑)
or down (σ =↓) spins and C

↑
n = −C

↓
n .

Whether the system qualifies as a spin-Hall insula-
tor is decided22 by the Z2 invariant ν, defined by ν =∑

n Cs
n/2 (mod 2) = ∑

n 2n sign� (mod 2), and summation is
taken over filled bands.

We thus find that integer pseudospins contribute with
even numbers to the sum in ν, and are topologically trivial
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for the lattices in Fig. 1, giving ν = 0. By contrast, half-
integer spins contribute with odd numbers to the sum, and
having an even number of filled bands at half-filling (i.e.,
S = 3/2, 7/2, 11/2, . . .) adds up to an even number, thus,
again ν = 0. As opposed to this, half-integer spins with
S = 1/2, 5/2, 9/2, . . .have an odd number of filled bands
at half-filling, adding up to an odd number, resulting in ν = 1
and topologically nontrivial behavior.

The spin-dependent Chern numbers of the lattice model
can be obtained from the single-cone results of the previous
section. In the single-cone approximation, the spin-orbit
coupling of Eq. (30) simplifies to Eq. (27). These single-cone
contributions to the Chern number satisfy

CK
n (�) = −CK ′

n (�) = CK
−n(−�) = −CK ′

−n(−�). (32)

The opposite sign of the gap term for the two Dirac points
derives from τz in Eq. (27).

By taking both Dirac points into account, we obtain from
the single-cone results the spin Chern number

C↑
n = CK

n (�) + CK ′
n (−�) = CK

n (�) − CK
−n(�). (33)

The result agrees with the result in Eq. (31) found from
integrating over the Brillouin zone using the full band
structure. Equation (33) immediately implies that the spin
Chern number of the flat band is zero (C↑

0 = 0), regardless
of the value of CK

0 (�).
We can also consider other stacking patterns, as we did in

the single-cone case. The correspondences in Eq. (33) hold
for arbitrary stacking patterns on the lattice. For example, the
trilayer with ABA stacking with � > 0 yields zero-spin Chern
numbers for all bands, unlike the S = 1 case derived from the
ABC stacking. However, like the ABC stacking, the ABA gives
a spin Chern number that is topologically trivial. Results for
other stackings are shown in Table I. One interesting general
conclusion that we can draw based on these results is that,
while the single-cone Chern number contributions for each
band are redistributed significantly with different stacking
patterns, this does not affect the Z2 topological invariant. This
invariant will therefore be determined only by the number of
layers, but not by the stacking. We have also checked that
all nonequivalent stackings for the S = 5/2 case (not shown
here) give ν = 1 at half-filling. The invariance to changes in
stacking applies also away from half-filling, as long as the
chemical potential lies between the bands.

We can also engineer nearly flat bands with nontrivial
topology, similarly to Refs. 17–19: when � � t , all bands
become practically flat as En(p) ≈ n� + nt2|f (k)|2/2�, i.e.
the hopping occurs only to second order in perturbation theory.
Therefore, it becomes possible to fill the separate bands one by
one. Then, for example, the quarter-filled S = 3/2 case, which
corresponds to a completely filled E−3/2(p) band, becomes
topologically nontrivial with ν = 1 for all stackings. Note that,
when � 
 t , quarter-filling in this case gives partially filled
E−3/2(p) and E−1/2(p) bands. In the same vein, the 1/3-filled
S = 5/2 lattice with flattened bands (� � t) is topologically
trivial with ν = 0. Thus, a trivial ground state can become
nontrivial (and vice versa) when the chemical potential is
lowered or increased to the next band gap.

Another observation we have made is that, while the
topological invariants (the Chern number and the spin Chern
number) are robust with respect to the variations of α’s in
Eq. (4), the integrals of the Berry curvature for a single cone
(CK

n ) are not invariant. However, for some stacking patterns,
CK

n is rather insensitive to changes in α’s. In particular, the
single-cone results for ABABA and ABACA stackings are
also recovered for uniform interlayer hoppings.

We close this section with the remark that topological
invariants do not depend only on S, but also on the number of
nonequivalent Dirac cones and, thus, on the specific form of
the lattice. For example, T3 and Lieb lattices23,24 with even and
odd number of S = 1 cones, respectively, belong to different
Z2 class.9 In the presence of intrinsic SOC, the T3 lattice with
two inequivalent cones possesses the trivial Z2 index. On the
contrary, the Lieb lattice has a single cone in its band structure
and has therefore a ground state with a nontrivial Z2 invariant,
and realizes a spin-Hall insulator in the presence of SOC.

VI. TOPOLOGICAL PROPERTIES IN THE PRESENCE
OF A MAGNETIC FIELD

A topological property of our lattice that turns out to depend
dramatically on the stacking configuration is the number of
zero modes in a magnetic field. In the case of a uniform
magnetic field, these zero modes are nothing but E = 0
Landau-level (LL) states. We now show that by changing
the stacking from the ABCAB. . . stacking to some other
stacking, the E = 0 Landau-level degeneracy will increase
by a multiple.

This can immediately be seen in experiment as an increased
step at μ = 0 in the steps of quantized Hall conductivity σxy

as a function of chemical potential, in a way analogous to the
well-known examples of monolayer and bilayer graphene: in
the former, all Landau levels have the same degeneracy, while
in the latter, the degeneracy of the E = 0 LL is twice that
of the others.25,26 Such degeneracies and their lifting play an
important role, for example, at integer fillings in the context
of multicomponent quantum Hall ferromagnetism (see, e.g.,
Ref. 27).

The reason for this increased multiplicity thanks to restack-
ing is rather easy to understand. Consider the gauge-invariant
momentum operator Di(x) = −i∂xi

− Ai(x). The existence of
zero modes relies on the fact that one of the chiral Dirac
operators D± = −i(∂x ± i∂y) − (Ax ± iAy) has a nontrivial
kernel when the net flux of A is bigger than one flux quantum.
The number of states in the kernel is given by the number of
flux quanta. Depending on the sign of the total flux, one finds
nontrivial solutions either toD+ψ = 0 or toD−ψ = 0, but not
to both. This latter fact comes into play in an interesting way
when we start to flip the chiralities of the hoppings between
individual layers by restacking, as we will now come to.

As in graphene, we discuss the Landau-level spectrum in
the linearized regime of the low-energy Hamiltonians, that
is, in terms of the Dirac cones. (In the case of the full band
structure, we can not write the Hamiltonian only in terms
of the chiral combinations D±, which are necessary for the
analytical discussion of zero modes.) The Dirac Hamiltonian
is then written in real space and the magnetic field is introduced
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by minimal coupling. For the ABCA stacking, we find, at the
Dirac point K ,

HABCA =

⎡
⎢⎣

0 α01D− 0 0
α∗

01D+ 0 α12D− 0
0 α∗

12D+ 0 α23D−
0 0 α∗

23D+ 0

⎤
⎥⎦ . (34)

With the ABAB stacking, we instead have

HABAB =

⎡
⎢⎣

0 α01D− 0 0
α∗

01D+ 0 α12D+ 0
0 α∗

12D− 0 α23D−
0 0 α∗

23D+ 0

⎤
⎥⎦ , (35)

that is, with the chiralities of the matrix elements relating
the second and third layers flipped. Thus, by restacking, it
is possible to obtain several columns with only one chirality
of Dirac operators and not both. Such columns will contribute
with new zero-mode solutions and will increase the zero-mode
degeneracy by a multiplicity factor. Assume that the flux is
such that there are n solutions ψi (i = 1, . . . ,n) to D+ψ = 0
and, hence, no solutions to D−ψ = 0. Then, there are only the
n zero modes for HABCA in Eq. (34) of the form

� = (ψi,0,0,0)T . (36)

HABAB in Eq. (34), on the other hand, has the same n zero
modes, but also n additional zero modes of the form

� = (0,0,ψi,0)T, (37)

which are not solutions to HABCA because of the mixed
occurrence of D+ and D− in the third column of HABCA. Thus,
the Hamiltonian HABCA has twice as many zero modes. For
a larger number of layers, one has an even bigger number of
different stacking configurations to choose between, each with
different implications for the zero-mode degeneracy. The one
extreme case is given by the “face-centered-cubic” stacking
ABCABC. . . (a configuration without flipped chiralities),
which remains at the n zero modes for an arbitrary number
of layers. The other extreme is given by the hexagonal close-
packed stacking ABABAB. . . (with an alternating sequence of
chiralities), where the number of zero modes of 2S + 1 bands is
n(S + 1/2) for half-integer S, and nS or n(S + 1) (depending
on the sign of the flux) for integer S. Other stackings give some
intermediate multiple of n zero modes. A quick inspection
shows that the contribution from the other Dirac point just
duplicates this result for any stacking configuration, thus there
will be a factor of 2 due to valley degeneracy.

The above-observed flexibility to increase the zero-mode
degeneracy by a simple change of stacking is in stark contrast
with the situation in multilayer graphene. Multilayer graphene
has, in the simplest approximations, indeed multiple times
the degeneracy of the monolayer Hamiltonian.28 However,
although the structure of the Hamiltonian depends sensitively
on the stacking,29 the degeneracy turns out in the simplest
approximation to be independent of stacking, even in the case
of a nonuniform vector potential.30

These results, in fact, also apply for magnetic fields that
are no longer uniform. While, in this case, Landau-level
degeneracies will in general be lifted, the E = 0 Landau level
for 2d Dirac electrons is an exception. The reason is the widely
known general property of Dirac operators in a vector potential

of arbitrary distribution, which is treated by the Atiyah-Singer
index theorem,31 but can be understood also on a less formal
level thanks to the neat argument by Aharonov and Casher.32

This may imply an E = 0 Landau level that is qualitatively
sharper than the other Landau levels since only the latter
are broadened by the nonuniform component of the magnetic
field. In graphene, a nonuniform component can be due to the
effective magnetic field introduced by the corrugation of the
graphene membrane. That the E = 0 level remains relatively
sharp in graphene has been observed in experiments.33,34 Even
already for weak magnetic fields, one can expect an increased
density of states at E = 0 due to these zero modes. If the
degeneracy of the zero modes can be multiplied, as we have
shown for our example, then such a peak in the density of
states should grow with the same multiplicity.

Notice that the Landau-level degeneracy depends strongly
on the chosen stacking of the layers, thus, also influencing the
height of the zero-energy peak in the density of states. This
is in stark contrast to the zero-field results, where the DOS is
stacking independent, as studied in Sec. III.

VII. KLEIN TUNNELING ON A POTENTIAL STEP

Finally, we discuss Klein tunneling of spin-S Dirac elec-
trons. As we have seen, qualitative differences arise between
half-integer and integer spins. The transmission amplitude for
spin-1/2 Dirac electrons has been studied, in connection to
graphene, in Ref. 35. The spin-1 case and the influence of
the flat band was studied in Refs. 3, 5, and 36, and all-angle
perfect transmission was found at specific energies. Here, we
discuss Klein tunneling for the pseudospin-1 case, and focus
on tunneling into the flat band, as shown in Fig. 6.

But, before doing so, let us discuss the general matching
conditions of the wave function for general pseudospin S. In
this case, the spinor wave function takes the form (omitting
spatial coordinates for simplicity)

� = (�1,�2, . . . ,�2S,�2S+1)T . (38)

To determine the matching conditions,36 we integrate the
eigenvalue equation of the Hamiltonian in Eq. (6), or more

V

FIG. 6. (Color online) A sharp potential barrier for the spin-1
Dirac equation; the thick red lines denote the nonpropagating zero-
energy states, while the short black arrows stand for the velocity of
the branches.
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generally from Eq. (4), after expanding it around the K point
HS� = E� from x = −x0 to x0 and send x0 to zero. As a
result, we obtain, assuming nondiverging scalar and vector
potentials,

�2(−x0) = �2(x0), (39)

α∗
i−1,i�i(−x0) + αi,i+1�i+2(−x0)

= α∗
i−1,i�i(x0) + αi,i+1�i+2(x0) for i = 1, . . . ,2S − 1,

(40)

�2S(−x0) = �2S(x0). (41)

In general, this implies that �2 and �2S must be continuous
since there is only a single nonzero element in the first and last
row of the Hamiltonian matrix. In addition, Eq. (40), involving
other components of the spinor, contains only �i and �i+2,
hence, there is no mixing between even and odd components.

The case of half-integer pseudospin (with even 2S + 1)
implies that the two continuous spinor components [Eqs. (39)
and (41)] contain one even (2) and one odd (2S) index.
Therefore, the continuity of, e.g., �2 implies through Eq. (40)
that of �4. The continuity of �4 in turn implies the continuity
of �6 and so on. The very same procedure can be carried out
for the odd components. Therefore, each component of the
spinor changes continuously, thus, the whole wave function
remains continuous across a potential barrier.

The case of integer pseudospins is different: 2S + 1 is
odd, therefore, only two even components (�2 and �2S) are
required to change continuously (as opposed to the one even
and one odd component for half-integer S). This implies that
all even components must be continuous, but there are only
S equations for the remaining S + 1 odd components. Only
the continuity of the linear combinations of neighboring odd
components [Eq. (40) with i = 1, 3, . . . , 2S − 1] is required
across a barrier, but nothing can be said about the individual
components.

Similar considerations apply along the y directions, in
which case the wave function still changes continuously
for half-integer S, while only the even components remain
continuous for integer S. Implicitly, this difference can be
traced back to the absence or presence of a flat band.

Here, we consider the scattering of pseudospin-1 electrons
on a sharp potential step of the form V �(x), V > 0. The
case when the energy of the injected electron differs from
V has already been considered in Refs. 3 and 36. However,
when the energy of the incident electron is exactly E = V ,
scattering into the nonpropagating flat band becomes possible.
The electrons on the flat band do not possess a well-defined
Fermi surface since all particles residing on the flat band have
identically zero energy. Thus, an incident electron with E = V

can be scattered to any momentum state of the flat band within
the barrier.

At normal incidence (ky = 0), there is perfect transmission
(T = 1) since transmission to the upper or lower Dirac cones
is possible (excluding the flat band).

At a finite angle, scattering to the propagating cones is
forbidden by momentum conservation (ky does not change).
In this special case, the wave function on the left- and right-
hand side of the barrier [suppressing the exp(ikyy) term] is

given by

�L(x < 0) = 1

2

⎛
⎝ exp(iϕk)√

2α

exp(−iϕk)

⎞
⎠ exp(ikxx)

+ r

2

⎛
⎝− exp(−iϕk)√

2α

− exp(iϕk)

⎞
⎠ exp(−ikxx), (42)

�R(x > 0) =
∑
k′
x

t(k′)√
2

⎛
⎝ exp(iϕk′)

0
− exp(−iϕk′)

⎞
⎠ exp(ik′

xx)

+ a

⎛
⎝ �(ky)

0
�(−ky)

⎞
⎠ exp(−|ky |x), (43)

where ky is conserved, i.e., ky = k′
y , V = v|k|, tan(ϕk) =

kx/ky , tan(ϕk′) = k′
x/ky , and the lack of Fermi surface implies

that any state on the flat band is available for transmission
without any restrictions on k′

x , explaining the summation over
k′
x , α = 1. The last term describes an evanescent mode in

the flat band. Applying the continuity of �2 from Eq. (39)
implies that the reflection coefficient r = −1, from which the
reflection probability is R = |r2| = 1, and T = 0.

As far as such a stationary solution is concerned, states
in the flat band to the right of the barrier may also be
occupied. However, as the group velocity on the flat band
is zero, the transmission probability is also zero, or in other
words, the probability current is zero through the barrier. The
resulting picture thus consists of standing, nonpropagating
waves, extending to both sides of the barrier: on the left, it is
made of two counterpropagating waves (in the x direction),
the interference of which leads to a standing wave, while
on the right, the zero-energy mode is nonpropagating by its
very nature. Although the wave function to the left of the
barrier is uniquely determined by specifying energy E = V

and perpendicular momentum ky , its corresponding part to the
right of the barrier has many degenerate versions due to the
flat band, and can thus host a large number of different states
∼L, even for a fixed ky .

This can be made explicit as follows. By using Eq. (40) to
connect Eqs. (42) and (43), we get

cos(ϕk) = a

2
+ i√

2

∑
k′
x

t(k′) sin(ϕk′), (44)

which can have ∼L distinct set of independent solutions
in terms of {t(k′)} and a. Crucially, each such solution
corresponds to zero transmission probability and perfect
reflection. Very similar considerations apply to the case of
E = 0, namely, an electron in the flat band to the left of the
barrier, scattered to propagating states to the right.

In the presence of many bands (S > 1), tunneling between
them occurs with a greater variety, and interband tunneling is
also possible between propagating bands. However, the main
difference is still expected from the presence or absence of a
flat band (half-integer versus integer S), as is also reflected in
the different matching conditions.
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VIII. POSSIBLE EXPERIMENTS

In this section, we discuss the experimental possibilities
to create optical lattices, which would realize the spin-S
Dirac equation, and the methods to observe the characteristic
physical quantities. This section gives a brief overview of
which concrete protocols have been proposed in the cold-atom
literature over the past few years; some of them are of course
still under active development. Indeed, there is a significant
and ongoing experimental effort devoted to realize lattices with
exotic band structures (for recent examples on triangle-based
lattices, see Refs. 37 and 38). Attempts to realize the family of
lattices proposed here would form part of this endeavor.

As we have already mentioned, the lattice structure in
Fig. 1 can be regarded as face-centered-cubic lattice, which
in itself (being a Bravais lattice) is relatively straightforward
to generate. As a first option, this can be created by four laser
beams at the appropriate angle, realized and discussed in detail
in Refs. 39–42. Although the triangular layers would be a
priori equidistant, a setup like that of Ref. 39 already treats the
lasers in one [111] direction inequivalently from the others, so
that the relative strengths for intraplane and interplane hopping
need not be equal. Making the former much weaker than the
latter (even without adding further laser beams, relative angles
and intensities of the beams are tunable) will then yield a
band structure including the presence of the flat band, as
described above. To achieve the chosen number layers, one
can, e.g., create an optical superlattice in the perpendicular
direction to the layers43 or by utilizing blue-detuned light
sheets to terminate the layered structure. Particles are then
mainly confined to these triangular layers, the number of which
defines 2S + 1.

Second, one can profit from the versatility of a holographic
mask, enabling arbitrary geometries, to generate the desired
lattice structure.44 Another option is to follow the steps
outlined in Ref. 6 and to introduce spin-dependent hopping
amplitudes, which in turn also realize the desired multiple
Dirac-cone structure.

In terms of observables, the presence of the flat band can be
revealed by time-of-flight imaging since particles residing on
the flat band remain immobile5 and would show up as missing
particles. In addition, the number of particles (the integral of
the density of states) on the lattice as a function of the chemical
potential could be monitored, which a jump around zero energy
for integer S due to the large degeneracy of the flat band.2 The
particle number per lattice site and physical spin behaves close
to half-filling as

N (μ � 0) − 2S + 1

2
= δS,integersign(μ) + ρ(μ)μ

2
, (45)

where ρ(μ) is the DOS, which can be obtained by taking the
numerical derivative of the experimentally measured particle
number with respect to μ. The DOS can also conveniently
be measured by rf spectroscopy, which directly probes the
momentum-integrated spectral function, i.e., the DOS.45 The
momentum-resolved Raman spectroscopy can also be used for
the same purpose.

The density-density correlation function, which is readily
related to the optical conductivity,45 can be investigated by
shot noise measurement, while the optical conductivity can

directly be probed by the amplitude or phase modulation of
the optical lattice.46 Thanks to the modulation, the energy
absorption rate or the doublon production rate turns out to be
directly proportional to σ (ω).

To probe the spin-Hall effect, an effective electric field
should be applied by tilting the lattice along one direction,
and the detection of the spin-current accumulation through
separate imaging of the two different spin components47 could
reveal the quantization of the spin-Hall conductivity, stemming
from the underlying topology of the band structure.

Work in progress on realizing artificial gauge fields holds
the promise to probe the Landau-level degeneracy. These
gauge fields mimic the effect of a real vector potential, thus
leading to the formation of Landau levels. The enhanced
degeneracy of the zero-energy level should be revealed by
time-of-flight imaging, as discussed above, or by rf spec-
troscopy. In addition, the Hall current can be made visible by
driving the system out of equilibrium by suddenly changing
the trapping potential and measuring the Hall current.48

Additional methods for detecting topological properties,
such as quantized Hall conductivity49 and chiral edge states,50

have been discussed recently in the literature and could be
generalized to our lattice setup.

Klein tunneling is expected to be observed in the presence
of smooth potential barrier, achievable by an accelerated
optical lattice potential51 or by simply tilting the lattice.52

Both methods would give rise to an additional potential term,
varying linearly in one direction as V (r) ∼ x. A sharp potential
barrier is also available using the appropriate holographic
masks. The characteristics of Klein tunneling (i.e., perfect
transmission at given angles) should show up in the measured
momentum distribution.

Finally, we mention in passing that photonic crystals allow
the realization of the appropriate lattice geometry,53 sketched
in Fig. 1. The nature of the edge states can be probed similarly
to Ref. 54, together with the characteristics of Klein tunneling.

IX. CONCLUSIONS

In conclusion, we have studied the lattice generalization of
the spin-1/2 Dirac equation of graphene to arbitrary spin. The
main difference arises between integer and half-integer spins,
the former possessing a flat band, which is absent for graphene
(corresponding to S = 1/2). As a result, the density of states
and the optical conductivity are modified, and the topological
properties are also enriched. We would like to reemphasize the
following points.

First, even in the absence of a perfect S · p Hamiltonian,
the above multicone picture can survive with a different ratio
of the opening angles between the cones.

Second, a flat band is expected under general conditions
in the gapless case: any lattice with an odd number of layers
and with chiral symmetry is expected to have a flat band. In
the gapped case, the flat band is less general, but can still be
realized in some natural settings among the case of equidistant
layers with regular stacking.

Third, some topological properties depend sensitively on
the stacking configuration. We have established this for the
Aharonov-Casher zero modes in a random magnetic field.
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Also, the Chern numbers of individual bands are strongly
stacking dependent.

Fourth, while the wave function remains continuous across
a potential barrier for half-integer pseudospin, only its even
components remain continuous for integer S.

Last, we would like to emphasize that the lattice structure
in Fig. 1 simply corresponds to a four-layer slab of the face-
centered-cubic Bravais lattice squeezed in the [111] direction.
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APPENDIX: SYMMETRY CONDITIONS
FOR FLAT BANDS

In this Appendix, we discuss in further detail the different
symmetry properties both of the full Hamiltonian in Eq. (4) as
well as of its low-energy expansion around the Dirac points of
which the spin S Hamiltonian equation (6) is a special case.
We will show that the existence of the flat band in the different
settings can be understood in terms of symmetries, and that the
symmetry conditions in the different settings are of different
level of generality, that is, of different level of robustness to
variations in the parameters of the model.

In the gapless case, the flat band is protected by a very
general symmetry, the chiral symmetry, which is made possible
by the bipartite nature of the lattice and is present under
the considered nearest-neighbor hopping, which respects this
bipartiteness (bipartiteness will be explained below). The flat
band is insensitive to arbitrary variations of the parameters αij ,
for example, due to small misalignments of the lattice, as this
does not change the bipartite structure of the Hamiltonian.

The situation is changed when one introduces any diagonal
terms, for example, due to intralayer hopping or in the form of
a gap term such as, for example, �Sz. Such terms do not
respect the bipartite structure and lead to the violation of
the the chiral symmetry. However, less general symmetries
protecting flat bands can still be at play. The flat band will
no longer be robust to any small arbitrary variations in the
parameters. However, it will still be there for a rather wide
class of parameter configurations, including fortunately some
rather natural configurations such as equidistant layers. We will
now discuss these symmetry issues in further detail, starting
with the chiral symmetry.

A lattice is bipartite if the sites can be collected into two
partitions A and B and the Hamiltonian only contains nonzero
matrix elements between the partitions, but not within each
partition (which is the case of the nearest-neighbor hopping
on the honeycomb lattice, which gives the free massless Dirac
Hamiltonian). In our multilayer generalization, the partitions

are the odd and even layers, respectively. Chiral symmetry is
present as the only terms in the Hamiltonian are the hoppings
between adjacent layers. In contrast, hopping within the layers
of triangular lattices would be one source of diagonal terms
in the Hamiltonian equation (4). A transverse electric field
would be another source. Such diagonal terms break the chiral
symmetry.

We are now going to discuss on a more mathematical level
the conjugation symmetry properties of the model Hamiltonian
HS

= t

⎡
⎢⎢⎢⎢⎢⎣

�0 α01f (k) 0

α∗
01f

∗(k) �1 α12f (k)...
0

0 α∗
12f

∗(k)...
0...

α2S−1,2Sf (k)

0 α∗
2S−1,2Sf

∗(k) �S

⎤
⎥⎥⎥⎥⎥⎦ .

(A1)

When the gap terms are zero �i = 0, the Hamiltonian pos-
sesses a chiral symmetry (CS): �H (k)�† = −H (k), where �

is a unitary matrix. The CS conjugates the spectrum. In our
case, we have � = diag(1,−1,1,−1, . . .) generalizing � =
σz, which conjugates the gapless S = 1

2 Dirac spectrum. In the
case of an odd number of bands, the CS has to map the middle-
most band onto itself. Furthermore, since the CS conjugates
the spectrum at each k separately, each (crystal) momentum
eigenstate in the middle band has to map onto itself. Chiral
symmetry guarantees thus a zero-energy state at each k,
i.e., a flat band. This should be contrasted with particle-hole
symmetry (PHS) UPHH ∗(k)U †

PH = −H (−k), also possessed
by the same Hamiltonian. PHS conjugates the band structure,
however, it does not do so at each k independently, wherefore
PHS alone is not enough to guarantee a flat band.55

The chiral symmetry is not only independent of the precise
values of the parameters αij ’s, but also of the stacking. As
the chiral symmetry only relies on bipartiteness, it is also
independent to changes in the stacking with the consequent
individual flipping of chiralities in the tunneling between the
involved layers, as for the Hamiltonian equation (10).

For the gapped case, the chiral symmetry is lost and there are
no general symmetries to guarantee a flat band. Nonetheless,
the following conditions are still sufficient for the appearance
of a flat band in the general case with a nonzero gap. The
diagonal gap term diag(�0,�1, . . . ,�2S) must satisfy the
antisymmetric property �2S = −�0, �2S−1 = −�1, etc. At
the same time, the off-diagonal elements with the α parameters
must satisfy a symmetric property in their moduli: |α2S−1,S | =
|α01|, |α2S−2,S−1| = |α12|, etc., while the phases can be chosen
arbitrarily. For this reason, the flipping of chiralities between
layers does not change anything since |f ∗| = |f |.

Even though it is difficult to interpret these general
conditions in terms of symmetries, these can be connected,
in some special cases, to a symmetry property specific to
the Dirac cone, that is, they are present only in the low-
energy approximation for the system close to half-filling. For
example, if one imposes the stronger condition α2S−1,S = α01,
α2S−2,S−1 = α12, . . ., and a symmetric configuration of flipped
chiralities, then the flat bands can be seen as a consequence
of the emergent conjugation property YH ∗

S (p)Y † = −HS(p),
with p being the small momentum with respect to a Dirac
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BALÁZS DÓRA, JANIK KAILASVUORI, AND R. MOESSNER PHYSICAL REVIEW B 84, 195422 (2011)

point and with Y generalizing σy as a matrix with the
alternating pattern (−i,i,−i,i, . . .) on the antidiagonal of the
matrix (i.e., the diagonal joining bottom-left and top-right
entries). It formally looks like a PH symmetry combined with
inversion symmetry H (−p) = H (p), however, with momenta
not inverted around k = 0 as the physical PH symmetry
requires, but around the Dirac point p = k − k+ = 0.

As mentioned in the beginning of the section, some of
the specific parameter configurations are rather natural. For

equidistant layers, the gap parameter is �Sz and can be created
by the electrostatic potential of a uniform transverse electric
field. The α’s would all have the same modulus for equidistant
layers and therefore also fulfill the above conditions, although
they would not correspond to the values pertinent to Sx and
Sy . Thus, we conclude that equidistant layers for certain
symmetric stackings are enough to guarantee flat bands also in
the presence of a gap term generated by a transverse uniform
electric field.
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B 84, 115136 (2011).

37G.-B. Jo, J. Guzman, C. K. Thomas, P. Hosur, A. Vishwanath, and
D. M. Stamper-Kurn, e-print arXiv:1109.1591.
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